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Abstract: In the 21st century, enteric fever is still causing a significant number of mortalities, espe-
cially in high-risk regions of the world. Genetic studies involving the genome and transcriptome
have revealed a broad set of candidate genetic polymorphisms associated with susceptibility to
and the severity of enteric fever. This review attempted to explain and discuss the past and the
most recent findings on human genetic variants affecting the progression of Salmonella typhoidal
species infection, particularly toll-like receptor (TLR) 4, TLR5, interleukin (IL-) 4, natural resistance-
associated macrophage protein 1 (NRAMP1), VAC14, PARK2/PACRG, cystic fibrosis transmembrane
conductance regulator (CFTR), major-histocompatibility-complex (MHC) class II and class III. These
polymorphisms on disease susceptibility or progression in patients could be related to multiple
mechanisms in eliminating both intracellular and extracellular Salmonella typhoidal species. Here,
we also highlighted the limitations in the studies reported, which led to inconclusive results in
association studies. Nevertheless, the knowledge obtained through this review may shed some light
on the development of risk prediction tools, novel therapies as well as strategies towards developing
a personalised typhoid vaccine.

Keywords: enteric fever; Salmonella typhoidal species; human genetic variants

1. Introduction

Enteric fever is caused by the Gram-negative bacillus, Salmonella typhoidal species
namely S. enterica serotype Typhi which is responsible for typhoid fever and S. enterica
serotype Paratyphi which results in paratyphoid fever, and is considered as a major world-
wide health problem [1–3]. The disease is characterised by prolonged fever, generalised
fatigue, headache and anorexia. In general, the outbreak of enteric fever mainly results
from faecal–oral transmission through the ingestion of food and water contaminated with
human excreta [4,5]. Hence, the risk factors associated with enteric fever could be related
to poverty and social inequality, e.g., through lack of sanitation and hygiene, human
demographics and behaviour, as reported elsewhere [6,7].
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The occurrence of typhoid fever extends throughout the globe. It is prevalent primarily
in developing countries with poor sanitary conditions. Typhoid fever is native to Africa,
the Caribbean, Asia, Oceania and Latin America. However, most of the cases originate from
Laos, Vietnam, China, Pakistan, Bangladesh, Nepal, India and Indonesia [8]. Within these
nations, typhoid fever is mostly reported in underdeveloped regions. According to the
model-based estimation carried out by Antillón et al., in 2015, approximately 17.8 million
of typhoid fever cases per year are estimated in people who are living in low and middle-
income countries [6].

In addition, the ‘global burden of disease 2016′ project shows that there is a slight
decrease in the global age-standardised typhoid fever death rate, which dropped by 21.1%
from 2.155 deaths per 100,000 in 2006 to 1.7 deaths per 100,000 in 2016. Furthermore,
paratyphoid fever deaths decreased by 6.6% from 137.3 thousand deaths to 128.2 thousand
deaths in 2016 [9]. Although enteric fever cases declined in a number of countries in
recent years, there were still high incidences of typhoid fever in some regions in Africa, as
estimated by the adjusted incidence rate, which indicated that children in the age range of
2–14 years have the greatest typhoid fever burden [10]. Importantly, since the year 2000, its
increasing resistance to ciprofloxacin treatment has also attracted considerable attention.

Typhoid vaccines are developed to protect individuals from enteric fever. One of
them is an injectable polysaccharide (PS) vaccine (also known as ViCPS vaccine), an
inactivated subunit vaccine composed of long chains of sugar molecules that make up
the surface capsule of S. Typhi. Another vaccine is an edible vaccine which was also
developed from live attenuated mutant strains of S. Typhi Ty21a. However, not all vaccine
recipients receive adequate protection and benefits from the immunisation against this
intracellular Salmonella spp. It is believed that the genetic variation of the recipients plays
a major role in modulating the antibody response to typhoid vaccine [11]. They found
that alteration of genes involved in PS recognition, signalling ligands and receptors are the
main genetic polymorphisms associated with typhoid vaccination outcomes. In addition,
genetic variation also influences the individual’s susceptibility to enteric fever. For example,
PARK2/PACRG polymorphism is found to be among the candidate gene variants that are
greatly associated with enteric fever [12]. In this review, we summarise the most recent and
some past findings on human genetic variants affecting biological functions in influencing
the outcome of Salmonella typhoidal species’ infection. Table 1 lists the influence of human
genetic factors in the development of enteric fever and the role of the genes are illustrated
in Figure 1.

Table 1. The influence of gene variants on enteric fever.

Gene a Location of Gene Influence of Variants Reference

Gene Variants that Affect the Enteric Fever Outcomes

TLR4 Chromosome 9

Missense mutation in TLR4 (threonine→ isoleucine
substitution at position 399 of the amino acid sequence) or

(aspartate→ glycine substitution at position 299 of the amino
acid sequence) is evidenced to be associated with an increasing

risk for Salmonella infection and severity of enteric fever.

[13,14]

IL-4 Chromosome 5
Variable number of tandem repeat polymorphisms of 3R2R at
IL-4 could be a genetic predisposition factor for S. Typhi or S.

Paratyphi infection.
[15]

VAC14 Chromosome 16 The polymorphism rs8060947 in VAC14 gene renders it
susceptible to infection. [16]

PARK2/PACRG Chromosome 6
Mutation in PARK2 results in a single-nucleotide polymorphism
of PARK2_e01(−2599) which shows the weak association and

susceptibility to typhoid fever and paratyphoid fever.
[12]
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Table 1. Cont.

Gene a Location of Gene Influence of Variants Reference

CFTR Chromosome 7

Polymorphic dinucleotide repeats in the intron or exon of the
CFTR gene and also in the single nucleotide variant, whereas,

polymorphisms poly-T at CFTR gene are found to be associated
with protection against enteric fever.

[17,18]

HLA Gene
Complex Class
II and Class III

Chromosome 6

HLA-DRB1*04:05 and TNF*1 (−308) allele is associated with
resistance to enteric fever whereas HLA-DRB1*0301/6/8 and

HLA-DQB1*0201-3 allele are associated with susceptibility to
enteric fever.

TNFA*2 (−308) is associated with the outcome of Salmonella
typhoidal species infection.

[19–21]

Gene Variants that Do Not Affect the Enteric Fever Outcomes

TLR5 Chromosome 1 TLR5 variants do not have a significant effect on the
susceptibility or severity of enteric fever. [22,23]

NRAMP1 Chromosome 2 NRAMP1 polymorphisms are not associated with acquiring
enteric fever. [24]

a The studies were conducted at the endemic regions of the countries/continent (such as Malaysia, Vietnam, Africa, India, Indonesia and
Netherlands) for each polymorphism.
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2. Host Genetic Variants
2.1. Toll-Like Receptor 4: Initiates the First Line of Defense

It is well known that Toll-like receptors (TLRs) are used by many innate immune
cells to recognise the microbes upon binding to its pathogen-associated molecular patterns
(PAMPs), such as components of microbial membranes, cell walls, proteins and oligonu-
cleotides. This interaction complex may lead to the activation of innate immune cells in
promoting the production of pro-inflammatory mediators and inducing an appropriate
expression of receptor molecules, such as costimulatory molecules, cytokine or chemokine
receptors and integrin molecules. Altogether, the activation of TLRs in innate immunity is
also one of the crucial steps to initiate the subsequent adaptive immune response which
has been elaborately reviewed by others [25–31]. In short, the activated innate immune
cells, particularly dendritic cells (DCs) secrete an array of cytokines which include the
interleukin-6 (IL-6), that allows effector T cells to subdue the suppressive effect of regula-
tory T cells. Collectively, these mechanisms mediate the activation of T helper (TH)-cell
immunity and induces the maturation of B-cells which are responsible for the clearance of
bacteria [32–35]. In the case of TLR4 activation, upon lipopolysaccharide (LPS) binding, it
bestows the early mounting of nonspecific immune response to infections. For S. Typhi,
the TLR4 not only recognises the LPS molecules, but also the porin expressed on the outer
membranes of the bacterial cell wall. Cervantes-Barragán et al. found that S. Typhi OmpC
and OmpF porins were important to provide signalling via TLR4, to activate the innate im-
mune cells and B cells in enhancing the S. Typhi porins-specific antibodies production [36].
The more detailed description about the immune response after the infection by S. Typhi
or other species of Salmonella may be referred through reviews elsewhere [35,37–39].

Thus, it is not surprising that polymorphisms in TLR4 might cause predisposition to
susceptible infection by S. Typhi. Several other studies have reported that mutation in TLR4
gene or absence of this gene increases the susceptibility of S. Thyphimurium in mice, which
mimics human typhoid infection [13,31,40–46]. Poltorak et al. and Hue et al. identified that
the TLR4 gene mutation causes defective TLR4 signalling [29,44], which might result in a
lack of inflammatory cytokine production and decrease in the shaping of an adaptive im-
mune response [47]. TLR4 Asp299Gly is a missense mutation that causes the substitution of
the aspartic acid residue with glycine at amino acid 299 in the fourth exon of TLR4, whereas
TLR4 Thr399Ile is a mutation that occurs by the substitution of a non-conserved threonine
residue with isoleucine at amino acid 399 [30,31,48]. Polymorphisms at these amino acids
alter the PAMPs-binding site of the extracellular domain of the TLR4 receptor and en-
hance the susceptibility to enteric fever [13,30,31]. Arbour et al. found that the individual
with both TLR4 Asp299Gly and TLR4 Thr399Ile polymorphisms would be hyporespon-
sive when challenged with LPS and was less efficient in eliciting distinct innate immune
responses [31]. The polymorphic variant of TLR4 also results in an increased suscepti-
bility to other microbial infections, such as Toxoplasma gondii, Cytomegalovirus, Neisseria
meningitides, Mycobacterium leprae and other intracellular pathogens [14,49,50]. However,
further discussion about this TLR4 polymorphism association with non-Salmonella infec-
tious diseases is not within the scope of this review. We suspect that the polymorphisms
in TLR4 might result in intracellular killing mechanisms to be affected. To the extent of
our knowledge, intracellular TLR4 signalling is able to increase the release of nitric oxide
within the phagocytes [45,51], and hence mutant TLR4 alleles may result as ineffective in
bactericidal activity on intracellular S. Typhi by nitric oxide.

In a study performed on a Malay population in Malaysia, the significantly higher
frequency of the mutant G (299 Gly) allele and mutant allele T (399 Ile) in susceptible
individuals, as compared to that in the healthy controls, showed an association between
these mutant alleles with typhoid susceptibility. The genotype frequency of TLR4 Thr399Ile
heterozygous variant was approximately two-fold higher than in healthy controls. On the
other hand, the mutant G allele at the Asp299 locus was approximately three times higher
in the typhoid susceptible group than in the control subjects [13]. Bhuvanendran et al.,
reported that the prevalence of TLR4 Asp299Gly and Thr399Ile polymorphisms was 8.9%
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and 7.2%, respectively, in the typhoid susceptible population, which compares to 1.8%
and 3.6% in the corresponding normal population. The co-segregation of these alleles was
observed in 2% of normal controls and 3.6% in typhoid susceptible individuals. However,
another study demonstrated that monocytes from Asp299Gly heterozygotes did not influ-
ence the ability of monocytes in LPS recognition, where the activation of TLR4 downstream
signalling still occurs [52]. This finding is in contrast with the data obtained from different
research groups as discussed above. For example, Arbour and colleagues reported that
airway epithelial cells obtained from individuals heterozygous for the TLR4 mutations did
not respond to LPS stimulation [31]. This highlights the complexity of the TLR4 system in
different cells and tissues. The detailed mechanisms and evidence on different immunolog-
ical aspects of the TLR4 system at distinct cell types are poorly understood. Furthermore,
differences in immune responses have not been evaluated with other TLR4 ligands, such
as purified porin.

Other than in a Malay population, there were 13 TLR4 polymorphisms reported in a
study done among Caucasian and Dutch populations [53,54]. TLR4 Asp299Gly mutations
are common variants with a frequency of >10% in the Caucasian population and as high as
21.5% in Ghanaian Africans [55,56]. TLR4 Asp299Gly and TLR4 Thr399Ile polymorphisms
commonly co-segregate as well as inherit together in European whites but not in African
population [57–59]. The lack of co-segregation for Asp299Gly and Thr399Ile alleles in the
African population could be one of the reasons for the higher incidence and mortality
rates of enteric fever. This is because a study had indicated that the presence of the TLR4
Asp299Gly allele alone is associated with an increased severity of Gram-negative bacterial
infection [46].

Despite the common functional TLR4 mutants (Asp299Gly and Thr399Ile) found in
Malaysia, Europe and Africa, it came as a complete surprise that both these alleles were
reported to be absent or present at a low frequency in the Vietnamese population, especially
TLR4 Asp299Gly [31,44]. In contrast, DNA sequencing studies performed on a Vietnamese
population observed that the exonic polymorphisms actually related to the mutations
in the N-terminal leucine-rich repeat (LRR) region within extracellular domain of TLR4,
when compared to reference sequences (NCBI accession number AF 177765) [44]. These
mutations in the LRR region, particularly TLR4 Ser73Arg, showed significant association
with enteric fever because it could disturb the phosphorylation of TLR4, thus altering the
downstream signalling of an inflammatory mediator activation. However, the question of
whether the TLR4 Ser73Arg could be a main SPN effect on typhoid susceptibility if this
study repeated in large sample size is still not known yet.

Collectively, the data obtained from molecular genetic studies indicated that the
presence of rare missense mutations in the TLR4 gene, particularly those that influence
the extracellular domain of TLR4, may affect the immune response to enteric fever; and
the polymorphism may also be different according to the varying ethnic backgrounds.
However, it is currently unknown whether there is any influence on the new functional
TLR4 mutants on the host response to S. Typhi infection. To date, there have not been many
studies on TLR4 polymorphisms in a larger geographic range for the S. Typhi infected
patients that would give rise to clinical diversity. Other than TLR4, TLR2 polymorphism
and its relationship with typhoid fever has also been studied. Only one such study led by
Sivaji’s team at Tamil Nadu, India, in 2016, showed that the TLR2 polymorphism induced
susceptibility to typhoid infection, since it was found in 10% (2/20) of typhoid patients.
This TLR2 acts as a receptor that recognises LPS and may also recognise lipoproteins in
order to trigger a strong immune response.

2.2. Toll-Like Receptor 5: Recognises Bacterial Flagellin

TLR5 is believed to have the ability to recognise the flagellin of S. Typhi and thereby
stimulate an immune response similarly to in TLR4 activation, which had been evidenced
via animal studies [26,33,60,61]. The availability of functional TLR5 is needed to play
an important role against flagellated bacterial infection [62,63]. For example, various
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polymorphisms in the TLR5 gene by introducing a premature stop codon (TLR5392STOP)
within the PAMPs binding domain are correlated to different degrees of interleukin 6 (IL-6)
production, which may affect innate and adaptive immune responses [64,65]. It has been
reported that single nucleotide polymorphisms (SNPs) in TLR5392STOP are associated with
Legionnaires’ disease caused by Legionella pneumophila [64]. However, this would not be
the same story for enteric fever. In recent years, experiments have been carried out to
investigate the relationship between the host susceptibility to enteric fever and the loss of
TLR5 or its polymorphism TLR5 on chromosome 1. Surprisingly, most of their findings
showed discrepancies from the study focused on TLR4 polymorphisms as discussed above.
They showed that the variation in the TLR5 gene did not affect individual susceptibility
to typhoid fever [22,66]. For instance, Senthilkumar et al. reported that the TLR5392STOP

polymorphism did not show any association with clinical manifestations in Indian patients
with typhoid fever and asymptomatic typhoid carriers. Before that, Dunstan et al. had
already analysed the stop codon polymorphism of TLR5 in patients with enteric fever
compared to healthy Vietnamese individuals (565 patients; 281 controls) for the samples
collected between 1995 and 2002 [22,23,66]. Similarly, this study also did not find any
significant difference between both studied groups. Therefore, it could be postulated that
a mutation at the PAMPs domain binding site of TLR5 (individuals with the TLR5 stop
codon) might have no correlation with susceptibility to enteric fever progression.

2.3. Natural Resistance-Associated Macrophage Protein 1: Kills Intracellular Pathogens

Natural resistance-associated macrophage protein 1 (NRAMP1) is a transmembrane
protein found in the endosomes and lysosomes of monocytes and macrophages, which are
encoded by the NRAMP1 gene (also called as SLC11A1). This plays an important role in ex-
hibiting its antimicrobial activity and is also involved in iron homeostasis for macrophages
to enable macrophage functions properly [67]. Variations in NRAMP1 gene at chromosome
2 is therefore expected to cause a broad range of susceptibility to infection [1,68,69]. In-
terestingly, a recent study by Cunrath et al. unravelled that NRAMP1 could decrease the
growth of nontyphoidal Salmonella by limiting the magnesium availability for Salmonella as
shown in their vivo assay [70]. Nevertheless, polymorphisms within the NRAMP1 gene
are not expressed in correlation with typhoid fever. According to Dunstan et al., there
were no allelic associations that were identified among the NRAMP1 alleles and typhoid
fever susceptibility [24]. Therefore, none of the homozygotes and heterozygotes of the
NRAMP1 variants are at increased risk of typhoid fever. However, some studies showed
that NRAMP1 polymorphisms may be associated with infectious diseases such as tuber-
culosis (TB), leprosy, rheumatoid arthritis and Crohn’s disease [68,69,71,72]. According
to Medapati et al., 3′-UTR, INT4, D543N and 5′-(GT)n polymorphisms of NRAMP1 were
significantly associated with TB among west Africans [73]. Another study conducted
by Brochado et al. reported the 274C/T polymorphism in exon 3 and the 469 + 14G/C
polymorphism in intron 4 of the NRAMP1 gene which were found to be associated with
susceptibility to leprosy [74].

2.4. VAC14: Acts as Core Subunit of Lipid Kinase in Signalling the Type I IFNs Production

VAC14 is a phosphoinositide-regulating protein which activates PIKfyve kinase ac-
tivity by forming a regulatory complex with PIKfyve and the gene that encodes VAC14
is located on chromosome 16 [75,76]. PIKfyve, a class III lipid kinase, is crucial in TLR-
induced type I IFN production. Although the polymorphisms of TLR5 and NRAMP1 do
not show impact on enteric fever susceptibility, S. Typhi clearance is currently reported to
be influenced by VAC14 variations [16]. One of the more serious SNPs of the VAC14 gene is
an allele of rs8060947, which is strongly associated with susceptibility to S. Typhi invasion
and decreased VAC14 expression in Vietnamese individuals [16]. There is another study
which demonstrated that the variation in VAC14 for Kenyan children could also be readily
associated with the increased risk of bloodstream infection from Escherichia coli, Acinetobac-
ter spp., nontyphoidal Salmonella as well as Gram-positive Streptococcus pneumoniae [77,78].
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A genome-wide association study (GWAS) complemented with high-throughput human
in vitro susceptibility testing (Hi-HOST) showed the mutations in the VAC14 gene and it
has been linked to an increase in plasma membrane cholesterol which in turn facilitates the
Salmonella Typhi docked firmly to the host cell [16]. There is plenty of literature showing
that plasma membrane cholesterol content is an essential factor for E. coli, S. pneumoniae
and toxins of Acinetobacter species to enter the host cells [79–81]. Therefore, the enhanced
expression of VAC14 could be responsible for its protection against S. Typhi and suggests
that rs8060947 could be a biomarker for enteric fever disease risk prediction.

As mentioned above, VAC14 is also one of the essential protein subunits for PIKfyve
in signalling the type I IFNs production. Therefore, the impact of VAC14 allele of the variant
rs8060947 might interrupt the cells in producing type I IFNs which can either be beneficial
or otherwise to the host defence system. However, polymorphisms of VAC14 in relationship
with type I IFNs production is yet to be investigated for the S. Typhi infection models [82].
In general, type I IFNs comprise IFN-α and IFN-β, in which are both important in antiviral
response; but with abnormal upregulation, may lead to the progression of systemic lupus
erythematosus (SLE). Until recently, IFN-β has been reported as an important cytokine that
stimulates the prevention of the dissemination of S. Typhimurium and enhances Salmonella
clearance after the host has been treated with polyinosine–polycytidylic (poly I:C) [83].
A notable feature of the IFN-β is that it also acts as an inducer by enhancing the IFN-γ
production from CD4+ cells, especially the TH1 cells [38].

It is well known that IFN-γ plays a critical role in innate immunity as well as adaptive
immunity [84,85]. Previously, IFN-γ was detected in high titer in patients with S. Typhi
bacteremia as reported by Sheikh et al. [86]. Of note, Bhuiyan and colleagues also demon-
strated the increased IFN-γ response after stimulation with different typhoid antigens and
this was consistent with the findings of Sheikh et al. [38]. Other than that, the increased
IFN-γ response was observed in a subject from Nepal who was infected with S. Typhi and
S. Paratyphi A, while there was a report which showed that a child with a complete loss of
IFN- γR1 was killed by S. Typhi infection [87,88]. The role of IFN-γ has been evaluated
by Nairz, who showed that IFN-γ could reduce the iron uptake of macrophage through
transferrin receptor [89]. Hence, in other words, it increased the efflux of iron; and at
the same time, strengthened the ability of macrophages to kill intracellular pathogens
including Salmonella [90]. The bacteria cannot grow well in the absence of iron. The IFN-γ
also induces the expression of other proteins (such as NRAMP1 and lipocalin 2) that are
involved in the reduction in cytoplasmatic iron or other divalent cations in the infected
host cells [91,92]. Other roles of IFN-γ such as phagolysosomal maturation, oxidative and
nitrosative burst, autophagy and decreasing the levels of tryptophan to reduce the growth
of intracellular Salmonella can be observed in the literature [51,82,93–96].

2.5. Variable Number of Tandem Repeat (VNTR) in Interleukin 4: Generating Variation in
Gene Expression

Variable number of tandem repeats (VTNRs), also known as single-copy mini-satellites,
consists of consecutive occurrences of nucleotide sequences at a particular locus [97].
VNTRs sequences play a major role in regulating the transcription, translation and function
of proteins when located within the coding area of certain genes. This, in turn, could
lead to severe forms in different diseases [97]. The mode of how VTNRs induce changes
in IL-4 expression, which is located on chromosome 5, will be described in this section.
Generally, VNTR polymorphisms in IL-4 intron 3 often occur in four different ways; allele
with two repeats (2R), three repeats (3R), four repeats (4R) and rarely with one repeat
(1R) [15]. Therefore, these mutations seem to be associated with susceptibility to and/or
progression towards enteric fever upon S. Typhi or S. Paratyphi infections [98]. In fact,
there are not many studies on the association of VNTR IL-4 polymorphisms with other
infectious diseases. We only acknowledge that some VNTR IL-4 polymorphisms could
affect the host susceptibility to brucellosis which was caused by intracellular Brucella
melitensis [99]. As far as we know, any VNTR polymorphism at IL-4 intron 3 is also
associated with other immunological diseases, such as rheumatoid arthritis, immune
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thrombocytopenic purpura, systemic lupus erythematosus, multiple sclerosis and knee
osteoarthritis [98,100,101]. This is because IL-4 is one of the major cytokines responsible
for both innate and adaptive immunity which influences various cell types. It has been
demonstrated that the polymorphism of 3R2R in IL-4 most likely results in the reduction in
protection against S. Typhi and S. Paratyphi, conferring a higher risk in the development
of enteric fever [15]. In contrast, the polymorphism of 3R3R, 3R1R, and 2R2R does not
contribute to any susceptibility towards enteric fever [15]. It was suggested that the IL-
4 VNTRs polymorphism might affect the transcriptional activity, including the higher
expression of IL-4, leading to a shift in the Th1/Th2 balance toward Th2 [15,101]. It is well
known that the protective immune response against S. Typhi is the maturation of Th1 cells,
apart from the B cells [38]. Immunisation studies with iron-regulated outer-membrane
proteins of S. Typhi has also shown that the protection against Salmonella infection was
initiated by the Th1 cells [102]. This is because the Th1 cells may drive macrophages to M1
polarisation [103,104]. It is well known that the activated M1 macrophages play a main
role in killing the intracellular pathogen [105]. Through this mechanism, individuals with
VNTR polymorphism in IL-4, especially, the 3R2R genotype, are more susceptible to S.
Typhi or S. Paratyphi infection.

2.6. PARK2/PACRG: Ubiquitination

PARK2/PACRG genes are located on chromosome 6. The PARK2 gene is responsi-
ble for encoding ‘parkin’, which plays a major role in ubiquitination [106]. The specific
function of PACRG gene is still unclear. Polyubiquitination by parkin for the targeted
protein is commonly needed to initiate the proteasome-mediated protein degradation
pathway [107]. Both ubiquitination and degradation might play important roles in many
biological functions, and the failure of this processes could ultimately lead to many human
diseases which are not limited to only non-infectious diseases. Studies have found an
association between this protein degradation pathway and the ability of Salmonella spp.
to invade the host cells [108,109]. For example, upon contact with the host cells, Rho
GTPases Cdc42 and Rac1 in the host cell are activated by Salmonella effectors encoded by
sopE and sptP during the entry process. In general, SopE resulted in extensive membrane
ruffling and the actin cytoskeletal network reorganisation of the host cell which is impor-
tant for bacterial uptake into host cell, while SptP restores the host cell architecture. The
SopE can be rapidly degraded while SptP is slowly degraded within the host cell via an
ubiquitin/proteasome-mediated degradation pathway. Therefore, any mutation in PARK2
that alters its ubiquitination ability will undoubtedly affect the half-life of SopE. Conse-
quently, this inhibits cellular recovery after bacterial infection, and results in persistent
membrane ruffling which allows the S. Typhi or S. Paratyphi to grow continually inside
the host cells as it easily enters the cells [110,111].

As aforementioned, parkin encoded by PARK2 was observed to play a role in ubiq-
uitination, while most importantly, this mechanism also modulates the host cell’s innate
immunity. Ubiquitination is an essential part in innate immunity by signalling the cells
for the proper secretion of various signalling mediators [112]. Up to now, it is believed
that parkin might act as a mediator for the production of two key pro-inflammatory cy-
tokines: IL-6 and monocyte chemoattractant protein 1 (MCP-1). In this, IL-6 contributes to
systemic inflammatory response or differentiate the activated B cells, and MCP-1 attracts
monocytes into the infected area. This has been proven by the downregulation of the
PARK2 gene expression in Schwann cells, monocyte-derived macrophages and THP-1
macrophages [113]. Moreover, it has also been shown that polyubiquitination contributes
to autophagic pathway by coating the intracellular pathogen with ubiquitin which enables
it be readily targeted for autophagy. Details regarding the autophagy in the host cell’s
innate immunity can be reviewed in other literatures [114–116]. Indeed, a few in vitro and
in vivo studies have been performed to elucidate the functional mechanism of the PARK2
gene in autophagic immunity against M. tuberculosis, S. Typhimurium and Streptococcus
pyogenes [117–119]. The expression of PARK2 was observed to recruit more ubiquitin
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and ubiquitin-binding autophagy adaptors to the bacteria, which resulted in the reduc-
tion in bacterial survival, whereby increasing the infected cell survival. Therefore, it is
not surprising that there might be an association between PARK2 alleles and innate im-
mune response. Notably, the polymorphisms of PARK2/PACRG genes were found to be
associated with susceptibility to infectious diseases including typhoid and paratyphoid
fever [12,106,120,121]. Additionally, different variants of PARK2/PACRG genes were also
reported in association with susceptibility to infection caused by M. leprae, for example,
SNP of rs1333955, rs10806768 and rs9355403.

In the last decade, a case-control study was conducted in the Jatinegara district of
Jakarta, Indonesia. This study examined the polymorphisms in PARK2/PACRG genes at the
shared 5′ regulatory region of PARK2 and PACRG. This was performed to study both the
environmental factors and genetic determinants towards the susceptibility to enteric fever.
Four SNPs (PARK2_e01(−2599), PARK2_e01(−697), rs1333955 and rs1040079) were used for
this study in evaluating the polymorphic variants of the PARK2/PACRG genes. This was
carried out in 116 enteric fever patients, with 337 as fever controls and 332 as community
controls. The findings showed genetic variations at this targeted gene region, which might
be correlated with the individual susceptibility to enteric fever. By combining the results
of Hardy–Weinberg equilibrium of each SNPs and association study, only one SNP (allele
T of PARK2_e01(−2599)) among the 4 SNPs analysed was found to be significantly—but
weakly—associated with enteric fever (OR: 1·51; CI: 1·02–2·23, p = 0.03). Thus, the mutation
in PARK2/PACRG genes, especially the variant PARK2_e01(−2599) has been suggested as
one of the risk factors in the development of enteric fever and leading to the prolonged
half-life of Salmonella effectors protein [12].

2.7. Cystic Fibrosis Transmembrane Conductance Regulator: Secretion Channel and Pili Receptor

The CFTR gene found on human chromosome 7 encodes the cystic fibrosis transmem-
brane conductance regulator (up to 1480 amino acids) which functions as a protein channel
throughout various types of glandular cells for the secretion of enzymes, sweat, mucus,
saliva and tears [122]. Mutations in this gene can result in a lethal genetic disorder known
as cystic fibrosis [123–125].

Interestingly, CFTR protein also functions as a receptor for type IVB pili of Salmonella
Typhi in order to adhere to the intestinal mucosa cells which facilitates the bacterial
translocation process into the intestinal submucosa [126]. Afterward, S. Typhi might induce
more intestinal epithelial cells to express its CFTR protein and this could be an essential
step for the development of typhoid fever [127]. An in vitro study using isogenic cells has
demonstrated that the mutant with phenylalanine deleted at residue 508 (∆508 or F508del
mutation) is less susceptible to S. Typhi infection as compared to cells expressing wild-type
CFTR [126]. Therefore, F508del mutation is believed to render a selective advantage against
S. Typhi or S. Paratyphi infection to the host [17]. Another study using an animal model has
demonstrated that the homozygous F508del mice are immune to the S. Typhi translocation
into their gastrointestinal submucosa, thereby protected from enteric fever [126]. However,
the distribution of F508del mutation in the human populations is uneven throughout the
world, and it is uncommon to observe the F508del genotypes in Asian populations. The
other form of CFTR mutation could be found to provide a selective advantage against
S. Typhi infections.

In years past, CFTR intragenic polymorphic microsatellites analysis indicated that
IVS8CA alleles 181 (CA16) and 183 (CA17) on intron 8 of the CFTR gene were significantly
associated with resistance to enteric fever and van de Vosse et al. also identified that both
IVS8CA genotypes of 181/181 and 181/183 have a protective effect for typhoid fever in a
case-control study in Indonesia [17]. In an attempt to identify the contribution of functional
mutated CFTR protein to protection against enteric fever, the same research team conducted
a study in the Jatinegara district of east Jakarta (Indonesia), by analysing the blood samples
positive for enteric fever and blood specimens from healthy control subjects [18]. As
expected, the sequence variations in the CFTR gene of the Indonesian population were
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identified and the distribution of alleles and genotypes of typical polymorphisms were
detected between the control subjects and enteric fever patients. However, interestingly,
these DNA sequence polymorphisms showed no correlation between the IVS8CA repeat
genotypes and susceptibility to enteric fever. In contrast, they revealed that IVS8 TG repeat
genotypes are associated with protection against enteric fever, especially individuals who
possess one of the CFTR variations or more than one CFTR variations (such as TGn repeat
genotype TG11TG12, 2562T > G genotype TG, Q1352H mutation, the alleles of IVS8 TG13
or TG15 and the allele of IVS8 T5) might be more resistant to S. Typhi or S. Paratyphi than
other groups in the population [18].

2.8. MHC Class II and Class III: Antigen Presentation and Other Innate Immunity Responses

Over the last decade, the major-histocompatibility-complex (MHC) polymorphism
has been recognised as a factor determining the various infectious disease susceptibility.
MHC molecules are the glycoproteins on the cell surface of eukaryotic cells that play a
crucial role in the immune system, autoimmunity and reproductive success [128,129]. The
genes that encode this MHC molecule are located within the human leukocyte antigen
(HLA) gene complex region either as class I or class II at chromosome 6. Another gene
complex that can be found between them is HLA class III which consists of genes encoding
tumour necrosis factor (TNF)-α, lymphotoxin (LT)-α and other gene products which do
not play the same role as MHC glycoproteins [130]. Variation in HLA regions might result
in a different degree of resistance or susceptibility to infectious diseases as discussed
elsewhere [131–134]. In 2001, the polymorphism at HLA class II and class III regions
have been extensively investigated to correlate with typhoid fever in the Vietnamese
population [19]. According to Dunstan et al., the presences of both TNF*1 (−308) and
HLA-DRB1*04 alleles in an individual might result in protection from typhoid fever. After a
few years, Dunstan et al., also reconfirmed that variants of the HLA-DRB1 gene are a main
key for individual resistance to typhoid fever [20]. The application of imputation-based
fine-mapping across the extended HLA region provided a confident datum to show that
HLA-DRB1*04:05 allele as a protective factor against typhoid fever with its genotyped single
nucleotide polymorphism (SNP), rs7765379. However, the alleles of HLA-DRB1*0301/6/8,
HLA-DQB1*0201-3 and TNFA*2 (−308) have been reported to be associated with increased
susceptibility to typhoid fever [132,133]. On the other hand, a study had demonstrated that
individuals with the allele of HLA-DRB1*12021 were found to be protected from the severe
outcomes of enteric fever [135]. The severity of infection was also affected by the mutation
at the region of HLA class III, especially the TNFA gene. According to Elahi et al., guanine
is substituted by adenosine in the synthesis of TNFA*2 (−308) in TNF-α polymorphism.
Thus, the production of TNF-α is stimulated or markedly increased directly due to the
presence of TNFA*2 (−308) allele. Consequently, some unwanted immune responses,
which include shock, elevated temperature and sleepiness, could be induced by bacterial
endotoxin, interleukin-1 and interleukin-6 when the titre of circulating TNF-α is extremely
high for the individual with TNFA*2 (−308) polymorphism [136]. Therefore, the TNFA*2
(−308) allele is mostly thought to be associated with the severity of enteric fever instead of
susceptibility. Furthermore, in contrast, a study in Vietnam, and a case-control study from
Indonesia conducted by Ali and colleagues clearly indicated that there was no association
of susceptibility to enteric fever and TNFA polymorphisms, particularly TNFA (−308) [21].
We could speculate that the severity of Salmonella typhoidal species infection might vary
significantly between individuals based on TNFA and HLA-DRB1 polymorphisms.

3. Limitations
3.1. Samples Size and Population

In this review, many gene polymorphisms have indicated a significant association
among the susceptibility to, resistance to and the severity of enteric fever. However, the
source of information for this review was mostly from the genome-wide profiles of genetic
and gene expression studies having small sample sizes, which precludes the inclusion of
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multiple populations. This could lead to false-positive or false-negative results that might
have hidden true associations due to a lack of statistical power. Foremost, the presence
of low-frequency and rare alleles in small populations may miss inferences of genetic
association for enteric fever. In other words, some DNA polymorphisms associated with
enteric fever could exist but are unlikely to be statistically significant when the study is
small in size. Thus, the large sample size should be included in order to confirm the level
of significance. However, a large sample size does not always hold in practice for certain
phenomena, whereby low enteric fever incidences are found in some countries and certain
specimens are not readily obtainable. With a lack of diversity in the human population
included in the association study and having insufficient reference sequences for the
diverse population could also result in the incorrect imputation of genetic polymorphisms
in correlation with enteric fever susceptibility or severity. It is well known that allelic
variation in gene association with infectious diseases progression could be differently
demonstrated in multiple populations. For example, different ethnicities will have unique
polymorphisms conferring the development of infectious diseases as observed in malaria
and tuberculosis. In addition, the environmental factor also influences the population
genetic background. As a result, the individuals within the same geographic region
from the same ancestry are less genetically different from one another compared to those
who originated from a different geographic region. Hence, some false results regarding
polymorphism association with enteric fever might occur due to this mixture of ethnicity
and environmental factors. Therefore, precautionary steps should be taken during the data
interpretation. In addition, some of the genetic variants correlating with susceptibility or
resistance to S. Typhi infection as mentioned in this review have not been independently
replicated in large studies across different populations.

3.2. Other Biological Specimens

Another important variable in the studies that causes a drawback is the limited types
of biological samples obtainable, and the lack of an accompanying database of causative
S. Typhi or S. Paratyphi variants when studying the human genetic polymorphisms in
association with enteric fever. Most of the previous studies have used blood samples
as these are an easily accessible biological sample, whereas a few of them utilised cell
lines such as cervical cancer cells and intestinal mucosal cells for the investigation of
gene mutations associated with Salmonella typhoidal species infection. In the expression
quantitative trait loci (eQTL) analysis, it was indicated that gene expression variances
at certain alleles have been shown over distinct tissues and cell types as reflected in the
context of infection. Therefore, the statistical method is an indispensable need to unravel
the signature genes expression from a rare cell subtype if the whole blood sample is
used in the study. There are a few tools which can be applied to address this issue, for
example the ARIEL test, cohort allelic sums test, sequence kernel association test, as well
as FUN-LDA algorithm along with an R package. However, there still is a risk where the
gene polymorphisms of the small proportion of cell subtype would not be detected upon
the analysis of the whole blood sample. Furthermore, the Salmonella typhoidal species
infection can also interact with microfold cells, liver macrophages (Kupffer cells), as well
as other mononuclear phagocytic cells in lymphoid follicles and spleen, in addition to cells
in the whole blood or peripheral blood samples. We should acknowledge that diverse
cell types would behave differently even though they have an identical genome. The
epigenetic polymorphisms provide an example of this phenomenon, where epigenetic
modification through DNA methylation or histone methylation, ubiquitination acetylation
or phosphorylation might be found in the host cells in response to Salmonella typhoidal
species infection. In addition, the loci with alleles that differ at a single base have been
discovered for macrophage and dendritic cells in several studies. Because of that, any cells
which interact with Salmonella typhoidal species could be one of the factors in determining
susceptibility to enteric fever for each individual. On the other hand, the variants of
S. Typhi were reported elsewhere to possess variation in its virulence. The severity of the
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S. Typhi invasive infection might be implied by the strength of the virulence. It is a fact that
the genetic susceptibility or resistance to infectious disease is also determined by pathogen
genotypes. In this way, depending on the analysis of diverse biological specimens and the
Salmonella typhoidal genotypes involved, more information about the genetic and allelic
association in enteric fever could be revealed. However, some of the specimens are not
easily accessible.

3.3. Other Approaches

Several gene polymorphisms reported here are less involved in the integration of other
-omics technologies. There were only a few GWASs which have been integrated with eQTL
analysis to identify the promising gene polymorphism that may underlie susceptibility to
Salmonella typhoidal species infection. The rationale for integrating the -omics approaches
is to complement each other, so that the specific gene polymorphisms associated with
the susceptibility to or severity of enteric fever could be confidently pinpointed and
provide fundamental biological information under the holistic picture. As aforementioned,
epigenetic modification could be found in the genome of the host cells, and the non-
coding RNA molecules are also involved in regulating the gene expression for host cell
immune response upon infection with pathogen. Therefore, the current approach must
integrate with epigenomic techniques such as TET-associated bisulfite sequencing (TAB-
seq), oxidative bisulfite sequencing (oxBS-seq), nanopore sequencing, and chromatin
immunoprecipitation followed by sequencing (ChIP–seq) to produce the epigenomic maps
of the DNA methylation and modified histone landscapes. The current studies are also
still lacking in the single-cell RNA sequencing (scRNA-seq) analysis of their samples.
The power of this approach is that it offers an ability to investigate the mRNAs as well
as non-coding RNA molecules in single cells. As described above, different cells will
behave differently, probably due to its unique transcriptome, and thus we foresee the
application of scRNA-seq in understanding the single-cell SNPs correlated with enteric
fever populations. In addition, molecular typing and antibiogram profiling for S. Typhi
and S. Paratyphi could be included in the study. The data might then be useful, particularly,
as personalised and precision medicine have garnered much attention lately. Furthermore,
this will allow us to have accurate diagnosis and personalised treatment. As illustrated
in Figure 2, the integration of the characteristics of Salmonella and ‘-omics’ datasets along
with immunoprofiling from respective patients have allowed the exploitation of available
biological information into useful and informative outcomes after the pre-processed data
are fed into a machine learning model. Such knowledge may reduce the risk of a severe
outcome stratification of individuals exposed to Salmonella typhoidal species and allows
to more precisely pinpoint the management and needs of individual groups of patients,
thereby reducing enteric fever-related complications. As a key example of VAC14 allele of
the variant rs8060947 patient, antibiotics such as ciprofloxacin might be prescribed for the
clearance of non-multidrug resistant Salmonella sp. together with IFN-γ.
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4. Conclusions and Perspectives

Collectively, this review provided an appraisal of the contributory role of each poly-
morphism in the susceptibility to and severity of enteric fever. In addition, the role of some
aforementioned genes has then been further discussed in the context of biological function
which were interconnected with other biomolecular components. Gene polymorphisms
associated with the severity of Salmonella typhoidal species infection implies its influence
on immune response to typhoid vaccination. Therefore, the knowledge of allele variants
(such as TNF-α polymorphisms) which lead to unwanted immune response after a chal-
lenge with salmonella, may help to predict typhoid vaccine effectiveness and facilitate
the development of individual vaccination strategies. For example, the identification of
TNFA*2 (-308) polymorphism as a biomarker could be used to predict individuals who
might be at risk for typhoid vaccine-related adverse reactions. On the other hand, the
polymorphisms of VAC14 or TLR4 as markers may help decide if there is the need to
include immunostimulatory cytokines as adjuvants, especially IFN-γ and IL-6 during the
vaccination. Combined together, these might increase the effectiveness of typhoid vaccines
for those patients with the polymorphisms of VAC14 or TLR4. However, the comprehen-
sive view of the enteric fever progression remains to be elucidated. This should include
the integration of different -omics data such as vaccinomics, proteomics and metabolomics
other than genetic data and transcriptome. Due to the availability of cloud computing,
large -omics data could be simultaneously analysed and large-scale collaboration could be
established across different fields. There also is a need to include relevant cell types for
the -omics data analysis as well. The genetic and virulence background of the causative
S. Typhi or S. Paratyphi for infected patients must be considered when studying the human
genetic polymorphisms association with infection. This would be great benefit for inter-
preting the association between human gene variants with the susceptibility or severity of
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enteric fever. Nonetheless, there might be a lot of challenges during multiple data analysis,
interpretation and validation. Despite these challenges, the integrative analysis will lead to
the better understanding of the severity of enteric fever from the perspectives of human
genetic polymorphisms or bacterial variants. The further studies may also provide insights
into human genetic susceptibility to Salmonella typhoidal species infection which could be
translated into new tools for risk prediction of S. Typhi or S. Paratyphi infection and might
have an impact on the development of novel therapeutic drugs.
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