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The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective
anti-tumor immunity.Therefore, it is important to fully recognize any inherent factors which
may influence DC function under experimental conditions, especially in laboratory mice
since they are used so heavily to model immune responses.The goals of this report are to
1) briefly summarize previous work revealing how DCs respond to various forms of phys-
iological stress and 2) to present new data highlighting the potential for chronic mild cold
stress inherent to mice housed at the required standard ambient temperatures to influ-
ence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our
group shows that CD8+ T cell function is significantly altered by chronic mild cold stress
and since DC function is crucial for CD8+ T cell activation, we wondered whether housing
temperature may also be influencing DC function. Here we report that there are several
significant phenotypical and functional differences among DC subsets in naïve and tumor-
bearing mice housed at either standard housing temperature or at a thermoneutral ambient
temperature, which significantly reduces the extent of cold stress.The new data presented
here strongly suggests that, by itself, the housing temperature of mice can affect funda-
mental properties and functions of DCs.Therefore differences in basal levels of stress due
to housing should be taken into consideration when interpreting experiments designed to
evaluate the impact of additional variables, including other stressors on DC function.
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INTRODUCTION
Dendritic cells (DCs) play a vital role in the generation of effective
and long-term immune protection from cancer and other diseases.
DCs are antigen presenting cells, which educate tumor-specific T
cells and provide signals for T cell proliferation and expansion
(1, 2). Importantly, DCs bridge the innate and adaptive immune
responses so their presence and functional capacity affect both
arms of anti-tumor immunity (3, 4). Properties of DCs that are
investigated to determine their stage of development include sur-
face expression of major histocompatibility complex (MHC) class
II molecules and co-stimulatory CD86 as well as cytokine pro-
duction. Additionally, DCs are also being used clinically in cancer
vaccines (5, 6) and this approach has rendered promising results;
however, considerable room for improvement remains (7–9).

In addition to anti-tumor immunity and immune surveillance,
DCs also participate in tolerizing the immune system to tumor
antigens, which can render the anti-tumor immune response inef-
fective (10). Cross-presentation, a process that DCs undergo in
order to activate CD8+ T cells, plays a major role in generating
anti-tumor immunity (11), however; when DCs of tumor-bearing
hosts undergo this vital process, T cell tolerance often results (5).
Recently, it has been reported that DCs able to up-regulate MHC
II (signal 1) in the absence of CD86 (signal 2) become tolero-
genic DCs (12, 13). Although considerable progress has been made

toward understanding how DCs become tolerogenic (10, 14, 15),
the precise mechanisms by which tumors modulate cross-priming
to suppress the CD8+ T cell response remain largely unknown.
This incomplete understanding of the role DCs play in immune
evasion remains a vital question as DCs are being actively investi-
gated in mouse models to help reveal their role in the anti-tumor
immune response. Therefore, it is important to fully recognize
the impact of any inherent physiological factors in mice, which
can alter DC function and to understand the impact these factors
could have on experimental models of antigen presentation and
immunotherapy.

We have been interested in the effects of various types of bio-
logically relevant stress on the functional properties of immune
cells (16) and have previously reported on the impact of mild
(fever-range) heat stress on DC function (17, 18). It is impor-
tant to note that there are a wide variety of stressors including
physical, environmental, and emotional forms of stress that can
alter homeostasis in cells or in the whole organism (19). Two
major hormonally driven mechanisms are believed to mediate
the influence of stress on the immune response. Glucocorticoids
are released following stress leading to increased glucose metab-
olism necessary to provide extra energy to combat that stressor.
Additionally, catecholamines, such as norepinephrine (NE), are
released from sympathetic nerves and bind receptors on immune
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cells thereby impacting the immune response. Both of these hor-
monal mediators can influence immune processes including cell
proliferation, migration, and cytokine production (20). Here, we
first briefly summarize some of the previous work done to inves-
tigate the more specific effects of stress on DC function. While
some studies show that acute, short term, stress may enhance DC
function in vitro, resulting in a better ability to prime naïve T
cells, other studies, particularly those which utilize the addition of
exogenous stress hormones, reveal that stress impedes DC func-
tion in vivo. We outline reports suggesting a vital role of the stress
hormone NE on DC function in vivo but not in vitro. We also sum-
marize literature showing beneficial effects of a mild thermal stress
on DC function both in vitro and in vivo. Finally, we report that
when mice used to investigate DC function are housed at standard
ambient temperatures they experience an underappreciated form
of chronic physiological cold stress that alters the baseline used
to understand the impact of experimental stressors or other treat-
ments on DC function. We suggest that chronic mild cold stress,
similar to other forms of stress inherent to mouse caging condi-
tions including stress caused by lack of exercise and overeating
(21), should be taken into consideration when assessing baseline
properties of DCs in naïve or tumor-bearing mice.

STRESS CAN TARGET DC FUNCTION
Dendritic cells have already been the subject of many studies inves-
tigating the impact of stress on immune function. Acute stressors,
lasting minutes to hours, have been shown to augment DC func-
tion as seen by enhanced maturation and increased trafficking
from skin to lymph nodes (22, 23). Prior to immunization, spe-
cific kinds of acute stress, such as psychological stress induced by
placing mice in restraints or on a slow moving shaker works as
an adjuvant leading to increased DC migration from the skin to
the lymph nodes and also improves antigen-specific T cell prim-
ing (24, 25). The impact of such acute psychological stress on
DCs has also been investigated in humans. Social stress in human
participants (induced by public speaking) generates a decrease in
skin DCs, which the authors suggest indicates that these cells have
trafficked to the lymph node (26) where they are available to inter-
act with T cells and initiate immune activation. However, while
some stressors may elicit beneficial effects on DC function and
general immunity, chronic or excessive exposure to stress is gener-
ally thought to negatively influence immune function (27). Many
studies, particularly those using exogenous administration of glu-
cocorticoids, stress hormones which signal to turn down immune
activity, suggest inhibitory effects of stress on DC function (28,
29). Both oral (30) and topical (31) application of glucocorticoids
leads to a marked reduction in DC numbers. Many studies specifi-
cally investigate the impact of dexamethasone (DEX), a commonly
prescribed glucocorticoid, on DC development and function. It
has been shown that DEX greatly reduces epidermal DC numbers
in mice (32, 33) as well as in the spleen, lymph node, and liver
(34, 35). DEX treatment also limits DC migration to the draining
lymph node (36). Additionally, DEX is correlated with reduced
expression of surface maturation markers on DCs including CD86
and MHC class II (35, 37, 38). In vitro, DEX treatment reduces the
ability of bone marrow (39, 40) and skin derived DCs (32, 41)
as well as a murine epidermal DC line (42) to stimulate T cells.

DEX also impairs antigen presentation by DCs reducing T cell
activation in vivo (35). It has also been shown that following DEX
treatment, DCs are unable to fully mature and these immature
DCs induced a subpopulation of immunosuppressive regulatory
T (Treg) cells (39). Additionally a reduction of interleukin (IL)-1β

and IL-12p70 secretion from DCs has been shown following DEX
treatment (37). Compared to control cells, glucocorticoid-treated
DCs produce less granulocyte macrophage colony-stimulating fac-
tor (GM-CSF), tumor necrosis factor-alpha (TNF-α) and IL-1α,
all cytokines required for survival and maturation, and are less apt
to initiate antigen presentation and migration (43). Further, treat-
ment with other glucocorticoids (hydrocortisone or clobetasol)
led to DC apoptosis identified by DNA damage, caspase-3 activity,
and CD95 up-regulation (43).

Catecholamines, such as NE and epinephrine, also play an
important role in mediating the relationship between stress and
DCs. Manipulating the function of stress induced catecholamines
has been linked to altered DC function (44). For example, when
healthy patients were administered a β-adrenergic agonist (oral
salbutamol),which mimics NE signaling, IL-12 production by DCs
was decreased, inhibiting Th1 development (45). Another study
found that NE similarly suppressed IL-12 production in a dose-
dependent manner and that this was reversible with a glucocorti-
coid agonist, RU 486 (46). As Th1 and Th2 responses are mutually
inhibitory, this leads to an increasingly prominent Th2 environ-
ment, which is defined by various immunosuppressive properties
including inhibition of macrophage activation, T cell prolifera-
tion, and pro-inflammatory cytokine production (47). The effects
of catecholamines may be most important to DCs in the early
stages of antigen processing (44). Short term exposure of bone
marrow-derived DCs to NE or epinephrine at the early stage of
stimulation inhibits IL-12 and favors IL-10 production as well as a
reduced ability to stimulate T cells (48). Skin DCs are also sensitive
to catecholamine signaling. In vitro, treatment with NE, epineph-
rine, or β-adrenergic agonist (isoproterenol) hindered skin DCs
from presenting antigen and this effect was reversed by treatment
with ICI 118,551, a β2-adrenergic antagonist (49). DC migration is
NE dependent as demonstrated by decreased DC migration in vivo
following NE depletion with 6-hydroxydopamine treatment (25).
Additionally, NE has been shown to enhance phosphatidylinositol
3-kinase mediated antigen uptake by DCs (50). Taken together,
these reports suggest that although some types of stress may ben-
efit DCs under certain circumstances, it is generally accepted that
chronic stress dampens many aspects of DC function.

EFFECTS OF MILD HYPERTHERMIA ON DCs
Environmental conditions have long been manipulated to cre-
ate physiologically relevant stress. Thermal stress, induced when
environmental conditions are either too hot or too cold to allow
basal metabolism to maintain normal body temperature, is a
classically studied stress in mice and humans (51). While con-
ditions of severe heat or cold can be quite damaging to immu-
nity, mild heat stress has been studied for its positive effects
since ancient times because of its potential relationship to fever
(52–55). In response to infection, body temperature increases to
varying extents among different animals, but in all cases, homeo-
static functions shift toward producing and conserving heat (52).
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Generally, temperature elevation during fever ranges between 1
and 5°C above normal body temperatures (56–58). The physio-
logical effects of fever have been mimicked experimentally by using
mild hyperthermia treatments in mice, where body temperature
is temporarily raised to fever-range (16). Many studies, including
those from our own group, have examined how mild hyperthermia
affects DCs and their function (17, 59–64).

Dendritic cell maturation is determined by the up-regulation
of surface markers including MHC class II and CD86 (65, 66).
Mild thermal stress increases levels of both of these markers on
DCs (59). In vitro heating accelerates DC maturation as demon-
strated by up-regulation of both CD86 and MHC class II (60, 61,
67). In vivo studies have also shown that up-regulation of both
MHC class II and CD86 molecules on the surface of DCs from
mice treated with whole body hyperthermia (61, 68). Addition-
ally, hyperthermia in combination with other treatments including
ionizing radiation (69), magnetic nanoparticles (70, 71), radiofre-
quency ablation (72) and vaccination (73, 74) results in enhanced
DC function.

Dendritic cell migration to the lymph node is an important
function required for efficient antigen presentation and our group
and others have shown that mild heat stress can promote migra-
tory activity of DCs. DCs in ear skin subjected to thermal stress
in culture show increased migration compared to control sam-
ples (75), while increased DC migration into the lymph nodes of
thermally stressed mice has also been demonstrated (61).

Heat treatment results in improved stimulatory function
of DCs (59, 63, 67). Heated OVA-loaded DCs induce greater
interferon-gamma (IFN-γ) responses from SINFEKL-specific T
cells (64). Heat-treated SINFEKL pulsed DCs elicit greater antigen-
specific CD8+ T cell proliferation than unheated DCs (67). Heat
also enhances the ability of DCs to cross-present to CD8+ T (76)
and activates CD4+ T cells leading to antigen dependent mem-
ory (77). Additionally, mild hyperthermia alters the production
of cytokines and chemokines from DCs, which are important for
ensuring effective T cell priming. Mild heating increases DC pro-
duction of inflammatory cytokines including IFN-γ, IL-17, IL-10,
IL-12, and TNF-α (60, 61, 63). Taken together, the growing body
of literature describing the effects of mild heat stress on DCs indi-
cates that mild heat stress enhances DC function by promoting
maturation and migration and increasing inflammatory cytokine
production to assist with mediation of T cell priming to elicit T
cell proliferation.

EFFECTS OF COLD STRESS ON DCs
We have summarized some of the previously reported complex
effects of stress on DCs, including the general beneficial effects of
temporary mild hyperthermia. We wondered whether the base-
line function of DCs in these types of studies is influenced by
ambient temperature used to house mice in research facilities. Lab-
oratory mice are under a mild, yet constant cold stress as they are
group housed at a cool (sub-thermoneutral) temperature (78–80).
Additionally, since laboratory mice are provided with unlimited
access to food and housed in small cages, which do not allow
adequate room to exercise, they also experience additional meta-
bolic stresses (21). Although these stressors have been identified
as being important in other fields of research, such as obesity

(81), they are not generally accounted for in the field of cancer
immunology.

The fact that mice are mildly, yet chronically, cold stressed is not
determined simply by body temperature measurements. In fact,
while body temperature appears normal (~37°C) for mice housed
at standard ambient temperatures required for research facilities
(55), thermal preference studies over many decades have shown
that mice prefer a warmer housing temperature near thermoneu-
trality (57, 78, 82, 83) indicating the degree of cold stress prompted
by such housing. The degree to which underlying chronic cold
stress has impacted the interpretation of the effects of other types
of stress on immune function remains to be determined. Impor-
tantly, NE is released in response to stressors, including cold stress
and, as detailed above, has a very significant influence on DC
function.

Recent literature has detailed the impact of chronic cold stress
in mice. The relationship between cold stress and metabolism has
been investigated and alterations in insulin production (84), NE
secretion (85), function of uncoupling proteins (81), and energy
expenditure (86, 87) have been identified. Developmental and
behavioral effects including differences in limb and tail length
(88), cardiac tone and heart rate (89), and sleep (90) have also
been observed when comparing cold stressed to non-stressed mice.
Most recently, our group has shown that mild cold stress associated
with standard housing conditions negatively impacts CD8+ T cell
dependent anti-tumor immune responses (55). To test whether
DC function is influenced by chronic cold stress, we studied the
impact of sub-thermoneutral housing temperatures on DC phe-
notype and function comparing the results to that seen from mice
housed at thermoneutrality. Importantly, core body temperature
in both groups of mice is the same, as shown previously (55).

We examined splenocytes from tumor-free and 4T1 tumor-
bearing mice housed at standard (ST; 22°C) and thermoneutral
(TT; 30°C) temperature. Because at 30°C the metabolic cold stress
is greatly reduced, these mice represent un-cold stressed animals
whereas their counterparts at 22°C are under chronic cold stress.
We found that the number of splenocytes is similar in naïve
(tumor-free) mice at ST and TT (Figure 1A). However, inoc-
ulation of mice with tumors induces an increase in splenocyte
number at both ambient temperatures, however, this increase is
larger at ST than at TT (Figure 1A). Confirming previous data
(55), tumors grew slower in mice at TT compared to ST; tumor
weight (Figure 1B) and volume (Figure 1C) were reduced in TT
mice compared to ST mice. We also examined body weight for
mice housed at each ambient temperature and found that prior to
tumor inoculation mice at ST gained weight faster than mice at
TT (Figure 1D). As tumors began to grow, mice at ST continued
to gain even more weight than mice at TT (Figure 1D). These data
show that animals housed at TT are physically smaller than those
mice used as standard control models, while 4T1 tumor growth is
accelerated in ST control mice.

We previously reported that spleens from mice at TT have fewer
CD11b+GR-1+ myeloid derived suppressor cells (MDSCs) (55),
so we wondered whether pan myeloid cells (CD11b+) were sim-
ilarly impacted by temperature (Figure 2A). We first determined
that tumor-bearing mice at ST have significantly more CD11b+

myeloid cells as well as a higher percentage of CD11b+ cells
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FIGURE 1 | Splenocytes, tumor size, and body weight are increased
when mice are maintained at ST compared toTT. 4T1 tumor-bearing
BALB/c mice and age-matched controls were maintained at ST or TT.
(A) Splenocytes obtained from control and tumor-bearing mice were
counted and (B) tumor weight and (C) volume were measured. Data

presented as mean±SEM; n=5/group; Student’s t -test; *p < 0.05,
**p < 0.01. (D) Change in weight from the start of the experiment was
measured. - - - - indicates day of tumor inoculation. Data presented as
mean±SEM; n= 5/group; two-way ANOVA with Bonferroni post-tests;
*p < 0.05, **p < 0.01, ***p < 0.001.

compared to tumor-bearing mice at TT (Figure 2B). The number
and proportion of splenic myeloid cells in tumor-free animals was
unchanged (Figure 2C). These results suggest that the effects of
4T1 tumor growth on the accumulation of myeloid cells in the
spleen may be overestimated in mice housed under standard con-
ditions since the cellular increase is also dependent on ambient
temperature.

It has been reported that DC numbers in cancer patients are
reduced compared to healthy controls (91); thus, we next investi-
gated numbers of splenic DCs in tumor-free and tumor-bearing
mice maintained at ST and TT based on CD11c expression. Total
DCs were identified as CD11c+ cells. We found that absolute
numbers of splenic DCs (Figure 3A) increased following tumor
implantation in mice at ST but not at TT (Figure 3B). However,
the proportion of DCs decreased at both ST and TT following
tumor inoculation (Figure 3C). We next examined plasmacytoid
DCs (B220+CD11c+) (Figure 3D) which, following stimulation,
are major interferon producers (92). We discovered that absolute
numbers of plasmacytoid DCs increase following tumor inocula-
tion in mice at ST but not at TT (Figure 3E), whereas percentages
significantly decrease following tumor inoculation in mice at TT
but not at ST (Figure 3F). When we investigated non-plasmacytoid
DCs (B220−CD11c+) (Figure 3D) (93–95), we again found that
absolute numbers increase following tumor inoculation in mice at
ST but not at TT (Figure 3G) but that percentages of these cells
significantly decrease following tumor inoculation in mice at TT

only (Figure 3H). These data demonstrate that the number of DCs
found in the spleens of laboratory mice do not show the expected
increase in numbers after tumor inoculation when mice are main-
tained at thermoneutrality. Thus, ambient temperature should be
considered when interpreting data regarding immune cell subsets
in the spleens from mice used for cancer immunology studies.

We further dissected the non-plasmacytoid cell population by
quantifying a subset of immature (MHCII−CD86−) and two sub-
sets of mature (CD11c+MHCII+CD86,CD11c+MHCII+CD86−)
cells among CD8α+ and CD4+ non-plasmacytoid DCs
(Figure 4A). CD8α+ DCs are major producers of IL-12, able
to initiate a robust inflammatory response as well as efficiently
presenting antigen to CD8+ T cells (96–99). We found that
both absolute numbers (Figure 4B) and percentages (Figure 4C)
of immature CD8α+ non-plasmacytoid DCs are increased to
a greater extent following tumor inoculation in mice at ST
compared to TT. Absolute numbers of CD86− mature CD8α+

non-plasmacytoid DCs increased following tumor inoculation in
mice at ST but not TT (Figure 4D). The percentage of CD86−

mature CD8α+ non-plasmacytoid DCs decreased at ST but not
TT following tumor inoculation (Figure 4E). CD86+ mature
CD8α+ non-plasmacytoid DCs were unchanged in absolute num-
ber (Figure 4F) but their proportion in the spleen was modestly,
yet significantly decreased at both ST and TT following tumor
inoculation (Figure 4G). The increased numbers of immature and
CD86− mature CD8α non-plasmacytoid DCs present in mice at

Frontiers in Immunology | Molecular Innate Immunity February 2014 | Volume 5 | Article 23 | 4

http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Kokolus et al. Cold stress and DCs

FIGURE 2 | Splenic myeloid cells are increased in tumor-bearing mice
maintained at ST compared toTT. Single cell suspensions of splenocytes
from 4T1 tumor-bearing mice and age-matched controls were stained for
CD11b and analyzed by flow cytometry. (A) Representative dot plots from
each group show the gating strategy used to select CD11b+ cells. Percentage

of cells are shown above their respective gate. (B) The absolute number of
CD11b+ cells calculated from the total number of splenocytes counted in each
individual mouse. (C) The percentage of CD11b+ cells of the total population
of live cells as determined by DAPI staining. Data presented as mean±SEM;
n=5/group; Student’s t -test; *p < 0.05, **p < 0.01, ***p < 0.001.

ST suggests that many of the DCs from these mice may not be able
to become activated.

Further, we investigated the same subsets of immature and
mature CD4+ non-plasmacytoid DCs (Figure 4A). We also found
a major increase in absolute numbers (Figure 4H) and percent-
age (Figure 4I) of immature CD4+ non-plasmacytoid DCs in
mice at ST but not TT following tumor inoculation. At ST, there
was an increase in absolute number (Figure 4J) and a decrease
in the percentage (Figure 4K) of CD86− mature CD4+ non-
plasmacytoid DCs in response to tumor, but no significant changes
were observed at TT. Again we saw no changes in absolute num-
bers of CD86+ mature CD4+ non-plasmacytoid DCs at either
temperature (Figure 4L). We did see a reduced percentage of
CD86+ mature CD4+ non-plasmacytoid DCs at ST but not at TT
following tumor inoculation (Figure 4M). Interestingly, despite
the increased number of non-plasmacytoid DCs in mice at ST
(Figure 3G), there are no differences in the number of mature
DCs (Figures 4F,L) suggesting that although DC numbers appear
to be increased in cold stressed mice, many of these cells are unable
to become activated in the presence of a 4T1 tumor.

Due to the increased overall numbers but relatively low number
of mature splenic DCs seen in mice at ST, we asked whether DCs
from mice at ST were impaired at antigen presentation and their
ability to activate naïve T cells. To answer this question, we per-
formed mixed lymphocyte reactions using irradiated splenocytes
from ST and TT tumor-free and tumor-bearing mice as stimulator
cells and T cells from naïve ST mice as the responders. Responder
and stimulator cells were co-cultured at a 2:1 ratio for 72 h and then
T cell proliferation was measured by 3H-thymidine incorporation.
As expected, we found that stimulator cells from tumor-free mice
at both ST and TT were able to induce significant T cell prolifera-
tion (Figure 5; tumor-free). However, stimulator cells from tumor-
free mice at ST elicited significantly more T cell proliferation than
those from mice at TT (Figure 5; tumor-free,+T cells). Interest-
ingly, when we looked at tumor-bearing mice, we found that stim-
ulator cells from mice at TT were able to initiate T cell proliferation
while those from mice at ST were not (Figure 5; tumor-bearing).

These results suggest that the activated DCs found in 4T1 tumor-
bearing mice at TT are more efficient antigen presenting cells than
DCs from tumor-bearing ST mice as demonstrated by the supe-
rior ability of TT splenocytes to elicit T cell proliferation. As the
in vitro portion of this work was all done at 37°C, these findings
also suggest that cold stress can alter DC function over a prolonged
period of time after DCs are removed from the mouse.

DISCUSSION
The relationships between stress and DC function are complex
and depend upon the type and duration of stress, and whether
the stressor is applied in vivo or in vitro. The type of DC (i.e., iso-
lated from the bone marrow or skin) or stage of DC maturation
when a stressor is encountered may also influence the impact of a
particular stress (39). Additionally, DC function is dependent on
the timing of antigen exposure and/or the type of antigen used,
so these factors may also affect the observed relationship between
stress and DC function (44).

In addition to summarizing some of the existing data on the
effects of various stressors and stress hormones on DC function,
we show here that the numbers and percentages of different sub-
sets of DCs can be dependent upon housing temperature. Since
sub-thermoneutral housing temperature is the standard condi-
tion under which mice are housed throughout the world, our
data suggests that only using mice which are mildly cold stressed
could be limiting our full understanding of the role of DCs in
immune responses, including their role in anti-tumor immunity.
Specifically, we have shown that tumor-bearing mice at ST have
significantly more DCs compared to tumor-bearing mice at TT.
However, the increased DCs seen at ST primarily display an imma-
ture phenotype (MHC II−CD86−) or they up-regulate MHC II
but not CD86 rendering them unable to activate CD8+ T cells.
The induction of signal 1 in the absence of signal 2 has been
shown to lead to immune tolerance (12, 13). Thus, our studies
suggest the potential for greater tolerance in mice at ST versus TT
as splenocytes from ST mice were unable to activate T cell prolif-
eration likely contributing to faster tumor growth. We observed
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FIGURE 3 |Tumor-bearing mice maintained at ST have an increased
frequency of DCs compared to those atTT. Single cell suspensions of
splenocytes from 4T1 tumor-bearing mice and age-matched controls were
stained for CD11c and (D–H) B220 and analyzed by flow cytometry.
(A) Representative dot plots from each group show the gating strategy used
to select CD11c+ cells. Percentage of cells are shown above their respective
gate. (B) The absolute number of CD11c+ cells calculated from the total
number of splenocytes counted in each individual mouse. (C) The percentage
of CD11c+ cells of the total population of live cells as determined by DAPI
staining. (D) Representative dot plots from each group show the gating

strategy used to select B220+CD11c+ and B220−CD11c+ cells. Percentage of
cells are shown above their respective gate. (E) The absolute number of
B220+CD11c+ cells calculated from the total number of splenocytes counted
in each individual mouse. (F) The percentage of B220+CD11c+ cells of the
total population of live cells as determined by DAPI staining. (G) The absolute
number of B220−CD11c+ cells calculated from the total number of
splenocytes counted in each individual mouse. (H) The percentage of
B220−CD11c+ cells of the total population of live cells as determined by DAPI
staining. Data presented as mean±SEM; n=5/group; Student’s t -test;
*p < 0.05, ***p < 0.001, ****p < 0.0001.

enhanced T cell stimulatory ability by splenocytes from tumor-
free mice at ST versus TT; however, when tumors were present the
ability of ST splenocytes to activate T cells was diminished. While
these data presented here is limited by the fact that we used whole
splenocytes instead of isolated DCs to quantify the ability of cells
from mice at ST and TT to activate T cells, the results presented
strongly suggest that DCs from mice under mild cold stress are less
able to undergo maturation prime T cells and elicit efficient T cell
responses than mice maintained under thermoneutral conditions.

One possible explanation for the differences in tumor growth
in mice from ST and TT is that DCs from mice at ST are more
suppressive than those from mice at TT. It has been shown that a
subset of murine DCs become particularly suppressive through-
out tumor growth (100–103). Our previous observations suggest
that when a tumor is present, the impact of cold stress is greatly
exacerbated (55). This idea is further supported by these findings

showing that T cell stimulation is greatly suppressed by splenocytes
from mice at ST, but not TT.

The data presented here, along with other recent publications
(81, 84–90) strongly suggest that the effects of chronic mild cold
stress are important to consider when working with mouse models.
Moreover, when studying the impact of experimentally induced
stress, such as social or psychological stress, on DCs and other
immune cells, it may be important to recognize that baseline data
could be significantly influenced by inherent cold stress induced
by standard housing conditions for laboratory mice.

FUTURE RESEARCH QUESTIONS
New questions emerge from the data presented here with regard to
the effects of stress on DCs. Most importantly, what is the mech-
anism by which mild cold stress influences DC function? NE is
involved in activation of thermogenesis in order to increase heat
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FIGURE 4 |Tumor-bearing mice maintained at ST have proportionally
more non-plasmacytoid DCs than those atTT, but these DCs primarily
display an immature phenotype. Single cell suspensions of splenocytes
from 4T1 tumor-bearing mice and age-matched controls were stained for
CD8α, CD4, CD11c, MHCII, CD86 and analyzed by flow cytometry.
(B–G) Quantification of data describing CD8α+ non-plasmacytoid DCs.
(A) Representative dot plots from each group show the gating strategy
used to select CD4 and CD8α cells from the non-plasmacytoid parent
population shown in Figure 3D. Percentage of cells are shown above their
respective gate. (B) The absolute number of CD8α+MHC II−CD86−

B220−CD11c+ cells calculated from the total number of non-plasmacytoid
cells. (C) The percentage of MHC II−CD86− cells of the total population of
CD8α+ non-plasmacytoid cells. (D) The absolute number of CD8α+MHC
II+CD86−B220−CD11c+ cells calculated from the total number of
non-plasmacytoid cells. (E) The percentage of MHC II+CD86− cells of the
total population of CD8α+ non-plasmacytoid cells. (F) The absolute number

of CD8α+MHC II+CD86+B220−CD11c+ cells calculated from the total
number of non-plasmacytoid cells. (G) The percentage of MHC II+CD86+

cells of the total population of CD8α+ non-plasmacytoid cells.
(H–M) Quantification of data describing CD4+ non-plasmacytoid DCs.
(H) The absolute number of CD4+MHC II−CD86−B220−CD11c+ cells
calculated from the total number of non-plasmacytoid cells. (I) The
percentage of MHC II−CD86− cells of the total population of CD4+

non-plasmacytoid cells. (J) The absolute number of CD4+MHC
II+CD86−B220−CD11c+ cells calculated from the total number of
non-plasmacytoid cells. (K) The percentage of MHC II+CD86− cells of the
total population of CD4+ non-plasmacytoid cells. (L) The absolute number
of CD4+MHC II+CD86+B220−CD11c+ cells calculated from the total
number of non-plasmacytoid cells. (M) The percentage of MHC II+CD86+

cells of the total population of CD4+ non-plasmacytoid cells. Data
presented as mean±SEM; n=5/group; Student’s t -test; *p < 0.05,
**p < 0.01, ***p < 0.001.

production to maintain normal body temperature (51, 85) and
has already been strongly implicated for its roles in immunosup-
pression (20) and in regulating the polarization of macrophages
(85). These observations strongly point to NE being a key player
in the underlying relationship between cold stress and impaired
DC function (55).

As mentioned earlier, cytokines affected by glucocorticoid
treatment (43) or mild heating (60, 61, 63) include TNF-α,
IFN-γ, IL-1α, IL-17, IL-10, and IL-12. How is the expression
of these cytokines impacted by pre-existing mild cold stress in
mice? In order to fully understand the impact of other types
of stress in mouse models, it will be imperative to understand
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FIGURE 5 |T cells are activated better by splenocytes from mice atTT
than ST. Total splenocytes from tumor-free and tumor-bearing BALB/c mice
and lymphocytes from C57BL/6 mice were cultured 1:2. T cell proliferation
was measured by 3H-thymidine incorporation. Data presented as
mean±SEM; n=5/group; Student’s t -test; *p < 0.05, **p < 0.01,
***p < 0.001.

if cytokine production by DCs differs when mice are housed at
sub-thermoneutrality compared to TT.

Here, we looked at DC expansion in response to inoculation
with the 4T1 murine mammary carcinoma cell line. Do DCs in the
presence of other tumor models respond similarly to cold stress?
Similar analysis of mice at ST and TT using hematological tumors
and other widely used cell lines representing different types of solid
tumors, as well as human derived cell lines and patient xenograft
models in immunosuppressed mice may elicit different findings
regarding tumor growth control and DC function. Further, use
of carcinogen-induced or transgenic mouse tumor models will all
be important to establish the overall impact of cold stress on DC
function.

We have shown that eliminating cold stress influences baseline
properties of DCs in tumor-free and tumor-bearing mice. There-
fore, a major question which should be addressed is how this
may be influencing data interpretation of experiments in which
additional stressors (such as social isolation) are imposed on pre-
existing cold stress. It is also possible that previously demonstrated
beneficial effects of mild hyperthermia on DC function could be
related to the fact that control (non-heated) mice are actually cold
stressed. In other words, applications of mild heat could have a
similar effect on DCs as thermoneutural housing in which body
temperature is not elevated. It is clear that the study of stress
responses in mice should be done at more than one ambient tem-
perature in order to understand the impact of this variable on
data interpretation. Conducting experiments under thermoneu-
tral conditions as well as sub-thermoneutral housing would help
to eliminate the impact of pre-existent cold stress while studying
the effects of other stressors on DC function.

In summary, since a complete understanding of DCs is crit-
ical for development of effective immunotherapies for cancer

patients, it is essential to recognize that the function of these crit-
ical cells may be dependent upon ambient housing temperature
and other factors which influence physiologic or metabolic stress
experienced by laboratory mice used in preclinical studies.

MATERIALS AND METHODS
MICE
Female,8–10-week-old BALB/cAnNcr (BALB/c) and C57BL/6NCr
(C57BL/6) mice were purchased from the NCI (Bethesda, MD,
USA). Prior to experimentation, BALB/c mice were acclimated to
ST or TT for 2 weeks.

MOUSE HOUSING AT ST AND TT
Mice were maintained in specific pathogen-free facilities and were
treated in accordance with the guidelines established by the IACUC
at Roswell Park Cancer Institute (Buffalo, NY, USA). Cages con-
taining Enrich-o’Cobs bedding (The Andersons, Inc., Maumee,
OH, USA) housed mice 5 to a cage. Cages were held in Preci-
sion® Refrigerated Plant-Growth Incubators (Thermo Scientific;
Waltham, MA, USA) maintained at 22 or 30°C. Humidity was con-
trolled using a Top Fin® Air Pump AIR 1000 with Top Fin® airline
tubing.

CELL LINE
4T1 murine mammary carcinoma cells were purchased from
ATCC (Manassas, VA, USA). Cells were cultured in RPMI
1640 (Gibco, Grand Island, NY, USA) with 10% FBS, 10 mM
l-glutamine, and 100 µg/ml penicillin/streptomycin. When cells
reached ~90% confluence in culture, 1× 104 4T1 cells were
injected orthotopically into the fourth mammary fat pad of
BALB/c, mice.

FLOW CYTOMETRY
Cells were collected from the spleen, tumor, and draining lymph
node. Tissues were excised, washed, and filtered into a single
cell suspension. Cells were counted with a hemocytometer and
Trypan Blue solution. Cells were stained with Brilliant Violet
711™ anti-mouse CD4 (clone RM4-5; BioLegend; San Diego,
CA, USA), Brilliant Violet 650™ anti-mouse CD3 (clone 17A2;
BioLegend), Pacific Blue™ anti-mouse CDllb (clone M1/70;
BioLegend), APC anti-mouse CD11c (clone N418; BioLegend),
FITC anti-mouse CD86 (clone GL1; BD Pharmingen; San Jose,
CA, USA), PerCp/Cy5.5 anti-mouse MHC (clone M5/114.15.2;
BioLegend). Live cells were determined by staining cells with
4′,6-diamidino-2-phenylindole (DAPI; Life Technologies; Grand
Island, NY, USA) and defined as DAPI-negative. Samples were ana-
lyzed on an LSRII flow cytometer (BD Pharmingen) and analyzed
using FlowJo (Ashland, OR, USA) version 10.0.6.

MIXED LYMPHOCYTE REACTIONS
Spleens were excised from tumor-free and tumor-bearing BALB/c
mice, and lymph nodes were excised from C57BL/6 mice. BALB/c
splenocytes were irradiated at 30 Gy. BALB/c splenocytes (stim-
ulator cells) and C57BL/6 lymphocytes (responder cells) were
filtered, washed, and cultured at a ratio of one stimulator cell
to two responder cells in 200 µl RPMI (10% FBS, 100 mM
l-Glutamate, and 100 U/ml Penicillin–Streptomycin). After 72 h

Frontiers in Immunology | Molecular Innate Immunity February 2014 | Volume 5 | Article 23 | 8

http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Kokolus et al. Cold stress and DCs

1 µCi 3H-thymidine was added for 14–18 h. T cell proliferation
was determined by 3H-thymidine incorporation.

DATA ANALYSIS AND STATISTICS
All data are presented as mean± SEM All p values were deter-
mined using Student’s t -tests or two-way ANOVA with Bonfer-
roni post-tests. All statistical analysis was completed using Prism
software.
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