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S O C I A L  S C I E N C E S

Predicting non-state terrorism worldwide
Andre Python1,2*, Andreas Bender3, Anita K. Nandi2, Penelope A. Hancock2, Rohan Arambepola2, 
Jürgen Brandsch4, Tim C. D. Lucas5

Several thousand people die every year worldwide because of terrorist attacks perpetrated by non-state actors. In this 
context, reliable and accurate short-term predictions of non-state terrorism at the local level are key for policy makers 
to target preventative measures. Using only publicly available data, we show that predictive models that include 
structural and procedural predictors can accurately predict the occurrence of non-state terrorism locally and a week 
ahead in regions affected by a relatively high prevalence of terrorism. In these regions, theoretically informed models 
systematically outperform models using predictors built on past terrorist events only. We further identify and 
interpret the local effects of major global and regional terrorism drivers. Our study demonstrates the potential of 
theoretically informed models to predict and explain complex forms of political violence at policy-relevant scales.

INTRODUCTION
Research on armed conflict and insurgency has led to the development 
of predictive models informed by theory (1–7), which includes a 
recent successful research program that applies machine learning 
algorithms to predict conflict at fine spatiotemporal scales (8–10). 
This literature highlights that theoretically informed modeling strongly 
improves the predictive performance of machine learning techniques. 
However, this important insight from armed conflict research (11, 12) 
has not found its way into terrorism studies, yet. Terrorism research, 
by and large, has focused on explanatory models, applying statistical 
approaches to capture and quantify the effects of drivers of terrorist 
attacks in space and time (13–15). There is one notable exception; 
Ding et al. (16) predict terrorism at a fine spatial scale. However, the 
authors aggregated the data on a yearly level, which ineluctably 
ignores the short-term dynamics of terrorism and cannot provide 
the necessary information for policy makers to implement targeted 
and rapid counterterrorism measures. Consequentially, there is a 
need to develop an interpretable modeling framework to predict 
terrorist events at fine spatial and temporal scales that can help policy 
makers implement efficient interventions and assess and develop 
theories at relevant scales.

Here, we develop a framework to predict and explain the occur-
rence of terrorism perpetrated by non-state actors outside legitimate 
warfare worldwide a week ahead and at a fine spatial scale. We com-
pare the results of a flexible spatial statistical model [generalized 
additive model (GAM)] and two machine learning approaches, 
including an efficient implementation of gradient-boosted trees 
[extreme gradient boosting (XGB)] (17) and a random forest (RF) 
algorithm (18). Our models are informed by an advanced theoretical 
understanding and explicitly incorporate (i) structural features—
time-invariant variables that account for the effect of, e.g., rough 
terrain or per capita gross domestic product (GDP)—and (ii) pro-
cedural features—dynamic variables to account for the temporal 
dependency of terrorism (15). We compare their predictive per-
formance with benchmark models that include structural and/or pro-
cedural features. Parsimonious models using procedural features 

exclusively may show high predictive performance in short-term 
forecasting of conflict events [e.g., civil war forecast at country- 
month level (19)]. The results are used to provide guidance on the 
choice of features associated with short-term predictions of terrorist 
events, which remains under debate in the conflict literature (19).

We consider terrorist attacks perpetrated between 2002 and 2016, 
divided into 13 regions worldwide, which include all subcontinental 
regions defined in the Global Terrorism Database (GTD) (20) and 
West Africa (Fig. 1, regions A to M). Predictive models are built for 
each region, which allow us to identify, assess, and compare the role of 
major terrorism drivers across different regional contexts and reduce 
the computational requirements. In addition, training machine 
learning models for separate regions allows the algorithms to select 
different hyperparameters for different regions (e.g., regions with 
lower prevalence require greater regularization). The spatiotemporal 
domain is represented by regular cells at 0.5° spatial resolution from 
PRIO-GRID (21) that cover all inhabited areas (with population den-
sity above five persons per square kilometer) where terrorist events 
can potentially occur and be reported with high spatial accuracy in 
the GTD. The grid cells are replicated for each week from 2002 to 
2016 across all regions worldwide. The total number of week cells 
considered in this study are 21,108,045 (26,551 grid cells × 795 weeks). 
Countries that did not encounter terrorist events (or those where 
no terrorist event was reported in GTD) over the study period are 
not considered (see the Supplementary Materials for details on the 
data preparation).

A definition focusing on attacks against civilians is in line with 
recent research (22, 23) but necessitates modifications of the raw 
GTD data. Therefore, we first gather data on terrorism from the 
GTD dataset from 2002 to 2016 for each region and adapt it to our 
definition (20). Second, we discretize each region using PRIO-GRID, 
a 0.5° spatial grid that provides various geographic and socioeconomic 
variables worldwide (21). Third, we extract in all week cells in each 
region worldwide: (i) The occurrence of terrorism using GTD data 
(2002–2016) and (ii) feature values from a set of predictors gathered 
at various spatiotemporal lags. The choice of the structural and pro-
cedural features included in the predictive model builds on our con-
ceptual understanding of terrorism as a tactic, and we identified 
several variables theoretically associated with its probability of 
occurrence (see list of features in table S1).

We define terrorism as politically motivated attacks outside legit-
imate warfare (i.e., targeting noncombatants) perpetrated by non-state 
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actors to communicate to a wider audience. Here, terrorism is un-
derstood as separate from armed conflict. While armed conflict is a 
violent process between two or more armed actors, terrorism is a 
tactical tool used either inside or outside of armed conflicts that 
targets the unarmed (24).

Terrorism, defined as violence against civilians, is a weapon of 
the weak. Non-state actors who are unable to overpower their 
adversaries militarily use this tactic to compensate for their weakness. 
Terrorism thus may have many purposes (25), but its two core 
strategies are either coercing or provoking an opponent or a popu-
lation (22, 26). In coercion strategies, terrorists use violence to threaten 
further violence in the future. The aim here is to coerce the target 
audience into giving in to a demand of the terrorists (27, 28). Prov-
ocation, to the contrary, seeks to lure the attacked groups into a 
counter attack that in the end benefits the terrorists (22, 29). In both 
cases, terrorism is a communication tool. Violence itself is used to 
send messages to an observing population. As a consequence, we 
first identify structural variables that increase the possibility of 
successfully communicating with an audience for the purpose of 
either provocation or coercion. Note, however, that the variables in-
cluded here also have relevance for other theoretical considerations. 
To capture the communicative value of a location, we include closeness 
to capital, distance to large cities, road density, and population den-
sity as appropriate variables. High population density and facilitated 
access by roads or closeness to large cities will, in general, increase 
the ease by which the communicated message travels through the 

audience. Thus, these locations should constitute more attractive 
targets (30, 31).

Second, terrorists often operate in remote and difficult to access 
regions where state authorities cannot reach them easily. Therefore, 
we included variables that indicate a geographical advantage for terror-
ists, such as closeness to international borders, mountainous cover-
age, and altitude. While these locations do not provide the terrorists 
with high impact targets, they may be closer to their home base and 
thus easier to reach for attacks. We also included a variable on the 
locations of drug cultivation as drugs usually represent potential 
financial resources for terrorist groups. It is worth stressing here that 
the variables associated with the communication value of a location 
can similarly reflect geographical advantages for terrorists as, for 
instance, low values in road density will also identify remote areas.

Third, coercive attacks have a higher impact in areas where they 
hurt the target the most. Coercion seeks to maximize the expected 
costs of future attacks, and high costs in the present can credibly 
establish a threat of high costs in the future. For this reason, we 
included proxies of economic activity from satellite night lights 
and gross cell product data, the infant mortality rate as a proxy for 
well-being, and data on some key resources that can provide a con-
siderable income to governments. We account particularly for the 
presence of valuable resources, such as onshore petroleum, diamond, 
gem, and gold deposits. Again, some of the variables included can 
have multiple interpretations. Particularly, gross cell product and 
satellite night lights data also identify remote areas.
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Fig. 1. Location of terrorist events (2002–2016) and spatial domain (grid cells) worldwide. Location of terrorist events (red dots) from the GTD (50) that occurred 
from 2002 to 2016 in North America (A), Central America and Caribbean (B), South America (C), Europe (EU28 and Schengen area) (D), Middle East and North Africa (MENA) 
(E), West Africa (F), sub-Saharan Africa (G), Russia and Eastern Europe (H), Central Asia (I), South Asia (J), East Asia (K), Southeast Asia (L), and Australasia and Oceania (M). 
The spatial domain (PRIO-GRID cells, gray squares) (21) covers all inhabited areas worldwide (population density above five persons per square kilometer).
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Fourth, provocative attacks seek to engender a violent reaction 
either by the government or the local population. Previous research 
showed that terrorists particularly seem to target those locations 
that have a high probability of escalating into more violent conflict 
because this creates more recruits for the terrorists’ organizations 
(22, 32). In line with this research, we include variables on past con-
flict events (32) and politically excluded ethnic groups (33–35). We 
use a yearly lagged sum of conflict events (state violence only) and 
integrate the number of politically excluded ethnic groups.

Fifth, on the country level, we also consider the political system and 
GDP as important factors. While there is considerable controversy 
about the association between political regimes and terrorism, it is 
generally assumed that terrorist strategies are affected by the level of 
democracy (36). Therefore, we include a proxy for estimating liberal 
democracy. In addition, the overall economic development of a 
country may have an influence on terrorism (37). Although we 
already included a local level variable on GDP, the development 
of a country’s economic system may help to predict the location of 
terrorist attacks.

Last, the repeated occurrence of terrorism is highly dependent 
on terrorist organizations gaining a local foothold. Once terrorist 
organizations establish a presence in a given area (either in a country 
or in a specific location), we expect that attacks will be highly auto-
correlated. Therefore, we built procedural variables associated with 
previous attacks using various temporal and spatial lags. These vari-
ables are particularly important in areas of high terrorist activity as 
they pick up information about the terrorist group’s internal calcu-
lation. Previous attacks reveal where terrorists are able and willing 
to strike and can thus indicate where future attacks may occur.

The resulting data that include temporally and spatially lagged 
features for each week cell from 2003 to 2016 are used to train the 
investigated models over several years, with weekly predictions 
carried out a year ahead to assess the out-of-sample predictive per-
formance of the models (workflow in fig. S1 and predictive maps in 
fig. S4). For each region (Fig. 1, regions A to M), we compare the 
predictive performance on hold-out data between 2012 and 2016 of 
models using structural and procedural features (XGB, RF, and GAM) 
with those from benchmark models using procedural features 
only [autoregressive models of order 1 AR(1) and of order 2 AR(2)].

RESULTS
To estimate the general predictive performance of the models, we 
compute receiver operating characteristic (ROC) curves, which plot 
the true-positive rate (also called sensitivity or recall) against the 
false-positive rate (1-specificity or probability of false alarm) at 
various thresholds. Hence, we compute the area under the ROC curves 
(AUROCs), which summarizes the model’s performance over a 
range of thresholds, with values ranging from 0 (worse prediction) 
to 1 (perfect prediction), with 0.5 for a random classifier. The aver-
age AUROC values of the best models range from 0.81 to 0.97 across 
all regions worldwide, which represents a good overall predictive 
performance (19).

Given the potential large damages caused by terrorist events, it is 
important that the precision of the models is high enough so that a 
large fraction of them can be prevented. The precision of a model 
refers to its ability to correctly predict the proportion of week cells 
that encountered terrorism over the total number of predicted pos-
itive cases. Obtaining high precision remains challenging, especially 

in regions that exhibit a low level of terrorism prevalence. Prevalence 
is defined as the proportion of positive cases over the total number 
of positive and negative cases. The AUROC metric is not suitable to 
assess the precision of the models if the data are imbalanced. In all 
regions, most week cells did not encounter terrorism during the 
study period, which leads to a considerable excess of negatives over 
positives. To account for data imbalance, we compute the area under 
the precision-recall (PR) curves (AUPRCs) and report the comple-
mentary predictive performance metrics that account for the preci-
sion of the models (tables S2 and S3). In contrast to the ROC curves, 
the baseline for a PR curve (random classifier) is determined by the 
prevalence (38). For an imbalanced class distribution with the ratio 
of positives over negatives of, e.g., 1 to 9, the baseline function and 
the corresponding AUPRC are equal to 1/(9 + 1) = 0.1. A perfect 
AUPRC is reached if all week cells that encountered terrorism 
are predicted as positive events without accidentally predicting any 
week cell that did not encounter terrorism as positive.

Tables S2 and S3 show that XGB and RF have the best AUPRC 
values overall, with AUPRC values ranging from 0.2 to 2.0% in 
regions with very low prevalence (A, B, I, K, and M) and from 17 to 
51% in regions with high prevalence (E, J, and L). The important 
variation in the AUPRC values associated with terrorism prevalence 
indicates that predicting correctly a high fraction of positive week 
cells while keeping a low proportion of “false alarm” week cells is 
more difficult to achieve in areas where terrorism is rare. However, 
the AUPRC values for XGB and RF remain usually relatively high. 
For example, in Central Asia (region I) where the prevalence of 
terrorism is very low (0.022%), the AUPRC of the best model (RF) 
is about 63 times higher than the AUPRC for the baseline model. To 
account for the capability of the models to detect positives, we com-
pute AUPRCs and alternative predictive performance metrics (see 
tables S2 and S3 for detailed results).

We observe that XGB, RF, and GAM show better predictive per-
formance scores than the benchmark models [AR(2), AR(1) extra, 
and AR(1)] in most regions based on AUROC, AUPRC, and addi-
tional performance metrics (see Materials and Methods). The high 
predictive performance of XGB, RF, and GAM is particularly notice-
able in regions with higher level of terrorism prevalence. While XGB, 
RF, and GAM show relatively high AUROC scores, the machine 
learning algorithms (XGB and RF) appear to show a better model 
precision overall, with top AUPRC values obtained in a larger number 
of regions compared to GAM. Thus, we compute the Brier skill score 
(BSS) (39) to assess both the calibration (statistical consistency be-
tween the probabilistic forecasts and the observations) (40) and the 
sharpness (concentration of the predictive distributions) (41). We 
observe that all models perform poorly in regions with very low 
terrorism prevalence. However, in regions with medium-high 
prevalence, XGB and GAM show the best BSS scores (tables S2 and S3). 
These results suggest that, in regions with a relatively high level of 
terrorism prevalence, models that incorporate both structural and 
procedural features are likely to produce more reliable and accurate 
short-term predictions at fine spatial scales than models that would 
only include procedural features.

While GAM and RF show relatively high performance in some 
of the investigated predictive scores, XGB systematically ranks 
among the best predictive models, this independently of the metric 
used and the region considered. Therefore, we select XGB to assess 
the role of important variables in each region (A to M) worldwide. 
For each regional model, we compute the importance (in percent) 
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of each feature (20 structural and 14 procedural features) using the 
variable importance metric. This metric represents the relative in-
fluence of each variable in the model based on criteria that include 
its role on a split in a specific tree and the improvement of predictive 
performance over all trees. It is scaled with a maximum value of 100 (42). 
It characterizes the overall effect of a feature in comparison with other 
features in the model. In contrast to a regression coefficient, it does 
not provide the absolute magnitude and the direction of the effect.

To assess the global importance of specific drivers of terrorism, 
we reported the average importance of each variable across all re-
gions. Figure 2 shows the structural (label in black) and procedural 
(label in gray) variables ranked by their average importance across 
all regions (column A:M). Time since previous terrorist event is the 
most important variable overall using this metric. Because previous 
attacks capture multiple facets of the terrorists’ strategic consider-
ation (e.g., target value versus reachability), it is no surprise that they 

have the highest predictive power in most regions worldwide. In 
addition, five variables also rank very high on a global scale. First, 
three variables that we see associated with the communicative value 
of a location (population density, travel time to the nearest large 
city, and road network density) appear to be important in the pre-
diction of terrorism in most regions. Second, two variables associated 
with the coercive value of a location (satellite night lights and gross 
cell product) are also strongly related to terrorism across regions. 
Quite interestingly, variables associated with the provocative value or 
with easy-to-hide-in locations do not feature in this upper group 
and neither do country-level variables.

We further explore the regional variation of the marginal effects 
of the four most important features (Figs. 3 to 6) across all regions 
(see figs. S9 to S38 for additional features). In our study, we do not 
distinguish lethal from nonlethal terrorist attacks. However, lethal 
events are more likely to be reported and are therefore less susceptible 
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Fig. 2. Assessment of the role of features (variable importance) estimated in the 13 regions. The plot shows the importance of each structural (label in black) and 
procedural (label in gray) feature (total of 34 features) in each region (columns A:M) and the average across all regions (column A:M): North America (A), Central America and 
Caribbean (B), South America (C), Europe (EU28 and Schengen area) (D), Middle East and North Africa (MENA) (E), West Africa (F), sub-Saharan Africa (G), Russia and 
Eastern Europe (H), Central Asia (I), South Asia (J), East Asia (K), Southeast Asia (L), and Australasia and Oceania (M). The variable importance is computed from the model with 
the best overall predictive performance: XGB. Country effects (dummy) are not displayed.
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than nonlethal events to reporting biases (43). To assess the robust-
ness to reporting bias associated with the lethality of the attacks, we 
compare the main results that use XGB applied to both nonlethal 
and lethal attacks (XGB) with the results using XGB applied to lethal 
attacks only (XGBfatal). Details on the sensitivity analysis are pro-
vided in the Supplementary Materials.

The four variables that show the highest importance level across 
all regions (overall average) include a procedural feature (at cell level) 
[time since previous terrorist event (Fig. 3)] and three structural 
variables (at cell level) [population density (Fig. 4), satellite night 
lights (Fig. 5), and road network density (Fig. 6)]. To further ana-
lyze their effects on terrorism, we used the accumulated local effect 
(ALE) plots, which are more robust to the presence of collinearity in 
the predictors and faster to compute than the partial dependence 
(PD) plots (44). For a given feature, the value of the ALE on the 

y axis represents the main feature effect at a specific value on the 
x axis on the predicted occurrence of terrorism compared to the 
overall prediction. For example, a point (x, y) in an ALE plot with 
an ALE value y = −0.25 and feature satellite night lights with a value 
x = 3 indicates that, for a luminosity value equal to 3, the predicted 
probability of terrorism decreases by 25% compared to the average 
prediction of the occurrence of terrorism.

As we indicated above, many variables are associated with more 
than one theoretical concept. Thus, it is very difficult to interpret the 
findings with regard to theory, and we will be cautious in our 
discussion. Nevertheless, the results from the ALE plots provide an 
interesting array of information we want to at least tap into. Further-
more, the ALE plots are more reliable in regions where the models 
show a good predictive performance. For the sake of transparency, 
we show the ALE plots for all regions. However, we do not interpret 
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Fig. 3. ALE plot assessing the effect of time since previous terrorist event on the predicted probability of terrorism across all regions. The centered ALE plot 
[smooth function (loess) with span = 0.8] estimates the ALE on the basis of the results of the XGB model (2012 to 2016) with all events (XGB) and lethal events only 
(XGBfatal) in 13 regions worldwide: North America (A), Central America and Caribbean (B), South America (C), Europe (EU28 and Schengen area) (D), Middle East and 
North Africa (MENA) (E), West Africa (F), sub-Saharan Africa (G), Russia and Eastern Europe (H), Central Asia (I), South Asia (J), East Asia (K), Southeast Asia (L), and Australasia 
and Oceania (M). The ALE shows the marginal difference in prediction with an incremental change in the feature. The y axis represents change in the predicted probability 
of terrorism occurrence. The x axis represents time since previous terrorist event (cell) in weeks. ALE values are not computed for XGBfatal in region (M) (no variation in the 
response in one or more training datasets). Gray areas are 95% confidence intervals.
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the ALE plots obtained in regions (A, B, I, K, and M), which have 
encountered a very low level of terrorism prevalence. The predictive 
performance of the models is low in these regions; therefore, the 
ALE plots are less reliable. Also, some features in these regions may 
show constant ALE values (see e.g., Fig. 4K, XGBfatal), which should 
not be interpreted as evidence of the absence of an effect; rather, it 
is the result of a very low level of prevalence of lethal attacks in the 
region, which leads to insufficient variability of the feature values for 
the model to identify a potential signal in the data. Therefore, the 
interpretation of the ALE plots (below) is exclusively based on the 
results from regions C to H and J and L.

To begin with, the results associated with time since previous 
terrorist events (Fig. 3) suggest that, overall, the risk of the occur-
rence of a terrorist event increases as time between terrorist events 
increases. In most regions, the ALE plots suggest a sigmoid relationship 
with caps that vary among regions. In regions strongly affected by 
terrorism (e.g., Southeast Asia; Fig. 3L), the risk peaks at about 
200 weeks while the risk continues to increase until about 400 weeks 
in regions with a lower terrorism prevalence (e.g., Russia and eastern 
Europe; Fig. 3H). This finding highlights that terrorists do indeed 
tend to target the same locations multiple times. The reasons for 
this can be manifold, but in general, it seems that these locations 
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Fig. 4. ALE plot assessing the effect of population density on the predicted probability of terrorism across all regions. The centered ALE plot [smooth function 
(loess) with span = 0.8] estimates the ALE on the basis of the results of the XGB model (2012 to 2016) with all events (XGB) and lethal events only (XGBfatal) in 13 regions 
worldwide: North America (A), Central America and Caribbean (B), South America (C), Europe (EU28 and Schengen area) (D), Middle East and North Africa (MENA) (E), West 
Africa (F), sub-Saharan Africa (G), Russia and Eastern Europe (H), Central Asia (I), South Asia (J), East Asia (K), Southeast Asia (L), and Australasia and Oceania (M). The ALE 
shows the marginal difference in prediction with an incremental change in the feature. The y axis represents change in the predicted probability of terrorism occurrence. 
The x axis represents population density (cell) in inhabitants per square kilometer. ALE values are not computed for XGBfatal in region (M) (no variation in the response in 
one or more training datasets). Gray areas are 95% confidence intervals.



Python et al., Sci. Adv. 2021; 7 : eabg4778     30 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 13

reflect the strategic equilibrium between reachability (i.e., cost for 
attacking for the terrorists) and the strategic value (i.e., benefits of 
an attack) of a location.

In addition, in most regions, the predicted probability of terrorism 
tends to be negatively associated with population density (Fig. 4), 
which suggests that the probability of a terrorist attack is higher in 
less populated areas. Since the urban centers can be seen as more 
attractive targets, the results may indicate that access to these areas 
is an important constraint faced by terrorists. This interpretation 
may be further strengthened by one additional observation. Most 

regions (C, D, F, H, J, and L) show a U-shaped ALE, with high ALE 
values associated with very low and very high values of population 
density. In the alternative model that uses only fatal terrorist attacks 
(XGBfatal), the predicted probability seems to not fall by as much as 
with all terrorist attacks included (XGB). However, there is a possi-
bility that this is only due to the fact that lethal attacks are more 
likely in densely populated areas.

The results associated with satellite night lights (Fig. 5) and road 
density network (Fig. 6) in most regions seem to be reflecting the 
same ambivalence as the results of the population density variable. 
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Fig. 5. ALE plot assessing the effect of satellite night lights on the predicted probability of terrorism across all regions. The centered ALE plot [smooth (loess) 
function with span = 0.8] estimates the ALE on the basis of the results of the XGB model (2012 to 2016) with all events (XGB) and lethal events only (XGBfatal) in 13 re-
gions worldwide: North America (A), Central America and Caribbean (B), South America (C), Europe (EU28 and Schengen area) (D), Middle East and North Africa (MENA) 
(E), West Africa (F), sub-Saharan Africa (G), Russia and Eastern Europe (H), Central Asia (I), South Asia (J), East Asia (K), Southeast Asia (L), and Australasia and Oceania 
(M). The ALE shows the marginal difference in prediction with an incremental change in the feature. The y axis represents change in the predicted probability of terrorism 
occurrence. The x axis represents the normalized values of the calibrated satellite night lights (cell) (no unit). Gray areas are 95% confidence intervals. ALE values are not 
computed for XGBfatal in region (M) (no variation in the response in one or more training datasets).
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For instance, particularly for the regions of West Africa and sub- 
Saharan (regions F and G), the ALE values align with a U-shape 
function, which suggests that areas with high and low human activities 
are more at risk than areas with a medium range of human activity. 
However, two ALE plots seem to stand out. For region D, Europe, 
satellite night lights are positively associated with the predicted 
probability of terrorist attacks (see XGB, both lethal and nonlethal 
events are considered), and for region H, Russia and eastern Europe, 
road networks appears as an inverted U-shape relationship. While an 
interpretation of the mechanisms associated with these idiosyncrasies 

would go beyond the scope of this paper, they highlight the fact 
that the effects of some predictors may be shaped by the context of 
each region.

The ALE plots of the remaining features are shown in the 
Supplementary Materials (figs. S9 to S38). However, it is worthy to 
mention at least two exemplary aspects to show what kind of infor-
mation these plots contain. First, we can take a look at the country- 
level indicator of liberal democracy. This variable does not appear 
as an important feature across regions (Fig. 2). However, a closer look 
at the ALE plots (fig. S15) reveals strong regional differences. Both the 
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Fig. 6. ALE plot assessing the effect of road network density on the predicted probability of terrorism across all regions. The centered ALE plot [smooth (loess) 
function with span = 0.8] estimates the ALE on the basis of the results of the XGB model (2012 to 2016) with all events (XGB) and lethal events only (XGBfatal) in 13 re-
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direction and the magnitude of the effects of the liberal democracy 
variable on the predicted probability of terrorism may considerably 
vary among regions. This is an interesting, if not important, finding to 
further probe the not yet understood interplay between democracy 
and terrorism. Second, we want to highlight the variable on conflict 
events. This variable ranges in the upper third in the cross-region 
comparison of variable importance (Fig. 2). The ALE plots (fig. S36) 
show that the predicted probability of terrorism decreases with in-
creasing numbers of conflict events for all but one region. In region J, 
the ALE plots suggest a U-shape relationship. This is evidence that 
terrorism (understood as violence against civilians) does not take 
place in the same areas as armed conflict events. Terrorism may be 
more likely in areas where conflict is relatively low (45).

DISCUSSION
Our work demonstrates that models informed by theory can produce 
interpretable and accurate predictions of terrorism at fine spatio-
temporal scales, particularly in areas already experiencing relatively 
high levels of terrorism activity. Predictions at fine spatial and tem-
poral resolutions are especially informative for policy makers and 
can help them in designing and implementing measures to curb 
terrorism. However, several caveats are warranted. The tradeoff between 
the sensitivity and the specificity of predictive models has important 
consequences on policy making. It is reasonable to believe that policy- 
relevant predictive models should minimize the number of false 
negatives because the potential damages caused by terrorist events 
may exceed the costs to prevent the attacks. However, enforcing a 
low false-negative rate may lead to a considerable increase in the 
quantity of resources that need to be attributed to prevent terrorist 
events. In all investigated regions and time periods, the data are 
strongly imbalanced with about 99.8% of week cells not experiencing 
terrorism at all (table S4). In this case study, a slight reduction in the 
proportion of false negatives would ineluctably lead to an important 
increase in the number of false positives. Therefore, it lies with the 
analyst to adjust this threshold to reflect the specific policy-making 
choices, which may vary according to the available resources and 
counterterrorism strategy used for each country and region.

Furthermore, a large deployment of resources guided by accu-
rate predictions may not suffice to efficiently prevent terrorist 
attacks. Terrorist groups could relocate their attacks in more vul-
nerable areas in adaptation to spatially targeted counterterrorism 
measures. However, if prediction identifies the most cost-effective 
locations for terrorists to attack, then policing those areas will at 
least increase the cost for terrorists and might lead to a reduction of 
terrorist activity overall.

Progress in terrorism research remains constrained by important 
factors, such as the absence of consensus on the definition of terror-
ism, data inaccuracy, and reporting bias (reinforced in autocratic 
regimes), along with incomplete theory (46–49). Therefore, obtaining 
accurate long-term predictions of terrorism in various contexts and 
at fine spatial scales might remain very difficult. While we assess the 
robustness of our findings to an alternative model that considers 
lethal events only, the terrorism metric used in this work—a binary 
variable associated with the occurrence of at least one terrorist attack 
in a week cell—does not account for the magnitude of the attacks, 
such as the number of causalities per week cell or the number of 
attacks per week cell. Alternative specifications of the response might 
lead to different results (15). Furthermore, our work considers a 

PRIO-GRID week spatiotemporal level of resolution. Thus, research 
using data aggregated at different spatial and/or temporal levels of 
aggregation might contrast with our findings.

Terrorism is driven by complex factors unknown to the observer, 
such as changes in the strategy and tactics, competition within or 
among terrorist groups, and classified counterterrorism operations. 
Nevertheless, we brought evidence that short-term predictions in 
restricted areas can be of sufficient spatial and temporal accuracy to 
benefit both the research and policy communities as tactics, strategies, 
and the presence of terrorist organizations can be expected to remain 
stable in this time frame (12). This way, our models allow us to identify 
local drivers of terrorism at fine spatial and temporal scales, which 
can serve as a decision-making tool for improving the design and 
assessment of counterterrorism policies, and ultimately contribute 
to reducing the number of victims because of terrorism.

We believe that interdisciplinary collaboration in the field of ter-
rorism, data science, statistics, and computer science, along with an 
increase in quantity and quality of geolocated data on terrorism and 
its drivers, will improve the predictive performance and interpret-
ability of advanced statistical and algorithmic models and provide 
practitioners active on the ground with increasingly efficient counter-
terrorism tools. Overall, we demonstrate that terrorist attacks can 
be predicted a week ahead within fine spatial grid cells with a rela-
tively high accuracy in areas that are affected by a relatively high 
level of terrorism. We also show that predictive models that include 
spatial and temporal dependencies along with structural and proce-
dural features tend to exhibit a better predictive performance of 
terrorist events at PRIO-GRID week level than autoregressive models 
that use procedural features only. We hope that our work may open 
the way to the development of predictive machine learning approaches 
to better understand terrorism and prevent events that take the lives 
of thousands of people every year.

MATERIALS AND METHODS
Data
We used the GTD dataset to gather spatial coordinates (longitude 
and latitude) and temporal information (day, month, and year) of 
terrorist attacks perpetrated by non-state actors outside legitimate 
warfare that occurred from 2002 to 2016 in the world (50). GTD is 
currently the most extensive and comprehensible disaggregated 
database on terrorism worldwide. Our working definition of terror-
ism considers acts as terrorism if they are perpetrated by a non-state 
actor, outside of legitimate warfare (i.e., targeting noncombatants), 
politically motivated, and with the intention to communicate to a 
larger audience. In GTD, terrorist events are defined as “the threatened 
or actual use of illegal force and violence by a non-state actor to attain 
a political, economic, religious, or social goal through fear, coercion, 
or intimidation.” We include terrorist events on the basis of 
six attributes (i to vi): (i) “The incident must be intentional,” (ii) 
“the incident must entail some level of violence or immediate threat 
of violence, and (iii) “the perpetrators of the incidents must be sub-
national actors” (state terrorism is excluded) (20). To be in line with 
our definition, we enforce criterion three (crit3) to be true so that 
(iv) only terrorist events that occurred outside the context of legitimate 
warfare activities are considered. In addition, we consider events 
that satisfy at least one of the following criteria: (v) “The act must be 
aimed at attaining a political, economic, religious, or social goal;” 
and (vi) “there must be evidence of an intention to coerce, intimidate, 
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or convey some other message to a larger audience (or audiences) 
than the immediate victims” (20).

In line with previous research work, we included 20 structural 
(time-invariant and annual variables) and 14 procedural (time- 
dependent variables (table S1) for which there are theoretical grounds 
to believe that they are associated with previous occurrence of 
terrorism (15, 32). Note, however, that the variables discussed here 
often have relevance for more than one theoretical consideration, 
which limits our ability to interpret the findings, and we are cautious 
in our assessment.

With regard to the variables selected, we grouped them into six 
categories. Since terrorism is mainly a communication strategy that 
either seeks to coerce or to provoke (22), we first identified structural 
variables (time-invariant variables) that heighten the demonstration 
effects of violence, either coercive or provocative. We considered 
population density derived from the 2000 Gridded Population of 
the World (GPW v4.10) (51) per percentage of land area (52) along with 
travel time to cities of more than 50,000 inhabitants (53), distance to 
capital data (52) [from 2002 to 2014 and extrapolated the missing 
years (2015–2016)], and density of road at grid-cell level from the 
Global Roads Inventory Project dataset (54) to capture spatial vari-
ations in the ease of sending a message to the audience of the attack.

Second, we included variables that indicate a geographical ad-
vantage for terrorists. These areas are not necessarily of a particular 
interest for terrorists but easy to reach without government inter-
ference. We included closeness to international borders (52) 
[from 2002 to 2014 and extrapolate the missing years (2015–2016)], 
mountainous coverage from (55), and altitude from the Shuttle 
Radar Topography Mission (SRTM) digital topographic data (SRTM 
version 2) (56). Terrorist groups may use borders as safe havens to 
exchange information, money, and weapons and can benefit from 
anonymity. Along the border between countries that lack resources 
to control their borders, terrorist groups can take the opportunity to 
plan and perpetrate attacks (57). Some terrorist groups get tactical 
advantages over governmental forces in mountainous areas. Security 
forces are often disadvantaged in rough terrain areas because of their 
lack of knowledge of the local environment (15). In addition, we 
included a variable on the locations of drug cultivation as drugs 
usually represent potential financial resources for terrorist groups and 
thus indicate their presence. We considered it as a time-invariant 
variable (2000) because the data are temporally limited until 2002 (58).

Third, we included variables of relevance for coercion strategies. 
Coercion as a terrorist strategy seeks to impose high costs on the 
target audience to pose a credible threat of even higher costs in the 
future. Therefore, terrorists will target those areas where they can 
impose great costs. We extracted (i) the calibrated National Oceanic 
and Atmospheric Administration satellite lights at night (version 4 
DMSP-OLS, from 2000 to 2012 and extrapolated the data until 2016) 
(59), a widely used proxy for human economic activity (60, 61), and 
(ii) the gross cell product (USD) using the G-Econ dataset v4.0 (62). 
The data are provided at 5-year interval from 1990 to 2005; there-
fore, we used data from 2000 as a time-invariant variable. Missing 
data in the territorial border between Libya and Chad have been 
spatially interpolated. We extracted the (iii) per capita GDP in current 
USD at country-year level (indicator NY.GDP.PCAP.CD) from the 
World Bank (63), (iv) data on human well-being (infant mortality rate 
in 2000) from (64, 65), and (v) data on some key resources that can be 
a considerable income for governments. To account for the presence 
of valuable resources, we gathered dummy variables on the presence 

of onshore petroleum deposits (2000) (66), primary and secondary 
diamond deposits (before 2002) (67), gem deposits (2000) (68), and 
gold (placer, surface, and vein) deposits (69, 70). We used the gem 
and petroleum data from 2000 as time-invariant variables since they 
are available until 2004 and 2003, respectively. Furthermore, we 
merged the gem and diamonds datasets into one variable (gem) given 
important spatial sparsity of positive cases across various regions 
worldwide. We gathered gold deposit data from 2002 to 2012 and 
extrapolated values until 2016.

Fourth, we included variables of relevance for provocation strat-
egies. Provocation strategies have the intention to provoke violent 
reactions from either the government or the local population. This 
means that terrorists will target particularly those locations that have 
a tendency to escalate into violence. For instance, locations with 
previous conflicts and ethnic animosities have been identified in the 
literature. We thus included a variable on previous armed conflict. 
We extracted conflict data from The Uppsala Conflict Data Program 
(UCDP) Georeferenced Event Dataset (version 20.1) (71,  72) and 
computed a temporally lagged sum of conflict (state violence only) for 
each week cell. Furthermore, we included the number of politically 
excluded ethnic groups from the GeoEPR/EPR dataset (73, 74), since 
violence is more likely to break out in regions where ethnic groups are 
marginalized (33–35), we spatially interpolated missing values and 
extrapolated values from 2014 to 2016 (data available until 2013).

Fifth, we expect some country-level features to influence the oc-
currence of terrorism. Particularly, the political system of a country 
is important. While the exact nature of the relationship between 
democracy and terrorism is still heavily debated, it is clear that the 
political system has some role to play (36, 75). Therefore, we include 
a proxy for estimating liberal democracy. We gathered the liberal 
democracy index variable from the V-DEM dataset (11.1) (76, 77). 
To account for additional unobserved characteristics of the different 
countries, we included a national-level dummy variable. Further-
more, to avoid potential information leakage, we lagged (year-1) all 
structural variables with a yearly temporal resolution.

Last, the repeated occurrence of terrorism is highly dependent on 
terrorist organizations gaining a local foothold. Once terrorist orga-
nizations establish a presence in a given area (either in a country or 
in a specific location), we expect that attacks will be highly auto-
correlated. Therefore, we built procedural variables associated with 
previous attacks using various temporal and spatial lags. These vari-
ables are particularly important in areas of high terrorist activity as 
they pick up information about the terrorist group’s internal calcu-
lation. Previous attacks reveal where terrorists are able and willing 
to strike and can thus indicate where future attacks may occur. 
Table S1 provides a list of all procedural and structural features.

Model evaluation
We assess the predictive performance of the investigated models 
based on several relevant predictive performance metrics and using 
visualization tools. First, we estimate the PR curves (fig. S2) and 
compute the AUPRCs to assess the accuracy of the prediction of 
positive cases (tables S2 and S3). The PR curves evaluate the propor-
tion of true positives among positive predictions based on two 
evaluation measures: recall and precision. Recall is the number of 
correct positive predictions divided by the total number of positives. 
Precision is a performance measure of positive predictions defined 
as the number of correct positive predictions divided by the total 
number of positive predictions (38).

http://NY.GDP.PCAP.CD
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While the baseline (from a random classifier) for a ROC curve is 
represented by the identity function (y = x) (dotted line, fig. S3), the 
baseline for a PR curve (dotted line, fig. S2) is determined by the 
prevalence of positive events, i.e., the number of positive cases over 
the total number of positive and negative cases. The baseline func-
tion associated with a PR curve in a perfectly balanced class distri-
bution would be the constant function y = 0.5. For an imbalanced 
class distribution with, e.g., a ratio of positives over negatives of 1 to 
9, the baseline function would be determined as y = 0.1. While the 
AUROC of a random classifier is equal to 0.5 (area below y = x), the 
AUPRC of a random classifier is equal to the y-position of the PRC 
baseline, which is determined by the prevalence of positive events 
in the data (38). Given the large class imbalance in the data ob-
served in all regions, the baseline function is very close to zero and 
therefore indistinguishable from the x axis in the PR curves plots 
(fig. S2).

The analysis of the ROC curves and the AUROCs remain the most 
widely used predictive metrics used in conflict forecast models (19). 
Complementary to the PRC, we show the ROC curves (fig. S3) and 
report the AUROC values (tables S2 and S3) for each model and 
region. The ROC curves are constructed by taking the predicted 
probabilities that there is at least one terrorist attack and calculating 
for a large number of threshold values: (i) the sensitivity (or recall) 
and (ii) specificity (number of correct negative predictions divided 
by the total number of negatives). The AUROC summarizes the 
model’s performance over a range of thresholds.

We further compare the predictive of the models using comple-
mentary predictive performance metrics computed on the test set. 
We compute (i) the F score (F1) (78, 79), (ii) the Matthews correla-
tion coefficient (MCC) (80), and (iii) the BSS. Tables S2 and S3 
report the score values (in percent for a better legibility) for each 
model and region. Higher score values indicate better performance. 
In contrast to the PR and ROC curves, F1 and MCC scores are 
derived from elements of the confusion matrix estimated given a 
threshold to classify predictive probabilities into a binary output. 
To account for the important discrepancies in the terrorism preva-
lence (prev) among regions (from 0.005% positive cell weeks in 
region K to 1.04% in region J), we compute the F1 and MCC scores 
using false-negative thresholds adapted for each region, with the 
following values: 20% in regions (E, J, and L) with medium-high 
terrorist activity (prev ≥ 0.2%), 50% in regions (C, D, and F to H) 
with low terrorist activity (0.03% < prev < 0.2%), and 75% in regions 
(A, B, I, K, and M) with very low terrorist activity (prev ≤ 0.03%).

F1 provides a measure of the accuracy of the models. It is com-
puted as the harmonic mean of precision and recall, defined as two 
times the product of the precision and recall divided by the sum of 
the precision and recall. It takes values between 0 (worst value) and 1 
(best value). The score reported by F1 is affected by data imbalance, 
which is observed in our case study, with a number of week cells 
without terrorist attacks (true negatives, TNs) much larger than 
those with attacks (true positives, TPs). Since F1 does not account 
for the number of TP, it provides an overoptimistic estimation 
of the predictive ability of the models on week cells that did not 
encounter attacks.

Complementary to F1, we report the MCC, which evaluates the 
correlation between the actual outcome and the predictions. The 
metric is computed as follows

 MCC = (TP × TN − FP × FN ) /  √ 
____________________________________

    (TP + FP ) (TP + FN ) (TN + FP ) (TN + FN)   , 
with false positives (FPs), and false negatives (FNs). MCC takes 

values between −100% (total disagreement between the predictions 
and true values) and 100% (perfect prediction). Values close to zero 
indicate that the model does not perform better than a random guess. 
An MCC score is high (close to 100%) only if the model shows high per-
formance in predicting both the positive and the negative observations, 
which provides a suitable alternative metric to reflect the overall pre-
dictive performance of models in the context of data imbalance (81).

While F1 and MCC rely on a threshold associated with the con-
fusion matrix, BSS is computed directly from the predicted proba-
bilities generated by the models and computed as follows (39, 82): 

BSS = 1 − BS/BSref, where BSref is defined as   BS  ref   = 1 / n ∑ i=1  n     (  ̄  o   −  o  i  )   2  , 

with actual outcome oi and the average actual    ̄  o    outcome, and 
represents predictions from a baseline model without features (i.e., 
it predicts the prevalence of terrorism in the training data). Here, 
perfect predictions have a BSS of 100%, while predictions no better 
than the reference have a BSS of 0%. If BSS is negative, then this 
indicates that the investigated model performs worse than the base-
line reference model, with BSref > BS. Most models perform poorly 
in regions with very low terrorist activity (A, B, I, K, and M) and 
exhibit a relatively low performance in regions with low terrorism 
activity (C, D, and F to H). However, XGB and GAM show the best 
BSS scores in regions with higher terrorism prevalence (E, J, and L).

While XGB, RF, and GAM show high AUROC values in most 
regions, XGB and RF shows a better overall performance associated 
with the detection of positive cases. We notice that XGB shows a 
slight advantage over RF by ranking among the best scores in a larger 
number of regions based on the following metrics (and number of 
regions with best score in parentheses): (AUPRC, 10 of 13; F1, 8 of 
13; MCC, 9 of 13; BSS, 12 of 13). In all regions, the F1 and MCC 
scores of XGB, RF, and GAM systematically rank among the top. As 
expected, the predictive performance of XGB, RF, and GAM assessed 
with metrics that account for the detection of positive cases (AUPRC, 
F1, MCC, and BSS) shows better results in regions with the highest 
levels of terrorism prevalence (regions E, G, and L).

Model interpretation
The interpretation of machine learning models is an important step 
in building confidence in the results of the model. In principle, we 
can interpret machine learning models on three different scales: (i) 
global level to assess the model performance, (ii) feature level to 
identify nonlinear relationships (and potential interactions) between 
the features, and (iii) data point to understand the role of specific 
features in the prediction of one or a few observations (83). Here, 
we focus on the feature level to assess the role of important predictors 
of terrorism.

We compute the ALE plots using the R package iml (84). While 
PD plots (85) have been widely used to illustrate the effect of fea-
tures, PD plots can be misleading if some predictors are highly cor-
related. In contrast, the ALE method is robust to collinearity in the 
predictors and substantially less computationally expensive than PD 
plots (44). We select the ALE approach given the relatively large number 
of features (34 features) considered in each regional model, among 
which similarity between pairs of features (e.g., terrorism week lag 1 
and terrorism week lag 2 or altitude and fraction of mountainous area) 
inevitably leads to some degree of correlation among features.

The objective of the ALE method is to compute for a given fea-
ture Xj (with feature values xj) the differences in predictions where 
the feature values are replaced by grid values zk,j for a large number 
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of intervals kj. Quantiles are used to define the intervals so that they 
contain an equal number of observations. The effect of a feature on 
an observation i in feature interval kj is computed as the differences 
in predictions in kj. The first step to estimate the uncentered local 
effects     ̂    ~ f     j,ALE  (x)  (Eq. 1) consists of dividing the range of feature values 
into k intervals and compute for each interval the differences in the 
predictions  f( z  k,j  ,  x \j  (i)  ) − f( z  k−1,j  ,  x \j  (i) ) , with the ith observation of the sub-
sets of features Xj and X\j denoted as   x j  (i)  and   x \j  (i)  , respectively. The 
uncentered ALE can be expressed as follows (44, 86)

      ̂    ̃  f     j,ALE  (x ) =   ∑ 
k=1

  
 k  j  (x)

     1 ─  n  j  (k)     ∑ 
i: x j  (i) ∈ N  j  (k)

    
[

  f  
(

   z  k,j  ,  x \j  (i)  
)

   − f  
(

    z  k−1,j  ,  x \j  (i)  
)

   
]

     (1)

The accumulated sum of the effects is computed for all observa-
tions of a feature in an interval, denoted as neighborhood Nj(k). To 
obtain the average difference in the predictions (local effects), the sum 
of the differences in the predictions is divided by the number of ob-
servations nj(k) in the interval. For example, the accumulated effects 
of a feature Xj in the fourth interval is computed as the sum of the 
effects in the first, second, third, and fourth intervals. To ease inter-
pretation, we compute the centered ALE (Eq. 2) as follows (44, 86)

      ̂  f    j,ALE  (x ) =    ̂    ̃  f     j,ALE  (x ) −   1 ─ n     ∑ 
i=1

  
n
       ̂    ̃  f     j,ALE   (    x j  (i)  )     (2)

Here, the estimated effects are centered so that the mean effect is 
zero. For a given feature, the centered ALE can be interpreted as the 
feature effect at a given value compared to the average prediction of 
the terrorism occurrence. For example, an ALE estimate of −0.25 
associated with satellite night lights of value 3 indicates that the pre-
dicted probability of occurrence of terrorism is reduced by 25% 
compared with the average prediction.

As a general remark, we note that a detailed interpretation of the 
ALE plots would require expertise on terrorism in each investigated 
region and further technical work. Caution is warranted in inter-
preting the ALE plots. In regions where the models did not show a 
good predictive performance, the resulting ALE plots are less reliable. 
While we show all results for the sake of transparency, we discourage 
readers to interpret ALE plots highlighted in regions (A, B, I, K, and M), 
which have encountered a very low terrorism prevalence and are 
associated with a low predictive performance of the models.

Future research work could explore possible feature interactions 
through two-dimensional ALE plots and/or establish a causal frame-
work to bring further confidence in the interpretation of the results. 
Future work that aims to improve the interpretability of machine 
learning algorithms should contribute to make these powerful models 
more accessible to the research community and policy makers.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/31/eabg4778/DC1
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