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Abstract: The realization of a deep-blue-emitting exciplex system is a herculean task in the field of
organic light-emitting diodes (OLEDs) on account of a large red-shifted and broadened exciplex
emission spectrum in comparison to those of the corresponding single compounds. Herein, 2,5,8-
tris(di(4-fluorophenyl)amine)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3FDPA) was designed as an
electron acceptor by integrating three bis(4-fluorophenyl)amine groups into a heptazine core, while
1,3-di(9H-carbazol-9-yl)benzene (mCP) possessing two electron-donating carbazole moieties was
chosen as the electron donor. Excitingly, the exciplex system of 8 wt% HAP-3FDPA:mCP exhibited
deep-blue emission and a high photoluminescence quantum yield of 53.2%. More importantly, an
OLED containing this exciplex system as an emitting layer showed deep-blue emission with Commis-
sion Internationale de l’Eclairage coordinates of (0.16, 0.12), a peak luminance of 15,148 cd m−2, and
a rather high maximum external quantum efficiency of 10.2% along with a low roll-off. This study
not only reports an efficient exciplex-based deep-blue emitter but also presents a feasible pathway to
construct highly efficient deep-blue OLEDs based on exciplex systems.

Keywords: exciplex; deep-blue; organic light-emitting diode; thermally activated delayed fluores-
cence; heptazine

1. Introduction

Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluo-
rescent (TADF) emitters have obtained considerable progress over the last decade [1–5].
As the third-generation organic light-emitting materials, TADF emitters possessing small
singlet-triplet energy splitting (∆EST) between the lowest excited singlet state (S1) and the
lowest excited triplet state (T1) can harvest both singlet and triplet excitons by efficient
up-conversion from T1 to S1 through a reverse intersystem crossing (RISC) process [6–8].
To realize a small ∆EST, effective separation of electron densities of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is in-
dispensable because the ∆EST is proportional to the exchange integrals between the wave
functions of the HOMO and LUMO [9]. To date, several molecular design strategies have
been proposed to achieve a small ∆EST, such as intramolecular π→π* or n→π* charge
transfer in a single molecule [10–15] and exciplex-based intermolecular charge transfer
between an electron-donating molecule and an electron-accepting molecule [16–20].

On the basis of the natural TADF characteristics, the development of exciplex-based
TADF emitters for OLEDs has attracted much attention in recent years. Formed between
different molecules, the HOMO and LUMO of an exciplex system are naturally located on
the electron-donating and electron-accepting molecules, respectively, resulting in almost
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complete separation and an extremely small ∆EST. Since the innovative work of TADF
characteristics of exciplexes in 2012 by Adachi et al. [16], a large number of exciplex-based
emitters have been developed, whereas a majority of them exhibit green, yellow, or red
emission because exciplex formation is usually accompanied by a large red-shift and a
broadened structure of the emission spectrum [20]. Accordingly, exciplex-based deep-
blue emitters are quite difficult to acquire and in urgent need of exciplex-based full-color
displays or white-light OLEDs.

In this study, we developed an efficient deep-blue-emitting exciplex system employing
2,5,8-tris(di(4-fluorophenyl)amine)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3FDPA), and
1,3-di(9H-carbazol-9-yl)benzene (mCP). HAP-3FDPA, which is composed of a heptazine
core and three bis(4-fluorophenyl)amine groups, was designed as an electron acceptor,
while mCP possessing two electron-donating carbazole moieties is a widely used host
material [21] and was chosen as an electron donor to form exciplex with HAP-3FDPA.
Herein, the heptazine core with a planar and rigid heterocyclic system of six C=N bonds
surrounding a central sp2-hybridised N-atom was chosen as an ideal strong electron-
accepting constituent [22–26]. Meanwhile, the three bis(4-fluorophenyl)amine groups were
introduced to maintain the electron-withdrawing ability and to increase the solubility of the
heptazine derivative. Excitingly, benefitting from the relatively rigid and planar molecular
skeletons and strong charge transfer characteristics between HAP-3FDPA and mCP, the
OLED incorporating an 8 wt% HAP-3FDPA:mCP exciplex system exhibited deep-blue
emission with Commission Internationale de l’Eclairage (CIE) coordinates of (0.16, 0.12)
and a rather high maximum external quantum efficiency (EQE) of 10.2% along with a fairly
low roll-off at high luminance.

2. Results and Discussion

The chemical structure and synthetic route of HAP-3FDPA are depicted in Scheme 1.
The target compound of HAP-3FDPA was synthesized by cyameluric chloride and bis(4-
fluorophenyl)amine. Thereinto, cyameluric chloride is the key intermediate and was
prepared according to the literature [22]. Noteworthily, there is a low yield of 29%
for HAP-3FDPA owing to the electron-withdrawing ability of fluorine atoms in bis(4-
fluorophenyl)amine. The target compound was characterized and confirmed via 1H NMR,
13C NMR spectroscopy, and a high-resolution mass spectrometer (HRMS).
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Scheme 1. Synthetic route of HAP-3FDPA.

To obtain insight into the electronic structure of HAP-3FDPA, quantum chemical
calculations were carried out. The characteristics of molecular configuration, frontier
orbitals, and the resulting HOMO and LUMO energy levels were obtained based on
density functional theory (DFT) calculation, while the electron transition and excited
energy levels of S1 and T1 were performed by time-dependent density functional theory
(TD-DFT) analysis. These results are important to the photophysical properties of HAP-
3FDPA and can also provide a theoretical basis for the design of OLED structures. As
depicted in Figures 1 and S1 (in Supplementary Materials), the optimized ground state
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structure revealed that HAP-3FDPA has relatively large dihedral angles of 56–59◦ between
the twisted bis(4-fluorophenyl)amine units and the planar heptazine core, together with
that, the HOMO and LUMO are mainly distributed over the bis(4-fluorophenyl)amine units
and the heptazine core, respectively. Furthermore, the obvious charge transfer character
and the small overlap between the HOMO and LUMO leads to a small ∆EST of 0.29 eV. The
calculated HOMO and LUMO levels for HAP-3FDPA are −5.90 and −1.64 eV, respectively.
Herein, the deep HOMO and shallow LUMO energy levels should be ascribed to the weak
electron-donating ability of bis(4-fluorophenyl)amine units and strong electron-accepting
ability of the heptazine core, respectively. Meanwhile, it should be noted that the natural
transition orbitals (NTOs) for S1 of HAP-3FDPA (HOMO−3 to LUMO) are deriving from
localized n→π* transitions involving lone-pair electrons of N heteroatoms and adjacent π
antibonding molecular orbitals (Figure S2), while the NTOs for T1 (HOMO to LUMO or
HOMO−1 to LUMO) have the more delocalized π→π* transition characters (Figure S3).
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Figure 1. The optimized molecular geometry of the ground state and frontier molecular orbital
distributions of HAP-3FDPA by theoretical calculations.

The HOMO energy level was measured by atmospheric ultraviolet photoelectron
spectroscopy. As depicted in Figure 2a and Table 1, the HOMO energy level of HAP-3FDPA
was determined to be −6.1 eV. As calculated from the HOMO level and the optical energy
gap (Eg = 3.2 eV, Figure 2b), the LUMO energy level was calculated to be −2.9 eV. The
ultraviolet-visible (UV) absorption and photoluminescence (PL) spectra of HAP-3FDPA in
a neat film are shown in Figure 2b. The intense absorption band with a maximal absorption
wavelength (λabs) of 268 nm can be assigned to π→π* electronic transition in view of the
π-conjugated molecular system. Meanwhile, HAP-3FDPA in the neat film displayed sky-
blue emission with an emission peak wavelength (λem) of 464 nm. The UV and PL spectra
of HAP-3FDPA in dilute toluene at a concentration of 1 × 10−4 mol L−1 are shown in
Figure 2c. Similar to that of HAP-3FDPA in a neat film, the strong absorption band centered
at 319 nm should be attributed to π→π* electronic transition. Interestingly, HAP-3FDPA
in toluene displayed green emission with λem = 533 nm, indicating that there was a large
molecular geometry variation of HAP-3FDPA in a toluene condition in comparison to that
in a neat film. Moreover, transient PL decay of HAP-3FDPA both in air-saturated and in
oxygen-free toluene was measured (Figure 2d). Apparently, only one prompt component
decay could be observed with the lifetime of prompt emission (τp) of 1.9 ns. Meanwhile,
a quite low PL quantum yield (PLQY) of 5.1% was recorded in both air-saturated and
oxygen-free toluene. Consequently, the radiative rate constant of fluorescence (kF) of HAP-
3FDPA was calculated to be 2.7× 107 s−1 according to the equation of kF = PLQY/τp. Thus,
the oxygen-independent transient PL decay and PLQY indicate the absence of delayed
fluorescence, which probably originated from the whole electron-withdrawing molecular
structure of HAP-3FDPA.
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Table 1. The photophysical properties of HAP-3FDPA and an 8 wt% HAP-3FDPA:mCP-doped film.

Compound HOMO/LUMO (eV) λabs (nm) λem (nm) τp (ns) τd (ns) PLQY FWHM (nm)

HAP-3FDPA −6.1/−2.9 359 a/319 b 464 a/533 b 1.9 b - 5.1% b 101 a/102 b

Doped film - 342 433 3.0 8.0, 86.1 53.2% 87
a Measured in a neat film; b measured in oxygen-free toluene.

To verify that HAP-3FDPA can be used as an electron acceptor in the exciplex system,
1,3-di(9H-carbazol-9-yl)benzene (mCP) possessing two electron-donating carbazole moi-
eties and a high T1 level is a popular host material and was chosen as the electron donor to
form exciplex with HAP-3FDPA [21]. Subsequently, an 8 wt% HAP-3FDPA:mCP-doped
film was fabricated and characterized, and the photophysical properties are exhibited in
Figure 3 and Table 1. Herein, the concentration of 8 wt% was chosen based on the opti-
mization of luminescence efficiencies at various concentrations (Table S1). Most strikingly,
the 8 wt% HAP-3FDPA:mCP-doped film showed deep-blue emission with λem = 433 nm
(Figure 3a), which is significantly blue-shifted compared to those in a neat film (464 nm)
and toluene (533 nm). Meanwhile, the structureless and smooth emission spectrum pre-
sented a narrow full width at half maximum (FWHM) of 87 nm in comparison with those
of HAP-3FDPA in a neat film (101 nm) and in diluted toluene (102 nm), which is beneficial
to the improvement of color purity for exciplex systems. As we know, there is usually
a red-shifted and broadened emission spectrum for exciplex systems compared to those
of corresponding single compounds [27–32]. Therefore, a large number of green- and
red-emitting exciplex systems have been developed, whereas deep-blue-emitting exciplex



Molecules 2021, 26, 5568 5 of 10

systems are quite difficult to realize [20]. Hence, the PL spectrum of the 8 wt% HAP-
3FDPA:mCP-doped film is remarkably different from the emission tendency of traditional
exciplex systems.
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To confirm the exciplex emission of the 8 wt% HAP-3FDPA:mCP-doped film, transient
PL decay of the doped film at 300 K was measured and is shown in Figures 3b and S4.
Obviously, the decay process can be divided into prompt and delayed components. To
better elucidate the exciplex emission, prompt and delayed emission spectra of the 8 wt%
HAP-3FDPA:mCP-doped film at both 300 and 5 K were characterized (Figure 3c,d). The
well-overlapped prompt and delayed emission spectra at 300 K manifest that all photons
are generated from the same excited state. Meanwhile, the considerably good overlap of
fluorescence and phosphorescence spectra at 5 K confirms that the doped film possesses
an extremely small ∆EST. Thus, the 8 wt% HAP-3FDPA:mCP-doped film can be consid-
ered as an exciplex system. Additionally, the strong prompt component with τp = 3.0 ns
should be assigned to exciplex-based fluorescence, while the weak delayed component
with two comparably short lifetimes (τd) of 8.0 and 86.1 ns can be attributed to the exciplex-
based delayed fluorescence. It is noteworthy that the 8 wt% HAP-3FDPA:mCP exciplex
system displayed a relatively high PLQY of 53.2%, which is much higher than that of
HAP-3FDPA in dilute toluene (5.1%), implying efficient radiative transition of singlet
excitons from S1 to the ground state. Furthermore, to elucidate the mechanism of exciplex
emission, as shown in Figure S5, the HOMO and LUMO levels of mCP were measured
to be −6.1 and −2.6 eV by atmospheric ultraviolet photoelectron spectroscopy and UV
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spectra, respectively. Obviously, the aforementioned deep-blue emission of the 8 wt%
HAP-3FDPA:mCP exciplex system should be attributed to the shallow LUMO (−2.9 eV)
of HAP-3FDPA and deep HOMO (−6.1 eV) of mCP, leading to a large energy gap of
3.2 eV for the exciplex formation [16]. Meanwhile, the narrow FWHM may stem from
the fairly rigid and planar geometries of HAP-3FDPA and mCP, which tend to result
in tight molecular packing and strong intermolecular interactions [18,33]. Additionally,
blend films of 8 wt% HAP-3FDPA:DPEPO (bis(2-(diphenylphosphino)phenyl) ether ox-
ide) and 8 wt% HAP-3FDPA:TCTA (4,4′,4”-tris(N-carbazolyl)triphenylamine) were fab-
ricated and compared with that of 8 wt% HAP-3FDPA:mCP-doped film. As shown in
Figures S6 and S7, no delayed component was observed in the transient PL decay of 8 wt%
HAP-3FDPA:DPEPO blend film, indicating the absence of exciplex emission due to the
electron-accepting character of the DPEPO molecule. Meanwhile, the PL spectrum of the
8 wt% HAP-3FDPA:TCTA blend film showed an apparent red-shift as compared to that
of the 8 wt% HAP-3FDPA:mCP-doped film, which should be ascribed to the shallower
HOMO of TCTA than that of mCP (Scheme 2).
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To evaluate EL performance of the 8 wt% HAP-3FDPA:mCP exciplex system, an OLED
device incorporating an emitting layer of the exciplex system was fabricated with a structure
of ITO (indium tin oxide)/α-NPD (N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,10-biphenyl-4,4′-
diamine) (30 nm)/TCTA (20 nm)/CzSi (9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-
carbazole) (10 nm)/ 8 wt% HAP-3FDPA:mCP (20 nm)/DPEPO (10 nm)/TPBI (1,3,5-tris(N-
phenylbenzimidazol-2-yl)benzene) (30 nm)/LiF (1 nm)/Al (100 nm). The energy diagram
and chemical molecular structures of organic compounds employed in the OLED device are
depicted in Scheme 2. The EL spectra of this device measured at 1, 10, 100 mA cm−2 are well-
overlapped with a maximum EL peak (λEL) of 437 nm and are similar to the PL spectrum of
the emitting layer (Figure 4a). Meanwhile, the photo energy of the exciplex was calculated
to be 3.2 eV from the onset of the EL spectrum (373 nm), which is in good agreement
with the energy difference between the LUMO of HAP-3FDPA and the HOMO of mCP
(Figure S5). More importantly, the OLED showed deep-blue emission with CIE coordinates
of (0.16, 0.12), a turn-on voltage (Von) of 4.0 V, a peak luminance (Lmax) of 15,148 cd m−2,
and a rather high maximum external quantum efficiency (EQE) of 10.2% without any light
out-coupling enhancement (Figure 4b–d and Table 2). Moreover, it is noteworthy that
there is a rather low-efficiency roll-off at high luminance for the exciplex-based OLED,
with 10.0%, 9.0%, 7.7%, and 6.7% at 100, 1000, 5000, and 10,000 cd m−2, respectively. The
excellent EL performance of the OLED employing an 8 wt% HAP-3FDPA:mCP exciplex
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system should be predominantly ascribed to efficient up-conversion of triplet excitons from
T1 to S1 through the TADF process under electrical excitation.
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Table 2. The OLED performance based on an 8 wt% HAP-3FDPA:mCP exciplex system.

Emitter Von (V) a λEL (nm) Lmax (cd m−2) EQE (%) b CIE (x, y)

8 wt% HAP-3FDPA:mCP 4.0 437 15,148 10.2/10.0/9.0/7.7/6.7 0.16, 0.12
a Turn-on voltage at 1 cd m−2, b the maximum EQE, EQEs at 100, 1000, 5000, and 10,000 cd m−2, respectively.

3. Materials and Methods
3.1. Synthesis of 2,5,8-Tris(di(4-fluorophenyl)amine)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3FDPA)

A flame-dried Schlenk tube with a magnetic stir bar was charged with mixture of
cyameluric chloride (1.09 mmol, 300 mg), bis(4-fluorophenyl)amine (17.7 mmol, 3.6 g)
and dry xylene (20 mL) under an N2 atmosphere. The resulting mixture was heated
at 180 ◦C for 24 h. After cooling to room temperature, the solvent was removed by
vacuum distillation. The residue was purified by column chromatography on silica gel and
recrystallized from ethyl acetate/petroleum ether mixtures to provide the desired product
as white solid (250 mg, 29%). 1H NMR (400 MHz, DMSO-d6): δ (ppm) = 7.28–7.34 (m, 1H),
7.17 (t, J = 8.8 Hz, 1H). 13C NMR (100 MHz, DMSO-d6): δ (ppm) = 164.38, 161.67, 159.23,



Molecules 2021, 26, 5568 8 of 10

155.81, 139.22, 130.02, 129.94, 116.22, 115.99. HRMS (ESI+): calcd. for C42H25F6N10 [M+H]+

783.2090, found 783.2092.

3.2. OLED Fabrication and Measurement

The OLED was fabricated by vacuum thermal evaporation under pressure lower
than 5 × 10−4 Pa. A 150 nm-thick indium-tin-oxide (ITO) precoated glass substrate was
used as the anode. Prior to the deposition of the organic layers and cathode, the substrate
was firstly cleaned with ultra-purified water, acetone, and isopropyl alcohol (IPA) in
sequence, then treated with UV-ozone for 15 min and finally transferred to a vacuum
thermal deposition system. The intersection of ITO and the metal electrodes gave an active
device area of 4 mm2. The OLED device was characterized under atmospheric conditions
without any encapsulation or light out-coupling enhancement. The EL spetrum, EQE, and
current density–voltage–luminance (J–V–L) characteristics of the OLED were recorded
with a semiconductor parameter analyzer (E5270, Agilent, Santa Clara, CA, USA) and an
optical power meter (1930C, Newport, Irvine, CA, USA). EL spectra were recorded using a
multi-channel spectrometer (SD2000, Ocean Optics, Dunedin, FL, USA).

4. Conclusions

In summary, we designed an efficient exciplex-based deep-blue emitter incorporating
2,5,8-tris(di(4-fluorophenyl)amine)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3FDPA) as the
electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene (mCP) as the electron donor. The
8 wt% HAP-3FDPA:mCP exciplex system exhibited deep-blue emission with λem = 433 nm
and a fairly small ∆EST, giving rise to efficient exciton up-conversion and a high PLQY of
53.2%. More importantly, an OLED containing this exciplex system as an emitting layer
showed deep-blue emission with CIE coordinates of (0.16, 0.12), a peak luminance (Lmax)
of 15148 cd m−2, and a rather high maximum external quantum efficiency (EQE) of 10.2%
along with a fairly low roll-off at high luminance. These findings are of fundamental
interest for the development of deep-blue OLEDs based on exciplex systems. Through
the elaborate molecular design of electron donors and acceptors, we believe that highly
efficient exciplex-based deep-blue OLEDs can be expected.

Supplementary Materials: Instrumentation; Quantum chemical calculations; Figure S1: Frontier
molecular orbital distributions and energy levels of the lowest excited singlet and triplet states
of HAP-3FDPA by theoretical calculations; Figure S2: The natural transition orbitals (197→201)
for the lowest excited singlet state (S1) of HAP-3FDPA by theoretical calculations; Figure S3: The
natural transition orbitals (199→201) and (200→201) for the lowest excited triplet state (T1) of
HAP-3FDPA by theoretical calculations; Figure S4: The transient PL decay image of 8 wt% HAP-
3FDPA:mCP-doped film in the time range of 2 µs; Figure S5: (a) The HOMO energy level of mCP
determined by atmospheric ultraviolet photoelectron spectroscopy. (b) The UV spectra of mCP
in a neat film. The optical energy gap of mCP was calculated to be 3.5 eV. Therefore, the LUMO
energy level of mCP could be calculated to be −2.6 eV; Figure S6: The transient PL decay of 8 wt%
HAP-3FDPA:DPEPO-doped film in the time range of 5 µs; Figure S7: The PL spectrum of 8 wt%
HAP-3FDPA:TCTA-doped film as compared to that of 8 wt% HAP-3FDPA:mCP; Figure S8: The
energy diagram of the 8 wt% HAP-3FDPA:mCP exciplex system; Figure S9: 1H NMR spectrum of
HAP-3FDPA in DMSO-d6; Figure S10: 13C NMR spectrum of HAP-3FDPA in DMSO-d6; Table S1:
The PLQYs of HAP-3FDPA:mCP doped films at various concentrations.
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