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Epidemiological and experimental studies report associations between overweight mothers and increased obesity risk in offspring.
It is unclear whether neonatal leptin regulation mediates this association between overweight mothers and offspring obesity. We
investigated the effect of neonatal treatment with a leptin antagonist (LA) on growth and metabolism in offspring of mothers fed
either a control or a high fat diet. Wistar rats were fed either a control (CON) or a high fat diet (MHF) during pregnancy and
lactation. Male CON and MHF neonates received either saline (S) or a rat-specific pegylated LA on days 3, 5, and 7. Offspring were
weaned onto either a control or a high fat (hf) diet. At day 100, body composition, blood glucose, β-hydroxybutyrate and plasma
leptin and insulin were determined. In CON and MHF offspring, LA increased neonatal bodyweights compared to saline-treated
offspring and was more pronounced in MHF offspring. In the post-weaning period, neonatal LA treatment decreased hf diet-
induced weight gain but only in CON offspring. LA treatment induced changes in body length, fat mass, body temperature, and
bone composition. Neonatal LA treatment can therefore exert effects on growth and metabolism in adulthood but is dependent
upon interactions between maternal and post-weaning nutrition.

1. Introduction

Obesity and metabolic-related disorders are considered
major health issues worldwide. Over the last decade, the in-
cidence of obesity and overweight has almost doubled in
developed countries and the trend is mirrored in developing
nations that are transitioning to first-world economies [1].
Obesity results from an interaction of many factors including
genetic, physiologic, behavioural, and environmental influ-
ences. However, the rapid increases in the rates of obesity
suggest that environmental and behavioural influences,
rather than genetic causes, are fuelling the present epidemic.

Increasing evidence from both clinical and animal studies
has highlighted the link between altered maternal nutrition
and the risk of offspring developing obesity and the meta-
bolic syndrome [2–5]. Initial epidemiological studies sug-
gested that fetal growth restriction is correlated with later
disease, implying that fetal nutritional deprivation may be a
strong stimulus for developmental programming. However,

although maternal nutrient deprivation has been well char-
acterized in this context, in many societies, maternal and
postnatal nutrition can be excessive. As a result, excessive
weight gain and/or obesity are common nutritional problems
complicating pregnancy in developed countries. As such,
there is now accumulating evidence from human [6] and
animal studies suggesting that excess maternal caloric intake
has adverse effects on the health and well-being of offspring,
independent of postnatal diet [7] and exerted transgenera-
tional effects [8].

Maternal obesity has many adverse outcomes, including
labour and delivery complications, fetal and neonatal death,
maternal hypertension, and preeclampsia and gestational
diabetes [9–12]. In addition to acute risks to the obese
mother, negative outcomes extend to offspring, including
obesity and cardiovascular disease in adulthood [13–16]. On
one hand, while a shared postnatal environment and genetic
susceptibility are likely contributors [17], maternal BMI is
reported in some cohorts as having greater influence on
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offspring than paternal BMI, highlighting the independent
influence of the intrauterine environment on offspring
adiposity [18].

In a rodent model, we recently reported that offspring
born to high-fat-fed mothers showed an obese phenotype
in adulthood characterised by hyperinsulinemia and hyper-
leptinemia, independent of postnatal diet [7, 19]. Although
the mechanistic drivers underlying this obesogenic pheno-
type are still unclear, experimental data in rodents suggest
that leptin plays a critical role in underpinning early life
influences on postnatal phenotypic development [20–22].
Early studies demonstrated that leptin, an adipokine pro-
duced primarily by adipocytes, plays a key role in regulation
of energy homeostasis and food intake via its action on
specific hypothalamic nuclei [23]. Leptin has been since
demonstrated to exert other important functions, including
its regulation of bone growth, skeletal metabolism, and linear
growth via direct effects on osteoblast and osteocalcin release
and growth hormone secretion, respectively [24, 25].

In rodents, a characteristic of the neonatal period is a
leptin surge, which normally peaks in the second week of
neonatal life [26]. It has been shown that early life nutritional
insults affect this surge resulting in altered hypothalamic
development [27, 28]. Maternal undernutrition in rats has
been shown to result in a blunted and altered timing of the
leptin surge in neonatal pups [27], and leptin adminis-
tration during the neonatal period in ob/ob mice nor-
malised hypothalamic development and partially normalised
orexigenic behaviour [21]. Importantly, postweaning leptin
administration had no effect [27], emphasising that, in the
rat, the critical stage of hypothalamic leptin regulation is
during the first 2 weeks of neonatal life. Our group has
previously shown that neonatal leptin treatment can reverse
the deleterious effects of maternal undernutrition on post-
natal outcomes in male and female offspring [29, 30]. In
contrast, Kirk et al. reported that maternal high-fat diet led
to an amplified leptin surge in neonatal pups during the first
2 weeks of life, resulting in altered hypothalamic regulation
of food intake [31].

There is growing evidence that leptin plays a significant
role in the development of an obesogenic phenotype after
early-life exposure to an imprudent diet. Despite this, no
studies have investigated whether maternal high-fat-diet-
induced changes in neonatal leptin action regulate this asso-
ciation. We, therefore, hypothesized that leptin blockade,
using a specific leptin antagonist, during the critical neonatal
period of leptin sensitivity would ameliorate maternal high-
fat-induced obesogenic effects on offspring [7]. We investi-
gated the effect of leptin antagonist administration during
the time of the critical neonatal leptin surge on weight gain,
food intake, and body composition in male offspring born to
mothers fed either a control or a high-fat diet.

2. Methods

2.1. Animal Model. The animal model of maternal high-fat
nutrition has been described in detail previously [7, 19].
Briefly, female Wistar rats were time-mated using a rat estrus

cycle monitor (EC40, Fine Science Tools, Foster City, CA,
USA) to assess the stage of estrus of the animal before
introducing the male. Upon confirmation of mating, rats
were randomly assigned to one of two maternal diets: the
control chow diet throughout pregnancy and lactation
(CON, n = 11 litters, Diet 2018, Harlan-Teklad, Oxon, UK)
or a high-fat diet (MHF, n = 13 litters, 45% kcals from fat,
D12451, Research Diets, New Brunswick, NJ, USA) to be
fed ad libitum throughout pregnancy and lactation. Females
were housed individually, with free access to water, and
bodyweight and food intakes were measured every two days
until the end of lactation. At birth, pups were weighed, and
on postnatal day 2, litter size was adjusted to 8 pups per litter
to ensure adequate and standardized nutrition until weaning.
At postnatal day 3, MHF and CON litters were randomly
assigned to receive either saline (S) or pegylated rat leptin
antagonist (LA, mutant L39A/D40A/F41A, Protein Labora-
tories Rehovot, Israel). The LA or saline was administrated by
subcutaneous injection at postnatal days 3, 5, and 7 at a dose
of 12.5 μg/g. Dosage and timing of LA administration was
derived from calculated half-life (approximately 20 hours)
and prior cited publications [32]. Male pups were weighed
daily during the treatment period and then every 2 days
thereafter until weaning (P22). At weaning, saline- and LA-
treated CON and MHF male offspring were housed two per
cage, and randomly placed on either the control rat chow (c)
or high-fat (hf) diet until the completion of the trial (day
110). A schematic of the study design is shown in Figure 1.

Body weights and caloric intakes were recorded in
offspring every 3 days until the end of the study. Body com-
position (fat mass, bone mineral content (BMC), and bone
mineral density (BMD)) was measured by dual-energy X-
ray absorptiometry (DEXA) at P100 under light isoflurane
(2%) anaesthesia and using a dedicated small animal soft-
ware package (Lunar Hologic, Waltham, MA). Rats were
culled at P110 by decapitation following anaesthesia with
sodium pentobarbitone (60 mg/kg). A tail blood sample
was taken for fasting glucose and β-hydroxybutyrate (BHB)
measurements (Roche Accucheck) and a rectal temperature
measurement recorded. Trunk blood was collected into
heparinised vacutainers, centrifuged and plasma stored at
−20◦C for later analysis. All animal work was approved by
the Animal Ethics Committee of the University of Auckland.

2.2. Plasma Analyses. Plasma leptin and insulin concentra-
tions were analysed using commercially available rat-specific
ELISAs (no. 900040 and no. 90060, resp., CrystalChem, IL,
USA).

2.3. Statistical Analysis. Data were analysed using JMP 7
(SAS Institute Inc., Cary, NC, USA) and R software (v.2.9.0,
R Foundation for Statistical Computing, Vienna, Austria)
for Windows. All data are presented as mean ± SEM unless
otherwise stated. All models were statistically validated for
assumptions of normality of residuals and absence of
heteroscedasticity. Nonnormal data were log transformed to
normalize where necessary. Maternal pregnancy data and
neonatal data at birth were analysed using one-way ANOVA.
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Figure 1: Schematic showing experimental design. There are two levels of maternal nutrition, 2 levels of neonatal treatment, and 2 levels of
postweaning diet resulting in a total of 8 experimental groups in a fully balanced 2 × 2 × 2 design.

Maternal caloric intakes; weight and body composition
during lactation was analysed by two-way ANOVA with ma-
ternal diet and treatment group as factors and litter as
covariate. Neonatal and postweaning growth was analysed
by repeated measures factorial ANOVA. Although the growth
analysis was performed on absolute body weight data, growth
figures are shown as relative changes for sake of clarity given
the number of experimental groups involved. Preweaning
data for pups was analysed by two-way factorial ANOVA with
maternal diet and LA administration as factors, and their
interactions. Data from adult offspring were analyzed by
three-way factorial ANOVA with maternal diet, postweaning
diet, and LA treatment as factors, and the interaction be-
tween these factors (litter included as a covariate). Post hoc
multiple pairwise comparisons were performed using Tukey
test. Level of significance was set at P < 0.05.

3. Results

3.1. Maternal Data. Consistent with our previous observa-
tions [7], maternal HF diet during pregnancy and lactation
resulted in a transient increase in caloric intake from day 2
(P < 0.001) to day 15 of gestation when intakes returned to
levels similar to those observed in CON dams (data not
shown). Increased caloric intake in MHF dams was reflected
in an increased maternal weight gain by gestational day 7
(P = 0.04, Figure 2), which persisted until birth. MHF dams
remained heavier than controls from the early neonatal
period until mid-lactation when body weights returned to
match those of controls. There was no overall significant
effect of neonatal LA administration on weight or caloric
intake of dams during pregnancy and lactation. At weaning,
despite a similar maternal body weight, total fat mass (%)
and fat : lean ratios (F/L) were significantly increased in MHF
dams compared to CON (% fat: CON 14.7 ± 1.7% versus
MHF 22.9 ± 2.3, P = 0.01; F/L: CON 0.18 ± 0.08 versus
MHF 0.31 ± 0.16, P = 0.01). There was no significant
effect of neonatal LA treatment or an interaction between
treatment and maternal diet, on body composition of dams.

550

500

450

400

350

300

250

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42

Pregnancy Lactation

W
ei

gh
t (

g)

Cont
MHF

(day)

Figure 2: Maternal body weights during pregnancy and lactation.
There was no overall significant effect of neonatal LA administra-
tion on weight of dams during pregnancy and lactation thus data
for Sal and LA groups for each respective maternal diet have been
combined. Data are means ± SEM with a minimum of 5 litters per
group.

3.2. Neonatal Growth. Birthweights were slightly but signifi-
cantly reduced in male offspring of MHF dams compared to
CON (CON 6.2 ± 0.1 g; MHF 5.9 ± 0.1 g, P < 0.001). At P3
and prior to start of LA administration, pups born to MHF
mothers remained lighter than CON neonates (CON 7.1 ±
0.1 g; MHF 6.8 ± 0.1 g, P < 0.05).

LA administration leads to an increased neonatal weight
gain in CON and MHF offspring compared to their saline
treated counterparts (P < 0.005, Figure 3). The increased
weight gain in LA-treated neonates was more pronounced in
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Figure 3: (a) Absolute body weights in male offspring from birth until weaning and (b) changes in neonatal body weights (grams, shown
as delta difference in body weight between LA and Sal treated offspring, ΔLA-Sal) in CON and MHF neonates from birth until the time of
weaning (day 22). Arrows indicate time of injection with LA at neonatal days 3, 5, and 7. P < 0.005 for effect of LA treatment; maternal diet
× LA treatment interaction P < 0.05. N = minimum 16 per group.

offspring of MHF dams reflected in a maternal diet × LA
treatment interaction (P < 0.005). By weaning (P22),
MHF offspring were slightly but significantly heavier than
CON offspring and LA treatment further increased weaning
weights in CONT and MHF offspring (P22: CON-S 59.9 ±
0.9 g, CON-LA 62.0 ± 1.1 g, MHF-S 61.8 ± 1.7 g, MHF-LA
66.3 ± 1.1 g, P < 0.05 for effect of maternal diet and LA
treatment, no interactions).

3.3. Postweaning Growth and Body Composition. An MHF
diet had no significant effect on adult body weight at post-
natal day 110 but resulted in significantly increased total
percent body fat and decreased lean body weight percentage
compared to CON animals as quantified by DEXA scanning
(Table 1). A postweaning hf diet increased body weight
and total body fat mass in all hf-fed groups. Neonatal LA
treatment had a significant overall effect on reducing total
percent body fat mass, increasing lean mass and a decreased
fat : lean ratio (Table 1). A significant maternal diet × LA
treatment × postnatal diet interaction (P < 0.001) revealed
that body weights were significantly reduced in offspring of
CON dams that were treated as neonates with LA and fed
a postweaning hf diet as compared to saline treated CON
offspring fed the hf diet (Figure 4(c)). LA treatment in CON
neonates reduced hf diet-induced obesity by approximately
10% and equated to an absolute bodyweight difference of
72.6 g (Figure 4(a)). DEXA analysis of body fat content
showed that this reduction in body fat was paralleled by a
reduction in fat mass in these animals compared to saline

treated (Figure 4(d)). This effect was not observed in MHF
offspring where neonatal LA failed to significantly impact on
postweaning hf-induced changes in final bodyweight or fat
mass (Figures 4(b) and 4(d) and Table 1). This may reflect
a more marked increase in relative lean mass in LA-treated
CON-hf offspring as compared to LA treated MHF-hf off-
spring compared to relative saline-treated groups (Table 1).

There were no significant effects of MHF diet, neonatal
LA treatment, or postweaning hf diet on total caloric intake
(expressed as kcals consumed per gram body weight) across
any of the treatment groups (Figures 5(a) and 5(b)).

There were significant overall effects of maternal diet and
LA treatment on nose-anus (NA) length (Table 1). Post hoc
analysis revealed LA treatment increased NA length in MHF
offspring but not CON offspring as reflected in a maternal
diet × LA treatment interaction (P < 0.05). A postweaning
hf diet increased NA length only in MHF offspring (Table 1).

Maternal diet had no overall effect on nose-tail (NT)
length (Table 1). There were overall significant effects of
neonatal LA treatment and postweaning hf diet on increasing
NT length. A significant maternal diet × LA treatment
interaction revealed that increases in NT length as a result
of neonatal LA treatment were greater in MHF offspring
compared to CON offspring for both chow and postweaning
hf diets (Table 1).

3.4. Bone Mineral Density (BMD). There was no effect
of MHF diet on BMD (Table 1). Neonatal LA treatment
reduced BMD in all treatment groups and a postweaning
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Figure 4: Body weights in male offspring of either CON (a) or MHF (b) mothers treated with either saline or LA as neonates and fed
either a chow or hf diet after weaning. Data are means ± SEM, n = minimum 8 per group; (c) change in body weight (grams, shown as
delta difference in body weight between LA and Sal-treated offspring, ΔLA-Sal) in CON and MHF offspring fed either a control chow or hf
diet from weaning until postnatal day 110. Data are means ± SEM, n = minimum 8 per group. Maternal diet × LA treatment interaction
P < 0.005; (d) fat mass (g) as quantified by DEXA scanning in offspring of CON of MHF dams, treated with either Sal or LA as neonates and
fed either a control chow or hf diet after weaning. Data are means ± SEM, minimum of 8 per group. ∗P < 0.05.

hf diet increased BMD in all offspring. There were no
statistically significant interactions.

3.5. Bone Mineral Content (BMC). An MHF diet had the
overall effect of increasing BMC in all offspring (Table 1).
Neonatal LA treatment reduced BMC in all treated groups
and a postweaning hf diet increased BMC in all offspring.
There were no statistically significant interactions.

3.6. Rectal Temperature (RT). An MHF diet significantly
increased RT in all MHF offspring (Table 2). Neonatal LA

treatment reduced RT in all treatment groups. A postwean-
ing hf diet had no significant effect on RT (P = 0.092). There
were no statistically significant interactions.

3.7. Leptin, Insulin, Glucose, and β-Hydroxybutyrate (BHB)
Levels. An MHF diet significantly increased plasma lep-
tin levels in all MHF offspring (Table 2). Neonatal LA
treatment had no overall effect on plasma leptin lev-
els. A postweaning hf diet increases plasma leptin in
all hf-fed offspring. There were no statistically signifi-
cant interactions for plasma leptin. There was a strong
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Figure 5: Total caloric intake (kcals consumed per gram body weight) in male offspring of CON mothers (a) or MHF mothers (b) from
birth until the completion of the trial. Data are average caloric intakes per cage of 2 animals, minimum of 4 cages per group.

Table 1: Adult (P110) body weight, total fat (%), body length, bone density, and mineral content in CON or MHF offspring treated with
either saline (S) or pegylated leptin antagonist (LA) as neonates and fed either a chow or hf diet after weaning. Data are means ± SEM,
n = 8–16 per group.

Group
Final body
weight (g)

Total body
Fat (%)

Lean mass
(%)

Fat : lean
ratio

Nose-anus
(mm)

Nose-tail (mm) BMD (g/cm2) BMC (g)

CON-S-chow 590 ± 10 31.0 ± 2.3 67.2 ± 2.2 0.47 ± 0.05 277 ± 2 478 ± 2 0.174 ± 0.001 14.8 ± 0.4

CON-S-hf 723 ± 19 46.6 ± 2.6 52.0 ± 2.5 0.91± 0.09 279 ± 2 484 ± 4 0.183 ± 0.003 17.6 ± 0.6

CON-LA-chow 595 ± 17 29.1 ± 1.1 69.3 ± 0.9 0.43 ± 0.02 277 ± 3 479 ± 4 0.171 ± 0.002 14.5 ± 0.2

CON-LA-hf 650 ± 21 37.9 ± 3.1 60.0 ± 3.8 0.72 ± 0.09 278 ± 2 489 ± 3 0.174 ± 0.003 15.8 ± 0.6

MHF-S-chow 621 ± 11 38.9 ± 2.1 59.6 ± 2.1 0.65 ± 0.06 277 ± 2 477 ± 3 0.176 ± 0.002 15.7 ± 0.3

MHF-S-hf 729 ± 18 51.0 ± 1.6 47.8 ± 1.5 1.06 ± 0.07 280 ± 2 480 ± 3 0.187 ± 0.003 18.7 ± 0.4

MHF-LA-chow 624 ± 13 34.9 ± 1.5 63.5 ± 1.5 0.54 ± 0.03 283 ± 1 490 ± 2 0.171 ± 0.001 14.8 ± 0.3

MHF-LA-hf 710 ± 18 44.1 ± 3.0 50.8 ± 1.9 0.94 ± 0.08 287 ± 2 493 ± 4 0.179 ± 0.002 17.5 ± 0.4

Main effects

Maternal diet (MD) P < 0.05 P < 0.005 P < 0.0001 P < 0.005 P < 0.05 NS NS P < 0.005

LA treatment (LA) NS P < 0.005 P < 0.05 P < 0.05 P < 0.05 P < 0.005 P < 0.0001 P < 0.005

PW-diet P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 NS P < 0.05 P < 0.0001 P < 0.0001

Interactions

MD × LA NS NS NS NS P < 0.05 P < 0.05 NS NS

LA × PW-diet P = 0.05 NS NS NS NS NS NS NS

MD × PW diet NS NS NS NS NS NS NS NS

MD × PW diet × LA NS NS NS NS NS NS NS NS

trend toward increased fasting plasma insulin levels in
MHF offspring, but this difference did not reach statistical
significance (P = 0.068). LA treatment had no effect
on plasma insulin levels. A postweaning hf diet increas-
ed plasma insulin levels in all hf-fed groups (Table 2).

Fasting plasma glucose levels were similar between the
groups (Table 2). Blood BHB levels were not altered by
MHF diet or neonatal LA treatment but were significantly
increased in all hf-fed offspring compared to chow-fed
offspring (Table 2).
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Table 2: Fasting plasma leptin, insulin, glucose, and β-hydroxybutyrate (BHB) measurements and rectal temperature in CON and MHF
offspring treated with either saline (S) or pegylated leptin antagonist (LA) as neonates and fed either a chow or hf diet after weaning. Data
are means ± SEM, n = 8–16 per group, no significant statistical interactions.

Leptin (ng/mL) Insulin (ng/mL) Glucose (mmol/L) BHB (mmol/L) Rectal Temperature (◦C)

CON-S-chow 10.4 ± 0.8 2.9 ± 0.2 5.98 ± 0.26 1.07 ± 0.07 37.19 ± 0.18

CON-S-hf 34.1 ± 3.6 4.6 ± 0.4 6.06 ± 0.32 1.57 ± 0.14 37.14 ± 0.13

CON-LA-chow 11.2 ± 1.4 3.4 ± 0.6 6.07 ± 0.37 1.24 ± 0.14 36.63 ± 0.19

CON-LA-hf 24.4 ± 3.9 5.9 ± 0.7 5.91 ± 0.27 1.29 ± 0.16 37.08 ± 0.14

MHF-S-chow 20.9 ± 2.9 4.4 ± 0.9 5.96 ± 0.26 0.92 ± 0.08 37.32 ± 0.15

MHF-S-hf 36.1 ± 3.0 6.1 ± 0.7 5.82 ± 0.32 1.47 ± 0.10 37.63 ± 0.21

MHF-LA-chow 16.7 ± 2.8 4.0 ± 0.6 5.28 ± 0.34 1.05 ± 0.14 37.08 ± 0.19

MHF-LA-hf 31.8 ± 4.2 6.1 ± 0.9 5.24 ± 0.31 1.61 ± 0.14 37.28 ± 0.11

Main effects

Maternal diet P < 0.05 P < 0.05 NS NS P < 0.05

LA treatment NS NS NS NS P < 0.05

PW-diet P < 0.0001 P < 0.0001 NS P < 0.0001 NS

4. Discussion

These results have demonstrated for the first time that
early-life manipulation of the leptin axis via neonatal leptin
antagonism can exert marked effects on growth and body
composition, which are dependent upon prior maternal
nutrition status and postweaning diet. Investigators using
neonatal leptin treatment given to offspring of normally
fed dams have shown increased adiposity and leptin and
insulin resistance in offspring in later life [33–35]. The
present result shows that the reverse can hold true. Control
offspring, given a leptin antagonist prior to being fed an
obesogenic hf diet postweaning, show an amelioration of
a diet-induced fat accumulation and reduced linear body
growth. The marked contrast in adult phenotype in offspring
of normally nourished mothers, based on exposure to either
leptin or leptin antagonism during early-life development,
further serves to highlight how critical the maintenance of
leptin threshold levels is during this period of developmental
plasticity.

As we have shown previously [7], maternal high-fat
nutrition resulted in increased adiposity, leptin, and insulin
concentrations in offspring compared to offspring of control
mothers, independent of postweaning diet. There is a well-
characterized leptin surge in the first two weeks of life
in the rodent [26] although the source of the leptin is
yet to be defined with the surge occurring independently
of changes in neonatal body weight trajectory and milk
leptin intake [31]. We have previously shown that offspring
of MHF mothers are hypoleptinemic at birth [7]. This
concurs with the increased sensitivity to body weight gain
in MHF neonates treated with the LA as compared to
CON offspring. In other studies, hypoleptinemic offspring
of mothers undernourished during pregnancy have either
a delayed [36] or premature leptin surge [27]. However,
there is little known about the leptin surge in models
of maternal obesity. Kirk et al. recently reported that rat
offspring of mothers fed an obesogenic diet had normal

serum leptin levels at birth but displayed an amplified and
prolonged neonatal leptin surge, which was accompanied
by an elevation in leptin mRNA expression in abdominal
white adipose tissue [31]. However, it is unknown whether
the leptin surge in the MHF offspring of the present study is
altered.

Although inborn leptin deficiency causes weight gain, it
is unclear whether induced leptin deficiency in adult wild-
type animals would be orexigenic. Leptin antagonists have
only recently become commercially available and provide an
invaluable tool for investigating central and peripheral
leptin deficiency and exploring the involvement of leptin in
metabolic processes. Previous reports using a nonpegylated
leptin antagonist have been problematic. The extremely short
half-life of the antagonist necessitated administration of
supraphysiological doses to induce a clinical response and
was not sufficient to induce a true metabolic state of leptin
deficiency [32, 37]. Hormones with molecular masses similar
to that of leptin are cleared primarily via the kidney with a
half life of only 8–30 minutes [38].

The effect of early postnatal leptin blockade in normal
rat neonates has previously been reported in the study by
Attig et al. [39]. In this work, the authors studied the
long-term effect of neonatal therapy with a non-pegylated
leptin antagonist (day 2 to day 13) in female Wistar rats
[39]. In contrast to the present study, they showed that
leptin antagonism induced a decrease in neonatal weight
gain, which has previously been commonly associated with
neonatal leptin treatment [30, 40]. Later in life, the leptin dis-
ruption led to a higher sensitivity to diet-induced obesity, as
shown by a higher body weight gain when challenged with
a high-energy diet, associated with increased adiposity and
leptinemia. These animals also displayed a phenotype of
leptin resistance at 4 months, characterized by the inability
of treated animals to respond to leptin by failing to reduce
food intake and showing reduced birth weight. Overall, the
long-term effect in the Attig study was paradoxically similar
to that reported for rats treated with leptin during neonatal
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life [30, 40]. Importantly, the molecule used as the leptin
antagonist was different from the one used in our study.
Indeed in this work, the authors used the leptin mutein,
a molecule acting as an antagonist, with in vivo effects pre-
viously validated only using intracerebroventricular, but not
subcutaneous, administration [41–44]. Furthermore, this
antagonist, obtained by alanine mutagenesis of amino acids
39 to 41-42, has an extremely short half-life and high doses
are required to produce a clinical response that is similar to a
true metabolic state of leptin resistance.

The present study utilised a recently developed rat-
specific pegylated LA whereby the attachment of polyethy-
lene glycol increased the overall molecule size to 70 kDa. Pe-
gylation of the LA results in an approximate 30-fold increase
in in vivo half-life [32], thus true states of induced leptin
deficiency are possible at physiologic doses. To date, only
one prior study has examined the effects of the pegylated
LA moiety, albeit in normal postweaning animals [37] where
it was shown that treatment with the pegylated LA to
postweaning mice results in a rapid and dramatic increase
in food intake and weight gain [32]. The blood brain barrier
(BBB) in the neonatal rat is relatively immature; pegylated
leptin antagonist has been shown to block circulating leptin
from crossing the BBB, an action that would attenuate the
anorexigenic effect of leptin [32]. It is difficult to extrapolate
the Elinav et al. study to the present study. The windows of
treatment are different, BBB permeability is at different
developmental stages (neonatal versus postweaning), and
offspring responsiveness to leptin intervention is known to
elicit sexually dimorphic responses [29, 30]. In addition,
the work in the mouse examined the immediate pheno-
typic response to LA treatment, whereas the present study
examines a postnatal phenotype derived from an early-
life neonatal intervention. However, consistent with the re-
ports from mice, the present result demonstrated that LA
treatment induced a significant increase in body weight over
the neonatal treatment period.

In the present study, neonatal leptin antagonism, despite
having significant effects on pre-weaning weights in offspring
of MHF mothers, had no effect on postnatal weight gain in
CON or MHF offspring fed the standard chow diet. There
was, however, a marked effect of neonatal LA treatment in
reducing body weight gain in CON offspring fed the hf diet
after weaning. Conversely, LA treatment to MHF offspring
subsequently fed the hf diet had no significant effect on
body weight; independent of changes in body weight and
circulating plasma leptin concentrations. LA treatment sig-
nificantly reduced fat deposit weight in CON but not MHF
offspring. Interestingly, neonatal LA treatment did not alter
postweaning caloric intake, thus the observed changes in
body weight gain are independent of food intake and suggest
a lack of effect of LA administration on the arcuate nucleus
and related feeding circuitry, as has been reported with
neonatal leptin treatment in the ob/ob mouse [21].

Nose-anus lengths were increased in MHF offspring but
not CON offspring, which may suggest that altered effects
on the growth-hormone- (GH-) insulin-like growth factor
(IGF) axis are mediated by neonatal LA exposure. The

observed change in tail length in CON and MHF LA-
treated offspring was unexpected but may have resulted from
altered thermoregulatory set-point processes as reflected in
the significant differences in basal body temperature. In
the rat, a significant portion of total body heat loss occurs
through sympathetically mediated changes in tail blood flow
[45]. However, since rectal temperature was decreased in LA-
treated CON and MHF offspring, it is difficult to explain
the disparate changes in tail length to thermoregulatory
processes and, as with nose-anus length, may reflect LA-
induced alterations in the GH-IGF axis in MHF offspring as
compared to controls or development of a thrifty metabolic
phenotype as regards thermogenesis and energy expenditure.
Future independent studies looking at brown fat thermo-
genesis and uncoupling proteins may further explain this
observation.

The effect of LA on bone formation has not previously
been described. Bone morphology was significantly altered in
adult offspring following neonatal LA treatment with overall
significant reductions in BMC and BMD. It is well established
that leptin treatment can result in enhanced bone formation
and promotion of pro-osteogenic factors in bone marrow
[46, 47], and the current data suggests that the reverse holds
true for leptin antagonism and further work investigating
specific bone markers is now warranted.

This is the first study designed to examine the efficacy of
neonatal leptin antagonism following altered maternal nutri-
tion and its interaction with differing levels of postweaning
nutrition, on offspring phenotype development. Responsive-
ness to neonatal leptin antagonism is dependent upon both
maternal and postweaning nutrition, with minimal efficacy
in chow-fed offspring of either CON or MHF mothers.
More studies are now required to further understand the
mechanistic underpinnings of the present observations,
including characterization of the effects of leptin antagonism
on the timing and magnitude of the leptin surge in offspring
of mothers with different dietary backgrounds. However, it is
important to recognise that leptin-mediated development of
feeding circuits occurs postnatally in the rodent and occurs
in utero in primates, including humans, and thus timing
of intervention strategies may be different. Nonetheless,
taken together, the data on both neonatal leptin treatment
and leptin antagonism in the setting of both normal and
nutritionally challenged pregnancies serves to highlight the
important role of leptin regulation during critical early-life
windows of development on lasting growth and metabolic
function in offspring.
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