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Bile acids (BAs) control metabolism and inflammation by interacting with several

receptors. Here, we report that intravenous infusion of taurodeoxycholate (TDCA)

decreases serum pro-inflammatory cytokines, normalizes hypotension, protects against

renal injury, and prolongs mouse survival during sepsis. TDCA increases the number

of granulocytic myeloid-derived suppressor cells (MDSCLT) distinctive from MDSCs

obtained without TDCA treatment (MDSCL) in the spleen of septic mice. FACS-sorted

MDSCLT cells suppress T-cell proliferation and confer protection against sepsis when

adoptively transferred better than MDSCL. Proteogenomic analysis indicated that

TDCA controls chromatin silencing, alternative splicing, and translation of the immune

proteome of MDSCLT, which increases the expression of anti-inflammatory molecules

such as oncostatin, lactoferrin and CD244. TDCA also decreases the expression of

pro-inflammatory molecules such as neutrophil elastase. These findings suggest that

TDCA globally edits the proteome to increase the number of MDSCLT cells and affect

their immune-regulatory functions to resolve systemic inflammation during sepsis.

Keywords: sepsis, myeloid-derived suppressor cells, taurodeoxycholate, TGR5, inflammation

INTRODUCTION

Bile acids (BAs) are amphiphilic surfactant molecules synthesized from cholesterol in the
liver (1). There are various BAs in mammals (2). Cholic acid (CA) and Chenodeoxycholic
acid (CDCA) are primary BAs, and CDCA gives rise to taurochenodeoxycholate (TCDC) and
glycochoenodeoxycholate (GCDC) after conjugation with taurine and glycine, respectively (1).
Intestinal bacteria produce secondary BAs, such as lithocholic acids (LCA) and deoxycholic
acid (DCA), from primary BAs (1). The diversity of the BA pool is further increased following
modification by various liver enzymes during the enterohepatic circulation of BAs (1).
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BAs in millimolar concentrations play roles in solubilizing
fat-soluble nutrients to facilitate their gastrointestinal uptake
(3). In addition, BAs play roles as signaling molecules that
activate several receptors at micromolar concentrations (4).
The diverse metabolic functions of BAs are a result of their
interaction with various receptors of which the specificities are
determined by 3-, 7-, 12-hydroxyl groups and taurine- or glycine-
conjugation of BAs (4). BAs interact with nuclear receptors,
such as steroid and xenobiotic receptor (SXR), constitutive
androstane receptor (CAR), pregnane X receptor (PXR), vitamin
D receptor (VDR) and farnesoid X receptor (FXR), and
cell-surface membrane receptors, such as Takeda G protein-
coupled receptor 5 (TGR5), sphingosine-1- phosphate receptor
2 (S1PR2), α1β4/α5β1 integrin, and muscarinic acetylcholine
receptors (mAChRs), as well as large conductance Ca2+-activated
K+ channels (3–6).

BAs modulate inflammation (4) in addition to metabolic
homeostasis. For example, CDCA and CA bind with FXR
and regulate inflammatory diseases (7). CDCA and DCA
inhibit LPS-induced TNF secretion (8). Formyl-peptide receptor
(FPR)-mediated chemotaxis of leukocytes is also inhibited by
CDCA interaction with mAChRs (9). LCA inhibits NLRP3
inflammasome activation via the TGR5 (10). Conjugated bile
acids also activate TGR5 to regulate inflammation (8–11).
However, the exact mechanism of immune modulation by BAs is
promiscuous because a BA interacts withmultiple receptors and a
BA receptor interacts with different types of BAs (2). For example,
LCA binds with FXR (12), PXR (13), SXR (14), and VDR (15),
as well as membrane TGR5 (10). TGR5 and FXR are activated
by ursodeoxycholic acid (UDCA), DCA, CDCA, and LCA
(16, 17).

In addition to the complex interaction between BAs and
receptors, the promiscuity of BA-mediated immune regulation
mechanisms has increased because many studies were conducted
using BAs at concentrations that are not attainable under
pharmacological conditions or pathological conditions in vivo.
For example, 10∼30µM of LCA was necessary to inhibit
activation of the NLRP3 inflammasome (10). However, the
median plasma level of LCA in healthy individuals and in
pathological conditions is 10 ∼ 35 nM (18), which suggests that
approximately 1,000∼3,000 × the physiological or pathological
concentration is necessary to inhibit NLRP3 activation by
LCA. Furthermore, whether this high plasma concentration
could be attainable pharmacologically in vivo has not been
investigated.

Among the BA receptors, TGR5 has received substantial
attention because of the many studies that suggest the crucial
roles of TGR5 in immune regulation (19). For example, various
TGR5 agonists inhibit inflammation of the stomach (20) and
brain (21). Functional impairment of TGR5 incurs more severe
inflammation than wild-type mice in response to LPS (22) and
contributes to autoimmune diseases (23). TGR5 agonists also
negatively modulate NF-κB (24), and the TGR5-AKT-mTOR1
pathway inhibits macrophage chemotaxis (25).

In this study, we used taurodeoxycholic acid (TDCA) to
investigate the mechanism of immune modulation rather than
other BAs because taurine-conjugated BAs activate the TGR5

pathway better than unconjugated BAs and glycine-conjugated
BAs (26, 27). In addition, taurine-conjugated BAs exhibit less
cytotoxicity than unconjugated BAs and glycine-conjugated BAs
(28). TLCA exhibited a lower EC50 in TGR5 pathway activation;
however, TLCA is more cytotoxic than TDCA (27, 29). For this
reason, we evaluated the mode of immune regulation by TDCA,
which activates the TGR5 pathway (30).

In this study, TDCA increased the number of CD11b+Gr1hi

granulocytic myeloid-derived suppressor cells (gMDSCs) at
a pharmacologically attainable plasma concentration, which
were proteogenomically different from gMDSCs obtained from
septic mice without TDCA treatment and ameliorated systemic
inflammation (26).

MATERIALS AND METHODS

Reagents and Cells
TDCA was purchased from New Zealand Pharmaceuticals
Ltd. (Palmerston North, New Zealand). LPS from Salmonella
enterica serotype enteritidis was obtained from Sigma-Aldrich
(St. Louis, MO). Fetal bovine serum, L-glutamine and 2-
mercaptoethanol, penicillin, streptomycin and gentamicin were
obtained from GibcoBRL (Waltham, MA). RPMI was obtained
from Welgene (Gyeongsan-si, Korea). Mouse B-cell and T-cell
isolation kits were obtained from Miltenyi Biotec for MACS
(Bergisch Gladbach, Germany). IL-10-producing MICK-2 cells
were obtained from BD Biosciences (San Jose, CA) and were used
as positive controls for the FACS analysis of IL-10.

Mice
C57BL/6N mice (B6, Shizuoka, Japan), C57BL/6-IL10tm1Cgn

mice (IL-10KO, The Jackson Laboratories, Bar Harbor, ME)
and C57BL/6-Gpbar1tm1(KOMP)Vlcg mice (TGR5 KO, KOMP
Repository, The Knockout Mouse Project, University of
California, Davis, CA) were housed in the Seoul National
University animal facility in a specific pathogen-free
environment. Eight- to Twelve-week-old female mice were
used for the experiments. The Institutional Animal Care and
Use Committee (IACUC) of the Biomedical Research Institute
in Seoul National University Hospital (AAALAC) approved all
animal experiments (SNU 10-0331). The mice were monitored
every 24 h for survival and other clinical signs (ruffled fur,
diarrhea, lethargy, and loss of body weight) for 14 day after sepsis
induction.

LPS Injection Model of Sepsis
The survival rate of the female mice was determined after i.p.
injection of LPS (20 mg/kg), followed by the i.v. infusion of 200
µl of PBS or TDCA for 20min (0.5 mg/kg, unless otherwise
indicated) using a Medfusion 2001 system (Medex, Dublin, OH)
at 30min (unless otherwise indicated) after LPS injection. For the
protection assay using IL-10 KOmice, 5 mg/kg LPS were injected
i.p. For the adoptive transfer experiments, B6 mice were injected
i.v. with 100 µl of purified cells. The mice were treated with LPS
24 h prior to adoptive transfer, unless otherwise specified.

Frontiers in Immunology | www.frontiersin.org 2 September 2018 | Volume 9 | Article 1984

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chang et al. MDSC Increased by TDCA

CLP-Induced Sepsis Model
Female B6 mice were anesthetized, and a small abdominal
midline incision was made. The cecum was ligated below the
ileocecal valve and punctured 3 times using a 23-gauge needle.
The abdominal incision was closed with an auto-metal clip
(Mikron Precision, Inc., Ontario, Canada). The same procedure
was applied to the sham-operated animals, with the exception
of the ligation and puncture of the cecum. The mice were
subsequently infused with 200 µl of PBS or TDCA i.v. at 2 h
after CLP.

Hematoxylin and Eosin Staining
The tissues were fixed in 10% neutral buffered formalin solution
(Sigma-Aldrich, St. Louis, MO) at room temperature (RT) for no
less than 2 weeks and embedded in paraffin. The sections were
stained with hematoxylin and eosin.

PAS Staining
Tissue sections in paraffin were deparaffinized using xylene for
10min 4 times and were subsequently washed with distilled
water for 5min, followed by oxidization in 0.5% periodic acid
solution for 15min. After rinsing with distilled water, the
sample was placed in Schiff reagent for 30min and washed with
running water for 5min, followed by counterstaining with Harris
hematoxylin for 5min. After briefly washing with distilled water,
the sample was dehydrated with 1% HCl alcohol for 10min and
cleared for microscopic observation.

Blood Chemistry
Mouse blood was collected at 48 h after LPS injection, and
serum samples were harvested via centrifugation (2,000 × g,
30min) following incubation of the blood at RT for 30min.
Alanine amino transferase (ALT), aspartate aminotransferase
(AST), blood urea nitrogen (BUN) and creatinine were measured
using an automatic chemistry analyzer (Hitachi 7070, Hitachi,
Tokyo, Japan).

Blood Pressure
The blood pressure was determined using the tail-cuff method
with a 6-channel CODA High-Throughput NIBP Acquisition
system (Kent Scientific Corporation, Torrington, CT). All
measurements were recorded at each time point and averaged.

Cytokine Measurements With the
Cytometric Bead Array (CBA)
Blood samples were collected in heparin-treated tubes (Sarstedt,
Niimbrecht, Germany) at the indicated times after sepsis
induction. The cytokine concentrations in the sera were
determined using CBA according to the manufacturer’s
instructions (BD Biosciences). The concentrations of cytokines
were calculated by a regression curve determined by known
amounts of provided standard cytokines.

FACS
Leukocyte subpopulations from the spleen and bone marrow
were analyzed using a FACS Canto II (BD Bioscience) and Flowjo
software (Treestar, Ashland, OR) after antibody staining. The
absolute numbers of spleen cells were counted by Trypan blue

exclusion, and the number of CD11b+Gr1hi cells was calculated
based on the % of total splenocytes after FACS analysis.

Splenocytes were purified at 24, 48, and 72 h after LPS
injection or after CLP. Briefly, single-cell suspensions were
prepared after grinding the spleen with frosted slides or flushing
the bone marrow of the femur with PBS. Single-cell suspensions
were filtered through a cell strainer with a 70-µm nylon mesh
(BD Bioscience). After depleting red blood cells (RBCs) using
ACK lysis buffer (0.15M NH4Cl, 0.1mM EDTA, 1mM Tris pH
7.4), the splenocytes or bone marrow cells were washed with
ice-cold FACS buffer (PBS that contained 1% BSA, 0.1% NaN3

and 1mM EDTA) and blocked on ice for 30min with blocking
buffer [anti-FcγRIIb antibody (clone 2.4G2, BD) and 10%
heat-inactivated mixed serum from mouse, rat and goat]. The
cells were stained with fluorochrome-conjugated monoclonal
antibodies (mAbs) against mouse CD11b (clone M1/70), Gr1
(clone RB6-8C5), Ly6c (clone ER-MP20, Abcam, Cambridge,
MA), Ly6g (clone 1A8), F4/80 (clone CI:A3-1, BioLegend,
San Diego, CA) and CD244 (clone eBio244F4, eBioscience).
The fluorochrome-conjugated mAbs were purchased from BD
Biosciences, unless otherwise specified.

To enumerate splenic T cells, the mice were infused with
TDCA (or PBS) i.v. via the tail vein at 30min after i.p. LPS
(or PBS) injection. Splenocytes were harvested at 6, 24, or 48 h
after LPS injection and stained with anti-CD4, anti-CD8 and
anti-CD25 antibodies, followed by intracellular staining with
Abs reactive with CTLA4 or Foxp3. The staining with anti-
FoxP3 or anti-CTLA4 antibody was performed according to
the manufacturer’s protocol (Foxp3 Fixation/Permeabilization
Concentrate and Diluent kit, eBioscience). The cells were
surface-stained with FITC-conjugated anti-CD4 mAb and Percp
Cy5.5-conjugated anti-CD25 mAb, fixed, and permeabilized for
subsequent intracellular staining. For cytoplasmic staining, the
permeabilized cells were blocked on ice for 30min with blocking
buffer and stained using PECy7-conjugated anti-FoxP3 and PE-
conjugated anti-CTLA4 mAbs. The cells were stained with 7-
amino actinomycin D (7AAD) (BD Bioscience) to determine the
cell viability.

IL-10 production by the cells was determined using FACS.
Splenocytes were obtained from 4 groups of mice: the PBS
+ PBS group, PBS + TDCA group, LPS + PBS group
or LPS + TDCA group. The splenocytes were stimulated
with phorbol 12-myristate 13-acetate (50 ng/ml, Sigma) plus
ionomycin (1µg/ml, Sigma) for 4 h. The splenocytes were stained
with Abs against CD11b and Gr1, followed by cytoplasmic
staining with Abs against IL-10 after permeabilizing the cells with
a one-step BD Cytofix/Cytoperm kit (BD Biosciences). Isotype
control antibodies were included in all staining sets to evaluate
nonspecific antibody binding.

T-Cell Proliferation Assay
T cells were purified from mouse spleen using MACS with a
pan T-cell isolation kit (Miltenyi Biotec). A total of 2 × 105

normal splenic T cells were stimulated with 1µg/ml of anti-
CD3 (eBioscience, Waltham, MA) and 10µg/ml of anti-CD28
(BD Bioscience) antibodies in RPMI 1640 medium containing
10% heat-inactivated FBS and 2mM glutamine. FACS-sorted
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CD11b+Gr1hi cells from the LPS + PBS group or the LPS +

TDCA group were mixed with T cells at a final concentration
of 4 × 104/well (E:T = 1:5) in a 96-well flat-bottom plate (Nunc,
Roskilde, Denmark) and cultured for 96 h at 37◦C in a humidified
5% CO2 atmosphere. T cells cultured without CD11b+Gr1hi cells
served as a negative control. The cells were pulsed with 1 µCi
[3H] methyl-thymidine (Perkin Elmer, Waltham, MA) for 18 h.
The cells were harvested with a Filtermate Harvester (Perkin
Elmer), and the isotope incorporation was measured using a
MicroBeta Plate Counter (Perkin Elmer). The data are expressed
as the counts per minute (cpm) ± standard error of the mean
(SEM).

Adoptive Transfer of CD11b+Gr1hi Cells
PBS or TDCA was infused i.v. via the tail vein at 30min after
LPS injection i.p. into B6 mice. The cells were isolated from the
spleen at 24 h after LPS injection. Following incubation of the
cells in blocking buffer for 30min on ice, the cells were stained
with a biotin-conjugated anti-mouse Gr1 antibody (clone RB6-
8C5), followed by staining with anti-biotin microbeads (Miltenyi
Biotec) at 4◦C for 15min. After washing with MACS buffer
(0.5% BSA and 2mM EDTA in PBS), the cells were positively
selected using an LS column (Miltenyi Biotec). The Gr1+ cells
presorted with MACS were further stained with mAbs against
CD11b (conjugated to PE) and F4/80 (conjugated to FITC) for
FACS sorting. The CD11b+Gr1hi F4/80int cells were sorted using
a FACSAria (BD Bioscience). A total of 1× 105 cells were injected
i.v. via the tail vein into B6mice. The recipient mice were injected
i.p. with LPS 24 h prior to adoptive transfer.

Microarray and RT-PCR
CD11b+Gr1hi cells were purified by FACS. Total RNA was
extracted from the cells using an RNeasy Mini kit according
to the manufacturer’s instructions (QIAGEN). The differential
expression was assessed using a GeneChip Scanner 3000 7G
(Affymetrix, Mouse 430_2, genome version mm10). A total of
14,074 genes (p< 0.05) were filtered, and 818 genes that exhibited
>8-fold changes (p < 0.05) were analyzed using DNASTAR R©

(DNASTAR Inc.). A hierarchical clustering method (distance
metric by Euclidean) was used to generate heatmaps. Genes
with corrected p-values < 0.05 (one-way ANOVA, unpaired)
and fold changes >2 or <-2 were considered significantly
regulated. The microarray data have been deposited in the Gene
Expression Omnibus under accession number GSE92948. For
RT-PCR analysis, total RNA was isolated as previously described.
cDNA was synthesized with an Omniscript RT KIT (QIAGEN)
and PCR-amplified (MyCyclerTM Thermal Cycler, BIO-RAD,
Hercules, CA) using the Plantinum R© PCR SuperMix (Thermo
Fisher Scientific, Bremen, Germany). The primer sequences and
PCR conditions are summarized in Table S1. Ingenuity Pathway
Analysis (IPA R©, QIAGEN, Redwood City) was used for the
pathway analysis.

In-Solution Digestion of Cell Lysates
The CD11b+Gr1hi cells were FACS-sorted from 2 groups of
mice (LPS+PBS and LPS+TDCA). The lysates of the FACS-
sorted CD11b+Gr1hi splenocytes were prepared using 8M urea

buffer, and the protein concentrations were determined by
the BCA assay (Micro BCA Protein Assay Kit, ThermoFisher
Scientific, Bremen, Germany). Dithiothreitol was added to the
lysate (3mM) and incubated at room temperature for 1 h.
The cell lysates were mixed with iodoacetamide (5mM) and
incubated in a dark room for 1 h. One part of the lysates
was mixed with 10 parts of 50mM ammonium bicarbonate
and digested with trypsin (1/50 × total protein amount of cell
lysate, Promega, Madison, WI) at 37◦C for 16 h. The samples
were subsequently desalted using a Macro Spin Column (C-18;
Harvard Apparatus, Holliston, MA). The column was activated
with 0.1% trifluoroacetic acid (TFA) in 80% acetonitrile in
advance and subsequently equilibrated with 0.1% TFA in water
(pH < 3.0). The samples were loaded into the column and
centrifuged at 1,000 × g for 2min at room temperature. The
column was washed with 0.1% TFA in water, and the peptide
fraction was eluted with 0.1% TFA in 80% acetonitrile. The
peptide samples were dried with a CentriVap R© benchtop vacuum
concentrator (Labconco, Kansas City, MO), and the peptide
concentration was determined using a BCA kit.

Labeling Peptides for iTRAQ
Isobaric tags for relative and absolute quantitation (iTRAQ)
were used to compare the proteomes of CD11b+GR1hi cells
from 2 groups (LPS + PBS and LPS + TDCA). One hundred
micrograms of peptide from each group were labeled according
to the manufacturer’s protocol for the iTRAQ reagent kit
(Sciex, MA). Briefly, the peptide samples were reconstituted
with 500mM triethylammonium bicarbonate (TEAB) buffer,
sonicated and vortexed. The 4-plex iTRAQ reagent dissolved
with ethanol was added to the peptide samples and incubated
at room temperature for 1 h. To one part of the sample, 3 parts
of 0.05% TFA was added and incubated at room temperature
for 30min. The iTRAQ reagent-labeled peptides were pooled
and subsequently concentrated to 300 µl using a CentriVap R©

benchtop vacuum concentrator (Labconco). The samples were
then mixed with 1ml of 50mM triethylammonium bicarbonate
(TEAB).

High pH Reversed-Phase Fractionation
The labeled peptides were separated via high pH reversed-phase
fractionation using an Agilent 1260 HPLC infinity purification
system (Agilent Technology, Santa Clara, CA). Briefly, an
Xbridge C-18 column (ZORBAX, 4.6 × 250mm, 5µm, 300 Å;
Waters, Milford, MA) was equilibrated with 10mM ammonium
formate in water. Seven hundred micrograms of an iTRAQ-
labeled peptide sample were loaded onto the column. The
peptides were serially fractionated with 10mM ammonium
formate in acetonitrile (15, 28.5, 34, 60% acetonitrile), and 8
elution fractions were separately collected. The elution samples
were dried in a Centrivap (Labconco). The dried peptides were
reconstituted with resolution buffer (0.1% formic acid).

Q ExactiveTM Hybrid Quadrupole-OrbitrapTM

Mass Spectrometry
The fractionated peptide samples were subsequently loaded
onto trap (C18, 3µm, 0.7 cm, Thermo Fisher Scientific) and
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EASY-Spray columns (C18, 2µm, 100 Å, 50 cm, Thermo
Fisher Scientific). Easy nano II Ultra Performance Liquid
Chromatography and Q-Exactive Mass Spectrometry systems
(Thermo Fisher Scientific) were used to separate the peptides.
The peptides were separated at a flow rate of 250 nl/min with
a gradient (2–35% acetonitrile in 0.1% formic acid) for 65min,
followed by washing with 90% acetonitrile in 0.1% formic acid
for 10min. For Q-Exactive, a top 10 method was used. The
Orbitrap mass analyzer was used to acquire full MS scans (m/z
300–1,600 range; resolution, 70,000). The AGC target value was
3.0E + 6. The ten most intense peaks with charge states ≥2
were fragmented in the HCD collision cell (normalized collision
energy of 32%). The tandem mass spectrum was acquired in the
Orbitrap mass analyzer (resolution, 17,500; AGC target value,
1.0E + 5; the intensity threshold, 8.3E + 3; the maximum
allowed ion accumulation times, 20ms for full MS scans and
120ms for tandem mass spectrum). The peaks with 1 and 5
more charged states were excluded. The same precursor ions
were also excluded after 20 s using the dynamic exclusion
function.

Annotation of Peptide Sequences
The Trans Proteomic Pipeline (Seattle Proteomic Center, Seattle,
WA, USA) was used to convert the mass data files into mzXML
files. Peptide masses were searched using a concatenated forward
and reverse mouse international protein index (IPI) database
(decoy ipi.MOUSE.v3.80 database, 54285 entries) (31) with the
SEQUEST-Sorcerer platform (Thermo Fisher Scientific, Sage-N
Research, Milpitas, CA). Sorcerer (Sage-N Research, Milpitas,
CA) was used to estimate the false discovery rate (FDR).
All searches were performed based on the trypsin specificity,
allowing two missed cleavages. Carbamidomethylation of
cysteine was set as a fixed modification, and the oxidation of
methionine, N-term and lysine iTRAQ modifications were set
as variable modifications. The precursor ion mass tolerance and
the fragment ion mass tolerance were set to 10 ppm and 1.0 Da,
respectively.

Scaffold Q+ (Proteome Software, Portland, OR) was used
to compare spectral counts, validate MS/MS-based peptides,
identify proteins (FDR < 1% in at least 2 peptides), and calculate
log2-fold changes (FC) and p-values (Student’s t-test). Proteins
with redundant peptides and multiple isoforms that could not be
differentiated based on MS/MS spectra were grouped separately
(= primarily assigned protein). Differentially expressed proteins
(FC > 1.5) were analyzed using IPA R©.

MPO and NE Activity
The myeloperoxidase (MPO) activity of the lysed CD11b+Gr1hi

cells was determined using a fluorometric MPO activity
assay kit (Abcam, Cambridge, MA) according to the
manufacturer’s protocol. The fluorescent signal was detected
with a multi-detection microplate reader (Cytation 3,
Biotek Instruments, Winooski, VT, USA). The NE activity
of the lysed CD11b+Gr1hi cells was determined using a
mouse neutrophil elastase (NE) activity ELISA kit (Cusabio
Corporation, Wuhan, China) according to the manufacturer’s
instructions.

Antibody-Mediated Neutralization Assay
At 1, 24, and 48 h after LPS injection i.p., 150 µg of anti-
CD244 antibody (clone eBio244F4) or rat IgG2a isotype control
antibody was injected i.p. into B6 mice together with an i.v.
TDCA infusion. In addition, 100 µg of anti-CD244 antibody was
injected i.p. into recipient B6 mice at 30min and 24 h after the
adoptive transfer of 1× 105 CD11b+Gr1hi cells.

Statistical Analysis
The data are expressed as the mean ± SEM. Student’s two-
tailed t-tests were employed to compare the test group with
the control group, unless otherwise indicated. A Kaplan-Meier
survival analysis and log-rank test were used to calculate the
mean survival time and determine the statistical significance of
the survival differences. P < 0.05 was considered statistically
significant.

RESULTS

TDCA Confers Protection to Mice With
Sepsis
When we infused TDCA i.v. (0.5 mg/kg) at 30min or 24 h after
LPS injection, 80 and 50% of the mice survived, respectively
(Figure 1A, p < 0.05). The TDCA dose of 0.4 mg/kg was
sufficient to obtain this effect (Figure S1A). In addition, 70%
of the mice survived when we infused TDCA at 2 h after
cecal ligation and puncture (CLP, Figure 1B, p < 0.05). The
plasma Cmax (=502 ng/ml) of TDCA after i.v. infusion (1
mg/kg) was approximately 1/1,000 of the 50% hemolytic
concentration (420µg/ml) previously reported (32) (Figure S1B)
and approximately 1/1,000 less than the cytotoxic dose in vitro
(33). TDCA did not protect TGR5 KO mice under sepsis
(Figure S1C).

TDCA decreased liver and kidney damage in septic mice
(Figures 1C,D and Figure S2). H&E staining of the kidney
showed that the LPS-injected mice exhibited marked vacuolar
degeneration of the tubules (arrows in Figure 1C). TDCA
infusion almost completely ameliorated LPS-induced kidney
lesions (Figure 1C). The mucopolysaccharides on the basement
membranes of the glomerular capillary loops and the tubular
epithelium of the kidney were also stained with PAS (arrows
in Figure 1C, right column). The loss of the brush border
was remarkable in the LPS + PBS group (an arrow) and
was significantly recovered by TDCA infusion (an arrow
in Figure 1C). TDCA infusion normalized kidney function,
liver function and hypotension from 4 h after LPS injection
(Figures 1D,E, Figure S2). The production of cytokines, such
as TNF-α, MCP-1, IL-6, and IL-1β, was also significantly
inhibited by TDCA in both the LPS injection and CLP models
(Figures 1F–H, Figure S3).

The Phenotype of CD11b+Gr1hi Cells
Increased by TDCA
As previously reported (34), mice with sepsis exhibited reduced
splenocyte numbers at 48 h after LPS injection and 72 h after
CLP (Figure 2A, Figure S4). However, the total numbers of
splenocytes were significantly increased in the LPS + TDCA
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FIGURE 1 | Protection of mice with sepsis after TDCA treatment. (A) The survival of mice under sepsis when TDCA or PBS was administered i.v. at 30min or 24 h

after LPS injection. n = 17 for 30min and n = 8 for 24 h (B) The survival of mice after i.v. infusion of TDCA (◦, n = 10) or PBS (•, n = 10) at 2 h after cecal-ligation and

puncture. Sham group (�, n = 5). (C) H&E staining (left column) and PAS staining (right column) of kidney from mice with sepsis at 48 h after treatment with TDCA

(n = 6) or PBS (n = 5). n = 3 for the normal B6 mice. Red arrows in the left column and right column denote representative vacuolar degeneration and loss of the

brush border, respectively. (D) BUN and creatinine levels in the blood were determined at 48 h post- LPS challenge. The data are expressed as the mean ± standard

error of the mean (SEM). n = 4, 4, 19, or 16 for the PBS+PBS, PBS+TDCA, LPS+PBS, or LPS+TDCA groups, respectively. (E) Blood pressure at 4 and 6 h post

LPS injection. n = 6 but n = 5 in PBS+PBS group (F–H) The cytokine concentrations in the sera were determined using the cytometric bead array at 6 h post LPS

injection or 24 h post CLP. Data shown are pooled from 4 independent experiments for LPS-injection setting or 6 independent experiment for CLP setting with 1∼3

mice per experiment. The times (“h”) indicate the interval from the LPS injection or the CLP procedure to time point the data were collected throughout the study.

Short horizontal lines among the circles indicate the mean values.
†
p < 0.05 using Kaplan-Meier survival analysis and the log-rank test between groups. *p < 0.05 by

Student’s two-tailed t-test. Data shown are pooled from 3 independent experiments with 1∼3 mice per experiment otherwise denoted.

group at 48 h after LPS injection and 72 h in the CLP + TDCA
group. CD11b+Gr1+ cells increased both in the LPS + TDCA
group and CLP + TDCA group (Figures 2B,C, Figures S4, S5).
TDCA treatment did not increase the number of T cells or
CD11c+ cells (Figure S6). There were no significant changes
in the number of CD4+FoxP3+ Treg cells or the expression of
CTLA4 on these cells (Figure S7).

In both the LPS injection and CLP settings,
CD11b+Ly6g+Ly6cint cells exhibited a more profound
increase in the TDCA group than the PBS group (Figure 2D,
Figures S8, S9). In addition, TDCA infusion further increased
the % CD11b+Gr1hiF4/80int cells in LPS injection settings
compared with PBS group (Figure 2E, Figure S10). Interestingly,
CD31, a marker of immature myeloid progenitors, was expressed
on CD11b+Gr1int but not on CD11b+Gr1hi cells (Figure 2F,
Figure S11). The CD11b+Gr1hi cells also expressed the

neutrophil marker CD177 (Figure 2G, Figure S12). There were
no significant differences in the expression of CD31 or CD177
between CD11b+Gr1hi cells from the “LPS + TDCA” group
(“MDSCLT” onwards) and CD11b+Gr1hi cells from the “LPS +

PBS” group (“MDSCL” onwards).
FACS-purified MDSCLT inhibited T cell proliferation

following CD3 + CD28 ligation in vitro better than MDSCL

cells (Figure 2H, p < 0.05). Adoptive transfer of FACS-sorted
MDSCLT (1 × 105 cells) significantly improved the survival
rate compared with MDSCL (Figure 2I, Figure S13, p ≤ 0.05).
CD11b+Gr1− cells (DATA not shown), CD11b+Gr1int cells
from the LPS+ TDCA group or PBS did not confer protection.

Proteogenomic Profiling of MDSCLT
The gene expression profiles were compared between MDSCLT

and MDSCL (Figure 3A). The microarray results indicated
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FIGURE 2 | Phenotype of splenic CD11b+Gr1hi cells increased by TDCA. (A) The absolute numbers of spleen cells from B6 mice at 48 h post LPS injection (left, Data

pooled from 5 independent experiments) or 72 h post CLP (right) by Trypan blue exclusion assay. (B) The absolute number of splenic CD11b+Gr1hi cells from B6

mice at 48 h post LPS injection (left) or 72 h post CLP setting (right). (C) Representative FACS plots of (B). (D) Representative FACS plots showing the expression of

Ly6g and Ly6c on the subpopulation of CD11b+ cells. The percentage denotes the % of Ly6cintLy6g+ cells among CD11b+ cells. (E) Representative FACS plots

showing the expression of Gr1 and F4/80 on CD11b+ cells. (F) Representative FACS plots showing expression of CD31 on CD11b+Gr1hi cells (solid line) and

CD11b+Gr1int cells (dotted line) from the LPS+PBS group and LPS+TDCA group. Filled histograms denote the isotype control. (G) Expression of CD177 on

CD11b+Gr1hi cells. Filled histograms denote the isotype control. (H) [H3]Thymidine-incorporation of T-cells following CD3 + CD28 ligation was measured after

co-culture with CD11b+Gr1hi cells (E:T = 1:5) purified from spleen of mice injected with PBS + PBS, LPS + PBS, or LPS + TDCA. The data are expressed as the

mean count per minute (cpm) ± SEM of triplicate assays pooled from 3 independent experiments. (I) The survival of mice after adoptive transfer of CD11b+Gr1hi cells

(1 × 105 cells/mouse) purified from the LPS + TDCA group (�, n = 7, MDSCLT ) or the LPS + PBS group (�, n = 5, MDSCL ). CD11b
+Gr1int cells (N, n = 3) were

purified from mice in the LPS + TDCA group. The thin horizontal lines on the top of the FACS plots indicate the gates used in the FACS analysis, and the thick

horizontal lines are the experimental groups treated with LPS or PBS. The gating strategies are shown in Figures S7∼S12. Data shown are pooled from 3

independent experiments with 1∼3 mice per experiment otherwise denoted. Representative FACS plots of 3 independent experiments. †p < 0.05 using Kaplan-Meier

survival analysis and the log-rank test between groups. *p < 0.05 by Student’s two-tailed t-test.

that 818 genes showed more than 8-fold changes in the 95%
confidence interval (p < 0.05, Figure 3B). These genes were
further analyzed to decipher the association with signaling
pathways using Ingenuity Pathway Analysis (IPA R©, QIAGEN,
Redwood City, CA). The expressions of genes for the signaling
pathways necessary for immune regulation were controlled
by TDCA (p < 0.05, Figures 3C,D). In particular, the genes
for pro-inflammatory signaling pathways, such as chemotaxis
[denoted as Rac signaling (35), leukocyte extravasation, ILK
signaling (36), and PAK signaling (37)], MAPK signaling, CREB
signaling (38), p70S6K signaling (39), thrombin signaling (40),
and P2Y purinergic receptor signaling (41), were significantly
down-regulated (Figure 3C). The genes for the antigen

presentation pathway and cell cycle control were highly
up-regulated (Figure 3D).

We further compared the proteomic profiles between
MDSCLT and MDSCL cells (Figure 4). Using iTRAQ labeling,
1,643 unique proteins were identified at a protein threshold
with a 1.0% false discovery rate. Among these proteins, 887
showing a peptide spectral count in more than 2 assays from
triplicate assays are depicted in the heat map (Figure 4A). The
heat map shows two distinct proteome clusters that were down-
regulated in MDSCLT (cluster A) and up-regulated in MDSCLT

(cluster B) compared with MDSCL cells. Various heterogeneous
ribonucleoproteins (hnRNPs) responsible for the alternative
splicing of pre-mRNA were down-regulated (Figure 4B, nuclear
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FIGURE 3 | Comparison of gene expression profiles of MDSCL and MDSCLT. (A) CD11b
+Gr1hi cells were FACS-purified from the LPS + PBS group (8 independent

sorting, 4∼9 mice samples were pooled for each sorting) and the LPS + TDCA group (5 independent sorting, 4∼6 mice samples were pooled for each sorting).

cDNAs from each mouse were pooled and gene expression was profiled in duplicate. Eight hundred eighteen genes were filtered (>8-fold change, p < 0.05) from

14,074 genes (p < 0.05) and analyzed to generate a heat map and scatter plot. The gene with the lowest expression value is displayed as a highly suppressed gene

in blue (signal intensity = 2−2.9). The highest expression value is displayed as a highly expressed gene in red (signal intensity = 215.8). The range of expression

intensity is color coded and is depicted in the right. (B) The double-log scatter plot indicates the signal intensities of all oligo probes. The 818 genes shown in red

showed > 8-fold change and p-value < 0.05. The best-fit linear trend (dotted line) and the ±2-fold change lines are indicated. (C) Four hundred ninety-six genes that

exhibited 5-fold down regulation (p < 0.05) were extracted, and their pathway associations were investigated. (D) Five hundred forty-four genes that exhibited 8-fold

up regulation (p < 0.05) were extracted, and their pathway associations were investigated using IPA®. The pathways overlapping with the proteomic analysis are

denoted by “*”. −Log (p-value) was calculated using the right-tailed Fisher’s exact test to measure the likelihood that the association between a set of genes and

pathway was due to random chance. Pathways with p < 0.05 are shown.

blue symbols) (42). The proteins for cytoskeletal rearrangement
were down-regulated (Figure 4B, red symbols). A set of
histones (1H1C, 1H1E, H2AFX) that repress transcription by
preventing transcription factor access (43) were up-regulated in
MDSCLT compared with MDSCL cells (Figure 4C, nuclear blue
symbols). TDCA treatment resulted in heterogeneous ribosome
composition by up-regulating the expression of a set of ribosomal
proteins in MDSCLT (Figure 4C, green symbols). Specialized sets
of ribosomes with different functions may be complexed because
of the differential expression of ribosomal subunit proteins
following TDCA treatment (44). The expression of proteome
for mitochondrial oxidative phosphorylation was up-regulated
(Figure 4C, gray symbols). In addition, CAMP was up-regulated
(Figure 4C, cytosolic black symbol), which participates in
inhibiting the expression of various pro-inflammatory molecules,
such as TNF-α, CXCL8, IL6, CCL2, IL-1β, leukotriene B4 and
nitric oxide, by regulating Erk1/2, P38 MAPK, Jnk, Akt, and NF-
κB (45). In the proteomic analysis, proteins for chemotaxis and
pro-inflammatory pathways were down-regulated, as indicated
by microarray analysis (Figure 4D). Proteomic profiling also
showed that the expression of various proteins responsible for
endocytosis and immune-regulation, such as the acute phase
response, EIF2 signaling (46), and LXR/RXR/FXR signaling (47),
were up-regulated by TDCA treatment (Figure 4E). In both

the microarray and iTraq analyses, the pathways for p70S6K
signaling, P2Y purinergic receptor signaling, MAPK signaling,
thrombin signaling, and leukocyte extravasation signaling were
down-regulated in MDSCLT compared with MDSCL.

Mode of Immune Regulation and
Proliferation of MDSCLT
Based on the proteogenomic profile, we further characterized
MDSCLT compared with MDSCL. The MPO responsible for
ROS generation was higher in MDSCLT than MDSCL cells
(Figure 5A). Microarray and RT-PCR analysis of transcripts
showed that iNOS levels in both MDSCLT and MDSCL cells
were similar to those of normal splenocytes (data not shown).
There were no significant differences in the mRNA expression
of arginase-1 (p = 0.07, Figure 5B). These findings suggest that
MDSCLT exerted an immune-regulatory role similar to the role
played by gMDSCs using ROS (48). In addition, neutrophil
elastase (NE) activity was lower in MDSCLT than MDSCL cells
(p < 0.05, Figure 5C). Considering that NE plays a role in tissue
destruction via extracellular matrix proteolysis, MDSCLT may
lead to less tissue destruction than MDSCL cells.

We further characterized the IL-10 production induced by
TDCA because IL-10 plays a crucial role in the anti-inflammatory
phenotypes of MDSC (49). Interestingly, there was no significant
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FIGURE 4 | Proteomic differences between MDSCLT and MDSCL cells. (A) The heat map indicates two distinct proteome clusters that were down-regulated in

MDSCLT (cluster A) and up-regulated in MDSCLT (cluster B) compared with MDSCL cells. Protein lysates were pooled from cells obtained by 3 independent sorting

for each group. n = 3 mice in each independent sorting. (B) The proteins in cluster A were further sub-clustered based on their common functions. The red symbols

represent molecules that play roles in cellular trafficking. Blue symbols (alternative splicing), green symbols (protein metabolism), gray symbols (mitochondrial oxidative

phosphorylation) and yellow symbols (pro-inflammatory signaling/adhesion/ cytokine molecules) were used to denote each sub-cluster. (C) The proteins in cluster B

were further sub-clustered as (B). The pink symbols in the nucleus represent molecules that are potentially associated with the cell cycle and differentiation. The blue

symbols in the nucleus represent histones for chromatin remodeling. The green symbols (ribosomal proteins), cytosolic pink symbols (cytoskeletal proteins), gray

symbols (mitochondrial respiratory chain) and yellow symbols (acute phase response proteins) were color-coded based on their functions listed in the database of

Ingenuity Pathway Analysis (IPA®, QIAGEN). Open symbols are molecules predicted by IPA® that were not observed in the experiments. The gray lines represent

potential interactions between the molecules predicted by IPA®. The curved blue lines and pink lines represent the cytoplasmic and nuclear membranes, respectively.

Canonical signaling pathways for up-regulated proteins (D) and down-regulated proteins (E) were analyzed. *denotes signaling pathways overlapped with the

microarray analysis. –Log (p-value) was calculated using the right-tailed Fisher’s exact test to measure the likelihood that the association between a set of genes and

pathway was due to random chance. Pathways with p < 0.05 are shown.

IL-10 production by MDSCLT and MDSCL (Figure S14A).
In addition, TDCA treatment conferred protection to IL-10
KO mice comparable to WT mice following LPS challenge
(Figure S14B). TDCA treatment after LPS injection did not affect
the serum concentration of IL-10 of B6 mice (Figures S14C,D),
which suggests that IL-10 may not be involved in the anti-
inflammatory effector functions of MDSCLT and TDCA.

The expression levels of oncostatin M (Osm) and lactoferrin,
which play crucial roles in innate immune responses, were
increased in the spleens of septic mice after TDCA infusion
(Figures 5D,E).

Because the microarray data showed increased expression of
CD244 in MDSCLT compared with MDSCL (fold change = 2.7
± 1.1) and the CD244hi MDSC population was significantly
increased in tuberculosis patients and in tumor-bearing mice
(50, 51), we analyzed the expression of CD244 on MDSCLT.
FACS analysis also showed that MDSCLT expressed higher levels

of CD244 than MDSCL cells (Figures 5F,G and Figure S15).
Intravenous injection of anti-CD244 antibody neutralized the
protective effect of TDCA infusion in vivo (Figure 5H). Because
CD244 is expressed on various cell types, we investigated
the role of CD244 expressed on MDSCLT after adoptive
transfer of MDSCLT into septic mice and i.v. injection of anti-
CD244 antibody. Intravenous injection of anti-CD244 antibody
abrogated the protective effect of adoptive transfer of MDSCLT

cells in the LPS injection setting (Figure 5I).
Adoptive transfer of MDSCLT increased the number of

MDSCLT in both the bone marrow (Figure 5J) and spleen
(Figure 5K) of recipient B6 mice with sepsis, which suggests
that TDCA may induce the production of an autocrine
factor necessary for increasing the number of MDSCLT

cells. Microarray and RT-PCR analyses showed that MDSCLT

expresses prokineticin2 to a greater extent than MDSCL cells,
which is crucial for MDSC proliferation (Figure 5L) (52).
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FIGURE 5 | Potential molecular mediators of CD11b+Gr1+ cells for immune regulatory function. CD11b+Gr1hi cells were purified from the spleen and enzyme

activity or level of transcripts were determined. (A) MPO enzyme activity. (B) RT-PCR analysis of arginase gene. (C) NE enzyme activity. DATA pooled from 2

independent experiments for A∼C. Representative oncostain M (D) and lactoferrin (E) expression in splenocytes from septic mice determined by

immunohistochemistry after treatment with PBS or TDCA. Data shown are representative of 3 independent experiments with 3 samples per experiment. (F)

Representative FACS plots of (G) indicating the surface expression of CD244 on splenic CD11b+ Gr1hi cells. The gating strategies are shown in Figure S15. (G) MFIs

of CD244 expression on CD11b+Gr1hi cells are plotted. Data pooled from 4 independent experiments with 2∼4 samples per experiment. (H) Survival rate of septic

mice given LPS i.p. after recieving isotype control antibody + TDCA (•), anti-CD244 antibody + TDCA (◦), or isotype control antibody + PBS (�). n = 8 (I) Survival rate

of septic mice that received LPS i.p. after being administered isotype control antibody + adoptive transfer of MDSCLT (•, n = 10), anti-CD244 antibody + adoptive

transfer of MDSCLT (◦, n = 12), or isotype control antibody + PBS (�, n = 10). The number of CD11b+Gr1hi cells in the bone marrow (J) or spleen (K) after adoptive

transfer of MDSCL or MDSCLT. The number of total BM cells or total splenocytes were counted and the number of CD11b+Gr1hi cells was calculated using the % of

cells after FACS analysis as in Figure 2E. (L) RT-PCR analysis of prokineticin 2. n = 4, RU, relative units of band intensity normalized to the intensity of GAPDH. Short

horizontal lines among the circles indicate the mean values. *p < 0.05 by the Student’s two-tailed t-test.
†
p < 0.05 using Kaplan-Meier survival analysis and the

log-rank test between groups with the same symbol. Data shown are pooled from 3 independent experiments with 1∼4 samples per experiment otherwise denoted.

DISCUSSION

Here, we report that TDCA increases the number of immune-
regulatory MDSCLT cells, which are distinct from gMDSCs that
previously reported, through the global editing of the proteome
that increase anti-inflammatory molecules such as MPO, Osm,
lactoferrin, and CD244, in addition to prokineticin 2, which are
essential for the proliferation of myeloid cells (53). Global editing
of the proteome by TDCA decreases pro-inflammatory functions
by inhibiting the expression of tissue-degrading enzymes such
as neutrophil elastase. In addition, anti-inflammatory molecule
expression was increased in MDSCLT compared with MDSCL.
For example, Osm is involved in anti-inflammatory responses
and restores normal homoeostasis after tissue injury or infection

(54). Without Osm, LPS induces exaggerated pathogenesis
(55). Lactoferrin also possesses anti-oxidant, anti-inflammatory
and anti-bacterial functions, which are crucial for protection
from sepsis (56). Considering previously published expression
profiles (57, 58), immunohistochemistry data showing increased
expression of Osm and lactoferrin in spleen might be due to
MDSCLT population in spleen (59–63).

Thus, TDCA ameliorates systemic inflammation, normalizes
blood pressure, prevents kidney injury and prolongs survival
in a mouse sepsis model. Considering that the median plasma
concentration of TDCA is 33.9 nM in healthy individuals (64),
approximately 10∼20× the physiological plasma levels of TDCA
is necessary to inhibit the systemic inflammation incurred by
LPS injection or by CLP. The IC50 of TDCA that inhibits
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the binding of N-3H-methylscopolamine to the M3 muscarinic
receptor of acetylcholine was 170µM (33), which suggests
that the plasma Cmax after i.v. infusion of 1 mg/kg TDCA
is 1/176 × the concentration necessary for antagonizing the
M3 muscarinic receptor. The EC50 of deoxycholic acid (DCA)
to increase cAMP production in a TGR5-dependent manner
was 1µM (26). This finding suggests that the plasma Cmax
of TDCA after 0.5 mg/kg i.v. infusion may be sufficient to
activate the TGR5 pathway in vivo. Considering together with
that TDCA does not protect TGR5 KO mice under sepsis in
this study, TDCA might play roles via TGR5 pathway to control
sepsis.

TDCA activates the S1PR2 pathway (65) in addition to the
TGR5 pathway (24, 26, 30). Activation of the S1PR2 pathway
augments pro-inflammatory responses, and TDCA activates the
S1PR2 pathway at more than 5µM (66). Accordingly, it is
less likely that S1PR2 plays roles in TDCA-mediated immune
regulation, even in various pathological conditions where the
plasma concentration of TDCA is less than 1µM (18).

Conjugated BAs rarely activate nuclear receptors. The most
potent activator of FXR, CDCA, had an EC50 of 50µM in
FXR activation, and other conjugated BAs were inactive in this
assay at concentrations up to 100µM (16). Conjugated BAs in
fasting blood are typically less than 1µM with concentrations
that reach as high as 5µM after a meal (4). For these reasons,
we hypothesized that the immunomodulatory role of TDCAmay
be largely dependent on the activation of the TGR5 pathway
in vivo; however, it needs to be ruled out for interaction with
other membrane receptors, such as α1β4/α5β1 integrin, mAChRs
and large conductance Ca2+-activated K+ channels using a
panel of loss-of-function or gain-of-function studies in future
investigations.

When rats were injected with TDCA i.v. once every day for
28 days, the no-observed-adverse-effect level (NOAEL) was >10
mg/kg (67). Taken together with the toxic dose ranges previously
reported (32), the pharmacological effects of TDCA are observed
at less than 10× the plasma concentration of healthy individuals,
which is far less than the toxic dose ranges (32).

TDCA-induced CD11b+Gr1hiCD31−CD177+ MDSCLT

cells are distinctive from the conventional gMDSC subsets
present in tumors and inflammatory conditions. In the tumor
microenvironment, the CD11b+Gr1hiCD31− gMDSC subset
is less immunosuppressive than the CD11b+Gr1intCD31+

mMDSC subset (68). In comparison, TDCA-induced
CD11b+Gr1hiCD31− MDSCLT cells are more anti-
inflammatory than MDSCL cells, which increased under
inflammatory conditions without TDCA (conventional
gMDSCs). Furthermore, in terms of anti-inflammatory
potency, TDCA-induced CD11b+Gr1intCD31+ cells (with
a surface phenotype of conventional mMDSCs) did exhibited
reduced anti-inflammatory functions compared with MDSCLT

or MDSCL cells. These findings suggest that the phenotype and
function of the TDCA-induced MDSCLT cells are different from
the gMDSC and mMDSC subsets in tumor-bearing mice and
gMDSCs present in inflammatory conditions (68).

The CD244 expression on MDSCLT was substantially higher
than that of MDSCL. CD244 - CD48 interactions have been

reported as both activating and inhibitory, depending on the
context or the isoform of CD244 engaged (69). Regardless
of the contradictory roles of CD244, several reports suggest
critical roles for CD244 - CD48 interactions in immune
regulation. CD244 on intraepithelial lymphocytes inhibits
inflammatory colitis (70). In addition, the risks of rheumatoid
arthritis and systemic lupus erythematosus are increased in
patients with genetic polymorphisms in CD244 (71). Moreover,
mutation of the CD244 gene is closely linked to the risk of
autoimmunity (72).

In this study, we identified an increase in the expression
of CD244 on MDSCLT and neutralization of the regulatory
activity of MDSCLT by anti-CD244 antibody treatment. Thus,
CD244 on MDSCLT may play a crucial role in inhibiting the
function of other inflammatory cells as an immune checkpoint.
However, detailed loss-of-function studies are necessary to assess
the role of CD244 expressed on MDSCLT in sepsis because
CD244 also plays crucial roles in NK cell functions and NK
cells contribute to antibacterial immunity via crosstalk with other
immune cells (73). For these reasons, the homotypic interaction
of CD244 and heterotypic CD244-CD48 interactions between
various hematopoietic cells must be examined to elucidate
protective roles of TDCA.

Proteogenomic analysis suggests three potential
transcriptional and translational control mechanisms for
global proteome editing by TDCA (Figure 6). First, increases
in linker histones by TDCA may inhibit the binding of
various transcription factors to chromosomes (43). Second, the
expression of various hnRNPs diversified by TDCA may change
of the mRNA repertoire by reprogramming alternative splicing
(42). Finally, the heterogeneous ribosome composition incurred
by TDCA generates new sets of functional proteomes (44). In
this manner, global editing of the proteome may be responsible
for the down-regulation of pro-inflammatory molecules that
play roles in chemotaxis, thrombin signaling (74), IL-1 signaling
and purinergic responses (75) and the up-regulation of anti-
inflammatory responses (notably APR, ROS generation and
FXR), as well as increased hematopoiesis.

One question remains elusive. How does TDCA inhibit
inflammation and yet control bacteria in mice CLP model
that are infected with live bacteria? Because inhibition in a
pro-inflammatory response leaves that animal at a significant
disadvantage and should lead to increased sensitivity to
infection. Our proteomics and immunohistochemistry data
provides plausible bacterial clearance mechanisms exerted by
TDCA. TDCA increases expression of MPO, lactoferrin and
oncostatin M (Figure 5). These molecules play roles in bacterial
clearance (59–63). MPO is essential in oxidative killing of
bacteria in phagolysosomes (76). MPO generates lethal anti-
microbial oxidants that react with ingested bacteria to kill
them (76). Lactoferrin is a non-haem iron-binding protein
(77). Thus, lactoferrin sequestrate iron in sites of infection,
which deprives the microorganism of iron essential for living,
thus killing bacteria (78). Lactoferrin also interact with the
cellular membrane of infectious agent directly and cause bacterial
lysis (78). Oncostatin M is responsible for increased levels of
liver iron regulatory hormone hepcidin and decreases serum
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FIGURE 6 | Schematic diagram indicating the potential anti-inflammatory mode of action of TDCA in mice with sepsis. When administered, TDCA edits the

transcription/translation machinery and reprograms CD11b+Gr1hi cells to regulate inflammation and proliferation. In future studies, the respective roles of known

TDCA receptors (such as TGR5, α1β4/α5β1 integrin, mAChRs and large conductance Ca2+-activated K+ channels) must be tested in immuno-regulation in response

to TDCA.

iron levels that hampers bacterial growth (79). Although many
reports showed bacterial clearance by these molecules, we
need to decipher exact mechanism of bacterial clearance by
these molecules when we infused TDCA into mice under
sepsis.

More than 2 million individuals worldwide suffer from sepsis
on an annual basis (80). Because a plethora of pathogenic
signaling pathways are simultaneously activated in septic
patients, clinical trials targeting a single inflammatory mediator,
coagulation factor or pro-inflammatory signal transducer have
not shown significant survival benefits (81). In contrast to
former strategies examining the blockade of pro-inflammatory
pathways, targeting intrinsic immune regulatory mechanisms
may be more effective for inhibiting the broad spectrum of
pathways that are activated in sepsis (82). For these reasons,
in vivo expansion of MDSCLT using a pharmacological dose
of TDCA may be a plausible approach to inhibit the broad-
spectrum pathogenesis exhibited in septic patients.
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