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A new approach fits multivariate genomic 
prediction models efficiently
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Abstract 

Background:  Fast, memory-efficient, and reliable algorithms for estimating genomic estimated breeding values 
(GEBV) for multiple traits and environments are needed to make timely decisions in breeding. Multivariate genomic 
prediction exploits genetic correlations between traits and environments to increase accuracy of GEBV compared to 
univariate methods. These genetic correlations are estimated simultaneously with GEBV, because they are specific to 
year, environment, and management. However, estimating genetic parameters is computationally demanding with 
restricted maximum likelihood (REML) and Bayesian samplers, and canonical transformations or orthogonalizations 
cannot be used for unbalanced experimental designs.

Methods:  We propose a multivariate randomized Gauss–Seidel algorithm for simultaneous estimation of model 
effects and genetic parameters. Two previously proposed methods for estimating genetic parameters were combined 
with a Gauss–Seidel (GS) solver, and were called Tilde-Hat-GS (THGS) and Pseudo-Expectation-GS (PEGS). Balanced 
and unbalanced experimental designs were simulated to compare runtime, bias and accuracy of GEBV, and bias and 
standard errors of estimates of heritabilities and genetic correlations of THGS, PEGS, and REML. Models with 10 to 400 
response variables, 1279 to 42,034 genetic markers, and 5990 to 1.85 million observations were fitted.

Results:  Runtime of PEGS and THGS was a fraction of REML. Accuracies of GEBV were slightly lower than those from 
REML, but higher than those from the univariate approach, hence THGS and PEGS exploited genetic correlations. For 
500 to 600 observations per response variable, biases of estimates of genetic parameters of THGS and PEGS were 
small, but standard errors of estimates of genetic correlations were higher than for REML. Bias and standard errors 
decreased as sample size increased. For balanced designs, GEBV and estimates of genetic correlations from THGS were 
unbiased when only an intercept and eigenvectors of genotype scores were fitted.

Conclusions:  THGS and PEGS are fast and memory-efficient algorithms for multivariate genomic prediction for bal-
anced and unbalanced experimental designs. They are scalable for increasing numbers of environments and genetic 
markers. Accuracy of GEBV was comparable to REML. Estimates of genetic parameters had little bias, but their stand-
ard errors were larger than for REML. More studies are needed to evaluate the proposed methods for datasets that 
contain selection.
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Background
Genomic prediction [1] uses genetic markers across 
the genome to predict complex diseases in humans and 
breeding values in animals and plants [2, 3]. Contrary to 
univariate analyses, multivariate genomic prediction [4] 
exploits genetic correlations among response variables 
to increase prediction accuracy for each variable [5]. 
In plant breeding, these response variables come from 
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different quantitative traits that are measured in differ-
ent field locations and years. Variance components and 
genetic correlations are estimated simultaneously with 
breeding values, because they vary across years, loca-
tions, and management. In animal breeding, in contrast, 
variance components are estimated infrequently within 
a breeding program and are used to solve mixed-model 
equations repeatedly over years.

Estimation of variances and covariances can be com-
putationally demanding with standard multivariate 
approaches for trials with multiple quantitative traits and 
environments. In restricted maximum likelihood (REML) 
analyses, large and dense mixed-model equations need 
to be stored in memory and inverted repeatedly. In 
Bayesian analyses, model effects need to be sampled for 
thousands of Markov chain Monte Carlo (MCMC) itera-
tions. This becomes time-consuming with an increasing 
number of response variables, because increasingly large 
matrices need to be inverted and factorized in each itera-
tion. Canonical transformation [6] or diagonalization of 
genomic relationship matrices [7] can only be applied 
to balanced experimental designs when individuals are 
phenotyped in all environments and for all quantita-
tive traits. However, unbalanced experimental designs 
are common. A solution would be to estimate genetic 
correlations for pairs of environments using bivariate 
models, but this also requires considerable computation 
resources. Moreover, the heritabilities of harvest yield 
are often low (0.1–0.2), so that the precision of estimated 
variance components for yield can be increased by ana-
lyzing yield together with higher heritable traits.

Fast and reliable algorithms are economically impor-
tant in plant breeding enterprises to make timely deci-
sions and advance the breeding pipeline. With any kind 
of delays during harvest season, e.g., due to weather, only 
a few hours may be available for selection decisions. If a 
breeder misses a deadline to request either new breed-
ing crosses from nurseries or seed of selected individuals 
or seed of test-crosses, the generation interval increases, 
genetic gain per year decreases, and product launches are 
delayed.

To speed up computations and provide estimated 
breeding values on time, we propose to combine a rand-
omized Gauss–Seidel [8, 9] solver for updating the effects 
of a multivariate model with an efficient approach for 
updating variances and covariances in each iteration of 
the algorithm. This approach calculates quadratic forms 
of random effects that resemble those used in REML but 
are equated to expectations that are easier to compute, as 
first proposed by [10, 11]. Similar approximations have 
been proposed over the years, as depicted in [12], who 
compared their Tilde-Hat approach to the methods of 
Schaeffer [13] and Henderson [14].

Statistical models that fit either a genomic relationship 
matrix or marker effects have been proposed for genomic 
prediction [2]. The latter is favored when the number of 
individuals exceeds the number of markers. In closed 
breeding programs, effective population sizes are such 
that a moderate number of markers, e.g. 10,000, is suf-
ficient to estimate breeding values using training datasets 
with a larger number of individuals, e.g. 100,000.

The objective of this study was to present and evaluate a 
multivariate ridge regression approach that uses jointly a 
randomized Gauss–Seidel solver to estimate marker effects 
and the methods of either VanRaden [12] or Schaeffer [13] 
to estimate variances and covariances. Bias and accuracy of 
genomic estimated breeding values (GEBV) and runtime 
were studied by simulation of different scenarios, using a 
wheat dataset from CIMMYT’s Global Wheat Program and 
a soybean dataset from the SoyNAM project. The proposed 
methods were compared to standard software implemen-
tations of REML and univariate analyses to show that the 
approximations harness the benefits of multivariate mod-
els for prediction accuracy. Bayesian Gibbs sampling was 
added to compare runtime. To understand and interpret 
differences in bias and accuracy of GEBV between meth-
ods, biases and standard errors of estimates of heritabilities 
and genetic correlations were evaluated.

Methods
Statistical model
The multivariate ridge regression model can be written as

where y is a vector of phenotypes from K environments, 
which can be partitioned into y′ = [y′

1
y′
2
. . . y′K ] , and 

each vector y′k has length nk ; X = ⊕K
k=1

Xk , ⊕ denotes the 
direct sum operator, Xk is an nk × rk matrix with full col-
umn rank of rk fixed effects; b′ = [b′

1
b′
2
. . .b′K ] is a vec-

tor of fixed effects for all environments, and each vector 
b′k has length rk ; Z = ⊕K

k=1
Zk , Zk is an nk × m matrix that 

contains marker scores of nk individuals with phenotypes 
in environment k and m markers; β′ = [β′1 β

′
2 . . . β′K ] is an 

( m · K)-vector of random marker effects for all environ-
ments, and each vector β′k has length m; e′ = [e′

1
e′
2
. . . e′K ] 

is a vector of residuals, and each vector e′k has length nk . 
Marker effects are assumed to be multivariate-normal dis-
tributed with mean zero and variance-covariance matrix 
Var(β) = �β ⊗ Im , where �β is a K  × K  matrix of genetic 
variances of marker effects, σ 2

βk
 , on the diagonal, and 

genetic covariances between marker effects from differ-
ent environments, σβkk′ , on the off-diagonal, ⊗ is the Kro-
necker product operator, and Im is an identity matrix of 
dimension m. Residuals are assumed to be uncorrelated 
between environments, and normally distributed with 
mean zero and variance Var(e) = ⊕K

k=1
Ikσ

2
ek

.

(1)y = Xb+ Zβ+ e,
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Solving fixed effects and marker effects
The mixed-model equations can be written as:

where σ ij
β  is the element at position ij of �−1

β .
The iterative Gauss–Seidel method with residual 

updates, as presented in [15], was used to solve the 
mixed-model equations without setting them up explic-
itly, while updating variances and covariances in each 
iteration. We define ê = [ê1 ê2 . . . êK ] to be the vec-
tor of estimated residuals, which was initialized as 
ê(0) = [y′

1
y′
2
. . . y′K ] . The estimated fixed effect j of envi-

ronment k was updated in iteration t by:

and before moving to the next fixed effect, the residual 
vector was updated by:

For updating estimated marker effects, 
ˆ̇β
′(t)
j = [β̂

(t)
j1 β̂

(t)
j2 . . . β̂

(t)
jK ] is defined as the vector of 

estimated marker effects for marker j and all K envi-
ronments in iteration t, Żj = ⊕K

k=1
zjk as a matrix 

containing scores for marker j, zjk as an nk column 
vector for scores at marker j and environment k, and 
�̂

(t)

e = Diag{σ̂
2(t)
e1 , σ̂

2(t)
e2 , . . . , σ̂

2(t)
eK } as a diagonal matrix 

of estimated residual variances from all environments. 
Estimates of effects for marker j were initialized to zero 
and updated by:

and before moving to the next marker, the residual vector 
is updated as:

The term �̂
−1(t)

e Ż′
jŻj of Eq. (2) is a K × K  diagonal matrix 

with elements {σ̂−2(t)
e1 z′j1zj1, . . . , σ̂

−2(t)
eK z′jK zjK } , and the 

term �̂
−1(t)

e Ż′
j(Żj

ˆ̇β
(t)
j + ê) can be computed as a vector of 
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(2)

ˆ̇β
(t+1)
j =

(

�̂
−1(t)

e Ż′
jŻj + �̂

−1(t)

β

)−1

�̂
−1(t)

e Ż′
j

(

Żj
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j + ê

)

,

ê(new) = ê(old) − Ż′
j

(

ˆ̇β
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j − ˆ̇β
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j

)

.

length K with elements [σ̂
−2(t)
e1 (z′j1zj1β̂

(t)
j1 + z

′
j1ê1), . . . , σ̂

−2(t)
eK

(z′jK zjK β̂
(t)
jK + z

′
jK êK )] . Values of z′jkzjk were calculated 

before iterations start for all combinations of markers (j) 
and environments (k).

To increase convergence rate, the order in which the 
marker effects are updated was randomized in each 
iteration. This approach is referred to as randomized 
Gauss–Seidel [8, 9].

Solving variances and covariances
Genetic variances and covariances were updated by 
using the method proposed by either [12] or [13], called 
Tilde-Hat (TH) and Pseudo Expectation (PE), respec-
tively. Both methods use the quadratic form β̃

′(t)

k β̂
(t)

k  , 
where β̂

(t)

k  contains all estimated marker effects for 
environment k in iteration t, and:

The two methods differ in matrix D−1(t)
k  . In PE, D(t)

k = Im , 
whereas in TH,

which denotes a diagonal matrix, and 
Mk = Ik − Xk(X

′
kXk)

−1X′
k . As D(t)

k  is diagonal, Mk does 
not have to be explicitly generated, but only the diagonal 
of Z′

kMkZk needs to be computed once before iterations 
start and stored. This computation can be done effi-
ciently, as shown in Appendix 1. When the intercept is 
the only fixed effect, and both yk and the columns of Zk 
are centered, Mk can be omitted.

Estimates of genetic and residual variances for envi-
ronment k were initialized to σ̂ 2(0)

βk
= 0.5 · σ 2

yk
/(m · σ 2

Zk
 ) 

and σ̂ 2(0)
ek = 0.5 · σ 2

yk
 , respectively, where σ 2

yk
 is the sam-

ple variance of phenotypes and σ 2
Zk

= 1
m

∑m
j=1 σ

2
Zkj

 is 

the average of marker-score variances across the m col-
umns of Zk . Estimates of genetic covariances were ini-
tialized to zero. The estimate of variance of marker 
effects for environment k was updated by:

(3)β̃
(t)

k = D
−1(t)
k Z′

kMkyk .

(4)D
(t)
k = Diag{Z′

kMkZk σ̂
−2(t)
ek

+ Imσ̂
kk(t)
β },
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where Zk contains marker scores for environment k, 
tr(·) is the trace operator, and tr(D−1(t)

k Z′
kMkZk) is 

the expected value of β̃
′(t)

k β̂
(t)

k  , as derived in [12] and in 
Appendix 2. The estimate of the covariance between 
environments k and k ′ was updated by:

as proposed by [13] and derived in Additional file 1, and 
residual variances were updated by

as in [15], where rk is the number of linear independent 
columns of Xk.

Bending of �̂β as described in [16] was used after an 
iteration when it was not positive definite. The iterative 
scheme was repeated until a mean-squared convergence 
of 10−8 was reached for effects, variances, and covariances. 
The combination of the randomized Gauss–Seidel solver 
with either of the two methods for variance component 
estimation, i.e., TH or PE, is referred to here as THGS and 
PEGS, respectively. An implementation of PEGS is pro-
vided in the R package bWGR (2.0) [17], function mrr.

Exact THGS
For balanced experimental designs, when the intercept is 
the only fixed effect, and either a principal components 
[18] or eigenvector regression [19–21] is used, THGS 
is exact. This is demonstrated in Appendix 3. By either 
using a singular-value decomposition of Zk or an eigen-
value decomposition (EVD) of Z′

kZk , a matrix of eigen-
vectors, Uk , and a diagonal matrix of eigenvalues, �k , 
can be calculated. By fitting Žk = ZkUk rather than Zk in 
model (1), Z′

kMkZk in Eq. (4) becomes a diagonal matrix 
of eigenvalues, �k . Thus, D(t)

k  in Eqs. (5) and (6) can be 
written as:

This does not apply to PEGS, because it uses D(t)
k = Im.

Alternative methods
As a gold standard for low biases and standard errors 
of both GEBV and variance components, empirical 
genomic best linear unbiased predictions (GBLUP) [22] 

(5)σ̂
2(t+1)
βk

=
β̃
′(t)

k β̂
(t)

k

tr
(

D
−1(t)
k Z′

kMkZk

) ,

(6)

σ̂
(t+1)
βkk′

=
β̃
′(t)

k β̂
(t)

k ′ + β̃
′(t)

k ′ β̂
(t)

k

tr
(

D
−1(t)
k Z′

kMkZk

)

+ tr(D
−1(t)
k ′ Z′

k ′Mk ′Zk ′)
,

(7)σ̂ 2(t+1)
ek

=

(

Mkyk
)′
êk

nk − rk

(8)D
(t)
k = �k σ̂

−2(t)
ek

+ Imσ̂
kk(t)
β .

were obtained by REML [23] for balanced experimental 
designs as follows. The genomic relationship matrix ( G ) 
was diagonalized and the statistical model was trans-
formed by the eigenvectors of an eigenvalue decom-
position of G [7] (see Appendix 4). Eigenvectors of the 
smallest eigenvalues, which explained the last 1% of the 
variation in G were neglected [24]. The transformed 
model was fitted using ASREML-R [25]. For unbalanced 
experimental designs, ASREML 4.2, AIREMLF90 or 
REMLF90 did not return results for the full multivari-
ate models in this simulation study. Thus, to obtain an 
upper bound of accuracy of GEBV, GBLUP were calcu-
lated using the true simulated variance components. This 
method was called true value Gauss–Seidel (TVGS).

Runtimes of the proposed and other methods were 
compared only for balanced designs. In addition to the 
REML approach described above, G was used in its nat-
ural, dense form and 0.01 was added to its diagonal to 
render it positive definite. The expectation maximization 
(EM) REML algorithm of REMLF90 [26] and the average 
information (AI) REML algorithms of ASREML 4.2 [23, 
25] and AIREMLF90 [27] were used with their options 
for dense equations operations !gdense and use_yams, 
respectively. In addition, the Gibbs sampler of GIBBSF90 
was run for comparison.

Univariate THGS (UV-THGS), which analyzes phe-
notypes of only one environment at a time with the 
randomised Gauss–Seidel solver and TH, was run to 
evaluate the increase in accuracy of GEBV with multi-
variate THGS over univariate THGS. Table 1 summarizes 
the methods used in this study.

Data and evaluation statistics
Phenotypic data for five scenarios were simulated to eval-
uate bias and accuracy of GEBV within environments, 
runtime, and biases and standard errors of estimates of 
heritabilities and genetic correlations (Table 2). The gen-
otypes used in the simulations came from a wheat [28–
31] and a soybean dataset [21, 32, 33], which have been 
used in multiple genomic prediction studies, and are 

Table 1  Summary of methods used in the simulations

a PE pseudo expectation, TH tilde-hat, REML restricted maximum likelihood, 
TVGS true-value Gauss–Seidel, PEGS pseudo expectation Gauss–Seidel, THGS 
tilde-hat Gauss–Seidel, UV-THGS univariate-tilde-hat Gauss–Seidel

TVGS PEGS THGS UV-THGS REML

Effect type in the 
model

Marker Marker Marker Marker Polygenic

Multivariate Yes Yes Yes No Yes

(Co)variance 
estimationa

True values PE TH TH REML

Orthogonalization No No No No Yes
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available through the R packages BGLR and SoyNAM, 
respectively.

Scenario 1 contained simulated phenotypes from 
inbred lines that were grown in the same ten environ-
ments, using 599 inbred lines from CIMMYT’s Global 
Wheat Program [28, 29] that were genotyped at 1279 
DArT markers [34]. Scenario 2 contained simulated phe-
notypes from different inbred lines grown in ten different 
environments, using 5142 recombinant inbred lines from 
the SoyNAM project [35, 36] genotyped for 4311 single 
nucleotide polymorphism (SNP) markers. These lines 
were randomly allocated to ten different environments, 
and each line was observed in only one environment. 
Scenario 3 was used to study the evaluation statistics 
for an increasing number of soy inbred lines in each of 
the ten environments. Thus, each line could be present 
in multiple environments. Scenario 4 was used to study 
runtime of PEGS and THGS for an increasing number of 
environments (response variables), i.e., 10, 50, 100, 200 
and 400, using the SoyNAM dataset with a random 10% 
of lines missing in each environment. Scenario 5 was 
used to study runtime with a higher marker density, using 
the SoyNAM dataset and genotyped at 42,034 SNPs that 
were obtained from the original SNPs plus from a linkage 
disequilibrium-based imputation of SNPs, as described 
in [36].

Phenotypes were simulated by summing true genomic 
breeding values (TBV) and residuals. TBV for environ-
ment k were sampled as Zβk , where Z contains marker 
scores of inbred lines from all environments and the true 
marker effects in βk were taken from β′ = [β′1 β

′
2 . . . β′K ] , 

which was sampled from N (0,�β ⊗ Im ), where 
�β = α−1

�g , α =
∑J

j=1
σ 2
Zj

 , σ 2
Zj

 is the variance of marker 
scores in Z at marker j, and �g is the additive genetic var-
iance-covariance matrix with 1 on the diagonal and 
genetic correlations on the off-diagonals. Residuals were 
sampled from N (0, (1− h2)h−2) , where h2 is the herita-
bility in an environment. Three heritabilities (0.2, 0.5, and 
0.8) and three ranges of genetic correlations, low (0.2–
0.4), medium (0.4––0.6), and high (0.6–0.8) were 

considered. Correlations were sampled from a uniform 
distribution within each range. Each simulation scenario 
was replicated 100 times.

Biases and standard errors of estimates of heritabilities 
and genetic correlations were calculated as the average 
and standard deviation, respectively, of estimated minus 
true simulated values across replicates. GEBV for envi-
ronment k were calculated as Zk β̂k , and bias and accuracy 
of these GEBV were calculated as the regression coef-
ficient of TBV on GEBV and as the correlation between 
TBV and GEBV, respectively.

Results
Runtime
The average runtimes for the different methods used in 
scenario 1 are presented in Table 3. Multivariate PEGS 
and THGS took 0.4 and 0.3  s, respectively, univariate 
THGS aggregated across ten environments 0.2  s, and 
AI-REML using ASREML-R 3.3  s when the genomic 
relationship matrix was diagonalized by eigenvalue 

Table 2  Summary of simulated scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Number of environments (traits) 10 10 10 10–400 10–400

Number of environments per line 10 1 0–10 0–400 0–400

Number of lines per environment 599 514 250-3000 4628 4628

% of lines per environment 100% 10% 5-60% 90% 90%

Number of phenotypic records 5990 51,420 30,000 1,851,120 1,851,120

Number of markers 1279 4311 4311 4311 42,034

Species Wheat Soy Soy Soy Soy

Table 3  Average runtime in seconds (s.e.) for the balanced 
experimental design in scenario 1 based on 100 replicates of the 
simulation

a PEGS pseudo expectation Gauss–Seidel, THGS tilde-hat Gauss–Seidel, UV-THGS 
univariate-tilde-hat Gauss–Seidel, AI average information, REML restricted 
maximum likelihood, EVD eigenvalue decomposition,  EM expectation 
maximization
b 10,000 MCMC iterations
c RR ridge-regression, GBLUP genomic best linear unbiased prediction

Methoda Software Modelc Runtime

PEGS – RR 0.4 (0.0)

THGS – RR 0.3 (0.0)

UV-THGS – RR 0.2 (0.0)

AI-REML (EVD) ASREML-R GBLUP 3.3 (0.3)

AI-REML ASREML 4.2 GBLUP 272.6 (36.5)

AI-REML AIREMLF90 GBLUP 109.8 (2.4)

EM-REML REMLF90 GBLUP 1250.7 (11.7)

Gibbs samplingb GIBBS3F90 GBLUP 559.8 (9.6)
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decomposition. Standard implementations of REML 
based on the dense genomic relationship matrix ranged 
from 109.8 to 1250.7 s, whereas the Gibbs sampler took 
559.8 s.

Figure  1 shows convergence of the Gauss–Seidel 
solver with and without randomizing the order in 
which marker effects were updated for one replicate of 
scenario 2. The algorithm converged after 54 iterations 

with randomization, but required more than 3000 iter-
ations without randomization.

Table 4 depicts average runtime in minutes for PEGS, 
THGS, and UV-THGS with and without randomiz-
ing the marker order in the Gauss–Seidel solver, as well 
as an increasing number of environments (scenario 4) 
and markers (scenario 5). The runtimes of PEGS and 
THGS were similar, and randomizing the marker order 

Fig. 1  Convergence of the Gauss–Seidel solver with (left) and without (right) randomizing the order in which marker effects were updated for one 
replicate of the simulation of scenario 2

Table 4  Average runtime in minutes (s.e.) of the Gauss–Seidel solver with and without randomizing the order of markers for updating 
marker effects, with increasing numbers of SNPs and environments, based on 10 replicates of scenarios 4 (4311 SNPs) and 5 (42,034 
SNPs)

PEGS pseudo expectation Gauss–Seidel, THGS tilde-hat Gauss–Seidel, UV-THGS univariate-tilde-hat Gauss–Seidel
a Did not converge within 2000 iterations

Randomized Number of SNPs Number of 
environments

PEGS THGS UV-THGS

Yes 4311 10 0.2 (0) 0.2 (0) 0.1 (0)

Yes 4311 50 3.5 (0.4) 3.5 (0.4) 0.6 (0)

Yes 4311 100 14.4 (2) 14.4 (1.8) 1.1 (0)

Yes 4311 200 80.5 (10.1) 79.2 (11) 2.3 (0.1)

Yes 4311 400 459.3 (55.1) 448 (58) 4.3 (0.1)

No 4311 10 5.5 (1) 5.4 (0.9) 1.9 (0.2)

No 4311 50 44.9 (7) 44.6 (6.9) 9.3 (1.1)

No 4311 100 120.9 (10.1) 123.7 (9.9) 20 (1.8)

No 4311 200 361.1 (48.9) 364.6 (44.4) 39.3 (2.8)

No 4311 400 1261.8 (115.8) 1261.7 (107.9) 74.1 (8.3)

Yes 42,034 10 0.8 (0.1) 0.8 (0) 1.2 (0.1)

Yes 42,034 50 9.9 (0.4) 12.5 (1.3) 5.7 (0.4)

Yes 42,034 100 36.4 (1.4) 29.2 (2.7) 11.3 (0.6)

Yes 42,034 200 123.2 (17.1) 119.7 (10.1) 22.5 (2)

Yes 400 730 (64.4) 802.2 (118.2) 46.4 (4.1)

No 42,034 10 64a (14.7) 64.2a (16) 14.5 (5.1)

No 42,034 50 540.2a (38.3) 536a (26.8) 106.5 (63.2)

No 42,034 100 1109.6a (71.5) 1148.1a (109.3) 181.4 (40.6)

No 42,034 200 3057.3a (292.7) 3001.2a (259) 310.3 (114.8)
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shortened runtimes. Without randomization, the multi-
variate models that fitted 42,034 SNPs did not converge 
within 2000 iterations. Runtimes of PEGS and THGS 
increased exponentially with the number of environ-
ments from 0.2  min for ten environments to 448  min 
for 400 environments when using 4311 SNPs. Runtime 
of UV-THGS, in contrast, increased linearly from 0.1 to 
4.3 min under the same conditions. With randomization, 
runtime increased with an increasing number of mark-
ers, from 0.2  min for 4311 SNPs to 0.8  min for 42,034 
SNPs and ten environments, and from 80.5 to 123.2 min 
for 200 environments. Without randomization, runt-
ime increased to 3057.3  min for 42,034 SNPs and 200 
environments.

Accuracy and bias of GEBV
Accuracy of GEBV increased with increasing heritabil-
ity and genetic correlation, as expected (Fig.  2). It was 
0.03 to 0.09 higher for multivariate approaches than 
for univariate THGS when heritability was low and the 
genetic correlation was medium to high (Fig. 2a, b, lower 
left panels). For most genetic parameters for scenario 1, 
REML provided a 0.01 higher accuracy than PEGS and 
THGS. For low heritability and low genetic correlations, 
however, REML resulted in a 0.02 higher accuracy and 
UV-THGS was as accurate as PEGS and THGS (Fig. 2a, 
upper left panel). The latter was also true for scenario 2. 
After additional simulations of scenario 1 for low herit-
ability and low genetic correlations, accuracies of PEGS 

and THGS became larger than those of UV-GS and 
approached those of REML with increasing number of 
environments (Additional file  2). Even REML tended to 
have lower accuracies for low heritability and low genetic 
correlation than TVGS (Fig. 2a, upper left panel). Differ-
ences for TVGS with both PEGS and THGS were similar 
for scenarios 1 and 2 (Fig. 2a, b). PEGS and THGS were 
not significantly different for scenarios 1 and 2.

Regression coefficients of TBV on GEBV are shown in 
Fig. 3. For scenario 1 and low heritability, they were 1 for 
PEGS and THGS, close to 1 for REML, and significantly 
above 1 for UV-THGS. This bias for UV-THGS decreased 
with increasing heritability. For medium to high herit-
abilities, however, PEGS and THGS slightly underes-
timated (values > 1) the TBV, while REML was usually 
unbiased, with a value of 1 (Fig. 3a). The bias for PEGS 
and THGS decreased with increasing genetic correlation. 
For scenario 2 (Fig. 3b), PEGS and THGS slightly overes-
timated TBV (values < 1) for low heritability, but slightly 
underestimated TBV (values > 1) for medium to high 
heritabilities.

Bias and standard error of parameters
Figure 4 shows the bias of estimates of heritabilities for 
scenarios 1 and 2 and different true genetic parameters. 
For both scenarios, estimates of heritabilities tended to 
be downward biased. For PEGS and THGS, the bias was 
smallest or even zero for low heritability and medium 
to high genetic correlations (Fig. 4, bottom left panels) 

Fig. 2  Accuracy of GEBV for scenario 1 (a wheat dataset) and scenario 2 (b soybean dataset) for different true heritabilities (columns) and genetic 
correlations (rows), based on 100 replicates of the simulation. Letters indicate Tukey’s test of multiple comparisons ( α = 0.05)
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Fig. 3  Regression of true breeding values on GEBV (slope) for scenario 1 (a wheat dataset) and scenario 2 (b soybean dataset) for different 
true heritabilities (columns) and genetic correlations (rows), based on 100 replicates of the simulation. Letters indicate Tukey’s test of multiple 
comparisons ( α = 0.05)

Fig. 4  Bias of estimates of heritability for scenario 1 (a wheat dataset) and scenario 2 (b soybean dataset) for different true heritabilities (columns) 
and true genetic correlations (rows), based on 100 replicates of the simulation. Letters indicate Tukey’s test of multiple comparisons ( α = 0.05 ). 
Asterisk indicates that the mean is significantly different from zero ( α = 0.05)
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and their biases decreased with increasing genetic cor-
relations. The bias for UV-THGS tended to be lower 
than for PEGS and THGS. REML provided the least 
biased heritability estimates for scenario 1.

Figure 5 shows standard errors of estimates of herit-
abilities for scenarios 1 and 2 and different true genetic 
parameters. Standard errors were higher for scenario 1 
than for scenario 2, higher for medium than for low and 
high heritabilities, highest for low genetic correlations, 
and decreased as the genetic correlation increased. 
Standard errors were 60 to 100% higher for PEGS and 
THGS than for REML.

Figures 6 and 7 show the bias and standard errors of 
estimates of genetic correlations for scenarios 1 and 2. 
Bias tended to be low for PEGS and THGS for scenario 
2, except for low heritability and high genetic correla-
tions (Fig. 6b, lower left panel). For scenario 1 and high 
genetic correlations (Fig.  6a, lower left panel), REML 
had large biases, with absolute values of up to 0.08, 
compared to 0.01 for THGS. For low and medium true 
genetic correlations and for scenario 2, REML and the 
proposed methods had similar biases, and they were 
not significantly different for PEGS and THGS. As 
standard software for REML did not return results for 
the full model and the unbalanced designs for scenario 
2, bivariate models were ran and the resulting estimates 
of the genetic correlations are given in Additional file 3.

Standard errors of estimates of the genetic correla-
tions decreased with increasing heritability and genetic 
correlations (Fig. 7). Standard errors were always similar 
for PEGS and THGS, but higher than for REML for low 
to medium genetic correlations. For high genetic cor-
relations, standard errors were similar for all methods. 
Standard errors were lower for scenario 2 than for sce-
nario 1.

As the number of observations per environment 
increased in scenario 3, standard errors of estimates of 
genetic parameters decreased, bias of estimates of genetic 
correlations decreased, but bias of estimates of heritabili-
ties did not approach zero even with 3000 observations 
per environment (Table 5). Additional file 4 demonstrates 
the outcome when all 5142 lines were observed in all 
environments: heritabilities estimated with THGS were 
unbiased, and genetic correlations estimated with PEGS 
or THGS were unbiased.

Orthogonalization
Table  6 presents bias and accuracy of GEBV, as well as 
bias and standard errors of estimates of genetic param-
eters with and without using eigenvalue decomposition 
(EVD). THGS-EVD provided unbiased GEBV (Slope 
= 1) and its accuracy was 0.01 higher than for THGS 
and thus equal to the accuracy of REML. Estimates of 
the genetic correlations of THGS-EVD were unbiased 

Fig. 5  Standard error of estimates of heritability for scenario 1 (a wheat dataset) and scenario 2 (b soybean dataset) for different true heritabilities 
(columns) and true genetic correlations (rows), based on 100 replicates of the simulation. Letters indicate Tukey’s test of multiple comparisons 
( α = 0.05)
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and had lower standard errors than those obtained with 
THGS. The accuracy of GEBV from UV-THGS-EVD did 
not increase compared to that from UV-THGS, suggest-
ing that the increase of accuracy for THGS-EVD resulted 

from a higher accuracy of estimates of genetic correla-
tions. Biases and standard errors of estimates of genetic 
parameters, as well as biases and accuracies of GEBV 
were not different for PEGS and PEGS-EVD.

Fig. 6  Bias of estimates of genetic correlation for scenario 1 (a wheat dataset) and scenario 2 (b soybean dataset) for different true heritabilities 
(columns) and true genetic correlations (rows), and based on 100 replicates of the simulation. Letters indicate Tukey’s test of multiple comparison 
( α = 0.05 ). Asterisk indicates that the mean is significantly different from zero ( α = 0.05)

Fig. 7  Standard error of estimates of genetic correlations for scenario 1 (a wheat dataset) and scenario 2 (b soybean dataset) for different true 
heritabilities (columns) and true genetic correlations (rows), based on 100 replicates of the simulation. Letters indicate Tukey’s test of multiple 
comparisons ( α = 0.05 ). Asterisk indicates that the mean is significantly different from zero ( α = 0.05)
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Discussion
Our main goal was to develop an algorithm for multivari-
ate genomic prediction that is efficient in runtime and 
memory, applicable to unbalanced experimental designs, 
and exploits genetic correlations between environments 
to increase the accuracy of GEBV compared to univari-
ate analyses. We proposed two algorithms, PEGS and 
THGS, that use randomized Gauss–Seidel to estimate 
marker effects and simultaneously estimate variance 
components, based on methods developed by [12, 13], 
respectively. Simulations were conducted to evaluate bias 
and accuracy of GEBV within environment and to com-
pare them to those obtained by REML and a univariate 
approach. Bias and standard errors of estimates of her-
itabilities and genetic correlations were also evaluated to 
interpret the differences in bias and accuracy of GEBV 
between methods (Table 1).

PEGS and THGS were shown to be fast and memory-
efficient algorithms for both balanced and unbalanced 
experimental designs, and had a much shorter runtime 
than REML using standard software implementations 
(Tables 3 and 4). Moreover, PEGS and THGS are scalable 
with the number of environments and markers. The rea-
sons for the speed and efficiency of PEGS and THGS are 

that equations are solved by randomized Gauss–Seidel 
and that expectations of quadratic forms, shown in the 
denominator of Eqs. (5) and (6), are inexpensive to com-
pute. These expectations do not require elements of the 
inverse of the left-hand side of the mixed-model equa-
tions as shown in [13]. Therefore, the system of equa-
tions essentially reduces to a K × K  problem (Eq. 2) with 
complexity O(K 3) . When fitting hundreds to thousands 
of response variables, it is possible to linearize operations 
through full-conditional multivariate Gauss–Seidel algo-
rithm presented in Appendix 5.

The number of iterations to convergence (Fig.  1) and 
runtime of PEGS and THGS decreased greatly by rand-
omizing the marker order for updating marker effects 
(Table  4). This may be because randomization reduces 
dependencies of consecutively updated markers that 
stem from high linkage disequilibrium between adjacent 
markers on the same chromosome. With an increasing 
number of environments and markers, PEGS and THGS 
had reasonably short runtimes (Table 4, with randomiza-
tion), which allows breeders to make decisions on time, 
and rerun genetic evaluations as data become available 
during harvest season.

Table 5  Accuracy of GEBV, regression of TBV on GEBV (Slope), and bias and standard error (SE) of estimates of heritabilities ( ˆh2 ) and 
genetic correlations (GC) with increasing numbers of observations per environment (Obs/Env) in scenario 3, based on 100 replicates of 
the simulation

Standard errors of statistics are in parenthesis

PEGS pseudo expectation Gauss–Seidel, THGS tilde-hat Gauss–Seidel, UV-THGS univariate-tilde-hat Gauss–Seidel

Method Obs/Env Accuracy Slope Bias of ĥ2 SE of ĥ2 Bias of GC SE of GC

PEGS 250 0.82 (0.03) 0.98 (0.03) − 0.01 (0.03) 0.07 (0.01) − 0.01 (0.06) 0.17 (0.02)

PEGS 3000 0.96 (0.03) 1.00 (0.03) − 0.01 (0.03) 0.04 (0.01) 0.00 (0.06) 0.13 (0.02)

THGS 250 0.82 (0.03) 0.98 (0.04) 0.00 (0.03) 0.07 (0.01) − 0.02 (0.06) 0.17 (0.02)

THGS 3000 0.96 (0.03) 1.00 (0.03) − 0.01 (0.03) 0.04 (0.01) 0.00 (0.06) 0.13 (0.02)

UV-THGS 250 0.79 (0.03) 1.04 (0.03) − 0.01 (0.03) 0.07 (0.01) – –

UV-THGS 3000 0.95 (0.03) 1.00 (0.04) − 0.01 (0.03) 0.04 (0.01) – –

Table 6  Accuracy of GEBV, regression of TBV on GEBV (Slope), and bias and standard error (SE) of estimates of heritabilities ( ˆh2 ) and 
genetic correlations (GC) with and without eigenvalue decomposition (EVD), based on 100 replicates of the simulation of scenario 1

REML restricted maximum likelihood, EVD eigenvalue decomposition, PEGS pseudo expectation Gauss–Seidel, THGS tilde-hat Gauss–Seidel, UV-THGS univariate-tilde-
hat Gauss–Seidel

Method Accuracy Slope Bias of ĥ2 SE of ĥ2 Bias of GC SE of GC

REML-EVD 0.87 (0.02) 1.00 (0.03) − 0.01 (0.02) 0.04 (0.01) 0.00 (0.04) 0.14 (0.03)

PEGS 0.86 (0.02) 1.02 (0.03) − 0.03 (0.04) 0.07 (0.02) 0.02 (0.08) 0.18 (0.04)

PEGS-EVD 0.86 (0.02) 1.02 (0.03) − 0.04 (0.04) 0.07 (0.02) 0.02 (0.08) 0.18 (0.04)

THGS 0.86 (0.02) 1.02 (0.03) − 0.03 (0.04) 0.07 (0.02) 0.01 (0.08) 0.17 (0.04)

THGS-EVD 0.87 (0.02) 1.00 (0.03) − 0.02 (0.03) 0.05 (0.01) 0.00 (0.04) 0.13 (0.02)

UV-THGS 0.84 (0.04) 1.06 (0.09) − 0.02 (0.05) 0.08 (0.02) – –

UV-THGS-EVD 0.84 (0.03) 1.03 (0.04) − 0.03 (0.03) 0.05 (0.01) – –
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For balanced designs, the number of iterations to con-
vergence can be further reduced by modeling the eigen-
vectors of genotype scores, which completely removes 
dependencies among model effects. In addition, THGS 
becomes an exact method that yields unbiased estimates 
of genetic correlations and GEBV (section Exact THGS), 
and reduces the bias of estimates of heritabilities, as can 
be demonstrated for scenario 1 (Table 6). Matrix decom-
position is also useful to analyze high-dimensional data-
sets with many factors ( P >> N  problem), and to fit one 
or multiple kernels of different types within multivari-
ate ridge regression models, for example, for modeling 
dominance, epistasis [37], and Gaussian or Arc-cosine 
relationships [21, 38]. The computing costs for matrix 
decomposition to obtain those eigenvectors, however, 
may outweigh the benefits for THGS as the number of 
individuals and markers in the analysis increases.

The trade-off for higher speed with PEGS and THGS 
is a slightly lower accuracy of GEBV of 0.01 compared to 
REML under realistic conditions when heritability was 
low and genetic correlations between environments were 
medium to high (Fig.  2a). PEGS and THGS exploited 
genetic correlations between environments under these 
conditions and had a higher accuracy of GEBV than 
the univariate approach (Fig.  2a, b). Only in the worst 
case, when all heritabilities and all genetic correlations 
between environments were low, did the benefit in accu-
racy of multivariate genomic prediction over the univari-
ate approach vanish with PEGS and THGS (Fig.  2a, b). 
This occurred because PEGS and THGS resulted in nota-
bly higher standard errors of estimates of genetic corre-
lations than REML (Fig. 7). Moreover, PEGS and THGS 
slightly underestimated heritabilities and slightly overes-
timated genetic correlations. The bias of GEBV, however, 
was close to zero and approached zero with an increasing 
number of lines per environment (Fig. 3, Table 5).

Residuals were treated as uncorrelated between envi-
ronments for three reasons. First, the phenotypes come 
from different individuals that are assumed to have 
uncorrelated environmental effects. Second, epistatic 
effects, which are not captured by the marker effects in 
the model of Eq. (1), are assumed to have small covari-
ances between environments. Third, the PEGS and THGS 
algorithms are faster because the absorption matrix 
M , which is used in Eqs. (3) to (7), is block-diagonal 
with one block per environment, Mk . And finally, fewer 
computations are required to update estimated marker 
effects when the residual covariance matrix is diagonal 
(see Eq. 2). If phenotypes come from multiple quantita-
tive traits, residual covariances may need to be modeled 
to avoid further bias in the estimated genetic param-
eters and GEBV, which may increase runtime [13] and 
offset the computational advantage compared to REML. 

However, these covariances could be modeled with an 
additional random term that is constructed by the cross-
product of sparse 0/1-incidence matrices for genotypes 
from different environments. Otherwise, the effect of 
neglecting the residual covariances on bias of estimates 
of genetic parameters and GEBV could be evaluated on a 
case-by-case basis.

Estimates of variances and covariances obtained by the 
methods PE and TH are unbiased when the mixed-model 
equations are weighted by the true variances and covari-
ances as shown in Additional file 1, and Appendix 2. In 
practice, however, an iterative procedure starts with best 
guesses for genetic parameters and, thus, estimates are 
not expected to be unbiased, which is the same for REML 
or iterative MIVQUE [39]. As discussed in [12], estimates 
may be further biased when populations are under selec-
tion. In plant breeding, data are analyzed by breeding 
stage and thereby do not contain selection information, 
otherwise may be augmented with unselected genotypes 
[40, 41]. Yet, Ouweltjes et  al. [42] and VanRaden and 
Jung [12] found that PE can be more suitable than TH 
to estimate variance components in populations under 
selection, but both methods were found to be slightly 
more biased than REML. These studies were performed 
using pedigree information and the bias was attributed 
to neglecting off-diagonals of the relationship matrix. To 
better understand this, the original quadratic form, β̂

′

k β̂k , 
can be compared to β̃

′

k β̂k from Eq. (5). For simplicity, only 
the univariate case and the method PE with β̃k = Z′

kMkyk 
is considered here. Using BLUP formulas [39], the quad-
ratic forms can be written as:

and

where V−1

k  is the inverse of the variance-covariance 
matrix of yk , Vk = ZkZ

′
kσ

2
βk

+ Iσ 2
ek

 , and b̂GLSk and b̂LSk 
are the generalized least squares and least squares esti-
mators, respectively, of b . Thus in β̃k , the matrix V−1

k  , 
which contains genomic relationships between indi-
viduals, i.e., ZkZ

′
k , is not used to weigh yk , or to estimate 

fixed effects ( ̂bLSk ) or random effects. However, THGS in 
combination with principal components or eigenvector 
regression provides the exact estimates of variance and 
covariance components for populations under selection.

PEGS and THGS should be evaluated against alter-
native methods for modeling phenotypes from multi-
ple environments. These are compound symmetry and 

(9)
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(
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(
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,
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extended factor analytic (XFA) models [43]. Compound 
symmetry models fit a term for the average genetic effect 
of an individual across environments and another term 
for the specific environmental effects for an individual. 
As each term is modeled with only one variance, this 
model assumes that the genetic correlations between 
all pairs of environments are identical. The difference 
between that single correlation and the true correla-
tion between any pair of environments can be regarded 
as bias. The XFA model fits more parameters than the 
compound symmetry model to reduce this bias, but less 
parameters than an unstructured multivariate model that 
fits a correlation for each pair of environments, and thus 
balances bias and precision of estimated genetic corre-
lations. Therefore, these two alternative models tend to 
bias estimates of genetic correlations between environ-
ments and are expected to decrease accuracy of GEBV 
compared to estimating genetic correlations between 
all pairs of environments, unless the amount of genetic 
information is limited.

The iterative algorithm of PEGS and THGS differs 
from that of REML and Bayesian Gibbs sampling. In 
each iteration of REML, the mixed-model equations 
are fully solved to obtain estimates of the model effects 
conditional on the current variance components of that 
iteration. The estimated model effects are then used to 
update the variance components and a new iteration 
begins, unless the change in variance components is 
small. In PEGS and THGS, in contrast, the model effects 
are merely updated, not solved, before variance compo-
nents are updated and a new iteration begins. In Bayes-
ian Gibbs sampling, similar computations are conducted 
in each iteration as in PEGS and THGS. However, rather 
than converging directly to a solution within a small 
number of iterations, the Gibbs algorithm samples from 
the posterior for thousands of iterations and, therefore, 
must have longer runtimes.

Conclusions
PEGS and THGS are fast, memory-efficient, and reliable 
algorithms for genomic prediction for both balanced and 
unbalanced experimental designs. They are scalable with 
an increasing number of response variables and markers. 
Their runtime is much shorter than for REML and Gibbs 
sampling. For balanced designs, THGS provides unbi-
ased GEBV and estimates of genetic correlations if only 
an intercept is modeled, and eigenvalue decomposition 
is feasible. Without eigenvalue decomposition, the accu-
racy of GEBV obtained using PEGS and THGS is slightly 
lower than of GEBV obtained using REML, but higher 
than that of univariate THGS under realistic genetic cor-
relations between environments. Estimates of genetic 

parameters obtained using PEGS and THGS have little 
bias, but their standard errors are larger than for REML. 
More studies are needed to evaluate the PEGS and THGS 
algorithms for unbalanced datasets with selection.

Appendix 1: Efficient calculation of Z′
k
MkZk 

and Mkyk
Only the diagonal elements of Z′

kMkZk are needed as 
matrix Dk is diagonal (Eq. 4). They can be computed one 
at a time for environment k and marker j as:

where (X′
kXk)

−1 is computed once before iterations start. 
Likewise, Mkyk of Eq. (7) can be obtained once as:

where b̂LSk denotes the Least Squares estimate of b.

Appendix 2: Expected value of β̃
′

k β̂k
Let β̃k = D−1

k Z′
kMkyk and Mk = Ik − Xk(X

′
kXk)

−1Xk , 
as defined in the section Solving variances and 
covariances, and let β̂k = σ 2

βk
Z′
kPkyk be the best lin-

ear unbiased predictor (BLUP) of β [39], where 
Pk = V−1

k [Ik − Xk(X
′
kV

−1

k Xk)
−1XkV

−1

k ] and E(β̂) = 0 . 
Then, the expected value of the bilinear form β̃

′

k β̂k [44] is:

because MkVkPk = Mk . Hence,

and E(σ̂ 2
βk
) = σ 2

βk
 . The extension to using β̂k from a multi-

variate BLUP is presented in Additional file 1.

Appendix 3: Equivalence of β̂ and β̃ using EVD
Let the eigenvalue decomposition of Z′

kZk be Uk�kU
′
k , 

where Uk is an orthonormal matrix of eigenvectors with 
the property U′

kUk = UkU
′
k = Im , and �k is a diagonal 

matrix of eigenvalues. The principal component regres-
sion [18] can be written as:

z′jkMjkzk = z′jkzjk − z′jkXk

(

X′
kXk

)−1
X′
kzjk

Mkyk = yk − Xk

(

X′
kXk

)−1
X′
kyk = yk − Xk b̂LSk ,

E(β̃
′

k β̂k) = tr(Cov(β̃k , β̂
′

k))+ E(β̃k)
′E(β̂k)

= tr
(

D−1

k Z′
kMkVkPkZkσ

2
βk

)

= tr
(

D−1

k Z′
kMkZk

)

σ 2
βk
,

σ̂ 2
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=
β̃
′
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D−1

k Z′
kMkZk

) ,
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where Z̃k = ZkUk and β̌k = U′
kβk . Let the estimate of 

β̌k be β̃k = D−1

k Ž′
kyk similar to Eq. (8), where Mk was 

omitted because Zk and yk are assumed centered. Then, 
defining �k = σ 2

ek
/σ 2

βk
 , and using (Uk)

−1 = U′
k and 

(U′
k)

−1 = Uk,

Appendix 4: Polygenic model using EVD
The model can be written as:

where y , X , b , and e are defined as in the section statisti-
cal model, and g is a vector of breeding values that can 
be partitioned into g′ = [g′

1
g′
2
. . . g′K  ]. It is assumed to 

be multivariate normal-distributed with mean zero and 
variance �g ⊗G , where �g is a K x K variance-covariance 
matrix of breeding values for K environments and G is 
the genomic relationship matrix. The eigenvalue decom-
position of this matrix can be written as G = U�U′ , 
where U contains orthogonal eigenvectors and � is a 
diagonal matrix that contains eigenvalues. To diagonalize 
G , model (11) was tranformed by T = 1K ⊗U′ , where 1K  
is a K vector of 1s, hence:

where g̃ ∼ N (0,�g ⊗�) and ẽ ∼ N (0,⊕K
i=1

Iσ 2
ek
).

Appendix 5: Full‑conditional Gauss–Seidel solution
Equation (2) can be rearranged to reduce the multivari-
ate Gauss–Seidel solver into a univariate algorithm, as 
an extension of the algorithm in [15]. This circumvents 

yk = 1µk + ZkUkU
′
kβk + ek

= 1µk + Žk β̌k + ek ,

β̂k =
(

Z′
kZk + Im�k

)−1
Z′
kyk

= Uk β̃k

= UkD
−1

k Ž′
kyk

= Uk(�k + Im�k)
−1Žkyk

= Uk

[

U′
kUk(�k + Im�k)U

′
kUk

]−1
Ž′
kyk

= Uk

[

U′
k

(

Uk�kU
′
k + Im�k

)

Uk

]−1
Ž′
kyk

= UkU
′
k

(

Z′
kZk + Im�k

)−1
Uk Z̃

′
kyk

=
(

Z′
kZk + Im�k

)−1
UkU

′
kZ

′
kyk

= (Z′
kZk + Im�k)

−1Z′
kyk .

(11)y = Xb+ g + e,

Ty = TXb+ Tg + Te

= X̃b+ g̃ + ẽ,

the inverse in Eq. (2), but may have slower convergence. 
The estimated effect of marker j and environment k is 
updated as:

where σ̂ kk
β  is the kk element of �̂

−1

β  . The update of β̂(t+1)

jk  is 
followed by the update of residuals of environment k as:
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(old)
k − zjk(β̂

(t+1)

jk − β̂
(t)
jk ).

https://doi.org/10.1186/s12711-022-00730-w
https://doi.org/10.1186/s12711-022-00730-w


Page 15 of 15Xavier and Habier ﻿Genetics Selection Evolution           (2022) 54:45 	

Competing interests
The authors declare that they have no competing interests.

Author details
1 Biostatistics, Corteva Agrisciences, 8305 NW 62nd Ave, Johnston, IA 50131, 
USA. 2 Department of Agronomy, Purdue University, 915 W State St, West 
Lafayette, IN 47907, USA. 

Received: 16 November 2021   Accepted: 13 May 2022

References
	1.	 Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 

using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
	2.	 de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP. 

Whole-genome regression and prediction methods applied to plant and 
animal breeding. Genetics. 2013;193:327–45.

	3.	 Hickey JM, Chiurugwi T, Mackay I, Powell W, Eggen A, Kilian A, et al. 
Genomic prediction unifies animal and plant breeding programs to form 
platforms for biological discovery. Nat Genet. 2017;49:1297–303.

	4.	 Calus MP, Veerkamp RF. Accuracy of multi-trait genomic selection using 
different methods. Genet Sel Evol. 2011;43:26.

	5.	 Jia Y, Jannink JL. Multiple-trait genomic selection methods increase 
genetic value prediction accuracy. Genetics. 2012;192:1513–22.

	6.	 Meyer K. Maximum likelihood estimation of variance components for 
a multivariate mixed model with equal design matrices. Biometrics. 
1985;41:153–65.

	7.	 Thompson EA, Shaw RG. Pedigree analysis for quantitative traits: variance 
components without matrix inversion. Biometrics. 1990;46:399–413.

	8.	 Leventhal D, Lewis AS. Randomized methods for linear constraints: con-
vergence rates and conditioning. Math Oper Res. 2010;35:641–54.

	9.	 Ma A, Needell D, Ramdas A. Convergence properties of the randomized 
extended Gauss–Seidel and Kaczmarz methods. SIAM J Matrix Anal Appl. 
2015;36:1590–604.

	10.	 Cunningham E, Henderson CR. An iterative procedure for estimating 
fixed effects and variance components in mixed model situations. Biom-
etrics. 1968;24:13–25.

	11.	 Thompson R. Iterative estimation of variance components for non-
orthogonal data. Biometrics. 1969;25:767–73.

	12.	 VanRaden PM, Jung YC. A general purpose approximation to restricted 
maximum likelihood: the tilde-hat approach. J Dairy Sci. 1988;71:187–94.

	13.	 Schaeffer LR. Pseudo expectation approach to variance component 
estimation. J Dairy Sci. 1986;69:2884–9.

	14.	 Henderson C. Quadratic estimation of variances. In: Applications of linear 
models in animal breeding. Guelph: University of Guelph; 1984. p. 133.

	15.	 Legarra A, Misztal I. Computing strategies in genome-wide selection. J 
Dairy Sci. 2008;91:360–6.

	16.	 Hayes JF, Hill WG. Modification of estimates of parameters in the 
construction of genetic selection indices (‘bending’). Biometrics. 
1981;37:483–93.

	17.	 Xavier A, Muir WM, Rainey KM. bwgr: Bayesian whole-genome regression. 
Bioinformatics. 2019;36:1957–9.

	18.	 Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: 
data mining, inference, and prediction. New York: Springer; 2001.

	19.	 de los Campos G, Gianola D, Rosa GJ, Weigel KA, Crossa J. Semi-paramet-
ric genomic-enabled prediction of genetic values using reproducing 
kernel Hilbert spaces methods. Genet Res. 2010;92:295–308.

	20.	 Ødegård J, Indahl U, Strandén I, Meuwissen TH. Large-scale genomic 
prediction using singular value decomposition of the genotype matrix. 
Genet Sel Evol. 2018;50:6.

	21.	 Xavier A. Technical nuances of machine learning: implementation and 
validation of supervised methods for genomic prediction in plant 
breeding. Crop Breed Appl Biotechnol. 2021. https://​doi.​org/​10.​1590/​
1984-​70332​021v2​1Sa15.

	22.	 Habier D, Fernando RL, Dekkers JC. The impact of genetic relation-
ship information on genome-assisted breeding values. Genetics. 
2007;177:2389–97.

	23.	 Johnson DL, Thompson R. Restricted maximum likelihood estima-
tion of variance components for univariate animal models using 
sparse matrix techniques and average information. J Dairy Sci. 
1995;78:449–56.

	24.	 Pocrnic I, Lourenco DA, Masuda Y, Misztal I. Dimensionality of genomic 
information and performance of the algorithm for proven and young 
for different livestock species. Genet Sel Evol. 2016;48:82.

	25.	 Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. Asreml user 
guide release 4.1 structural specification. Hemel Hempstead: VSN Int 
Ltd; 2015.

	26.	 Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee D, et al. Blupf90 and 
related programs (bgf90). In: Proceedings of the 7th world congress on 
genetics applied to livestock production: 19-23 August 2002;  Montpel-
lier; 2002.

	27.	 Masuda Y, Baba T, Suzuki M. Application of supernodal sparse factoriza-
tion and inversion to the estimation of (co) variance components by 
residual maximum likelihood. J Anim Breed Genet. 2014;131:227–36.

	28.	 Crossa J, de los Campos G, Pérez P, Gianola D, Burgueno J, Araus JL, 
et al. Prediction of genetic values of quantitative traits in plant breed-
ing using pedigree and molecular markers. Genetics. 2010;186:713–24.

	29.	 Gianola D, Okut H, Weigel KA, Rosa GJ. Predicting complex quantitative 
traits with Bayesian neural networks: a case study with jersey cows and 
wheat. BMC Genet. 2011;12:87.

	30.	 Gianola D, Fernando RL, Schön C-C. Inferring trait-specific similarity 
among individuals from molecular markers and phenotypes with 
Bayesian regression. Theor Popul Biol. 2020;132:47–59.

	31.	 Gianola D, Fernando RL. A multiple-trait Bayesian lasso for genome-
enabled analysis and prediction of complex traits. Genetics. 
2020;214:305–31.

	32.	 Xavier A, Muir WM, Rainey KM. Assessing predictive properties of 
genome-wide selection in soybeans. G3 (Bethesda). 2016;6:2611–6.

	33.	 Xavier A. Efficient estimation of marker effects in plant breeding. G3 
(Bethesda). 2019;9:3855–66.

	34.	 Marone D, Panio G, Ficco D, Russo MA, De Vita P, Papa R, et al. Charac-
terization of wheat dart markers: genetic and functional features. Mol 
Genet Genomics. 2012;287:741–53.

	35.	 Xavier A, Jarquin D, Howard R, Ramasubramanian V, Specht JE, Graef 
GL, et al. Genome-wide analysis of grain yield stability and envi-
ronmental interactions in a multiparental soybean population. G3 
(Bethesda). 2018;8:519–29.

	36.	 Diers BW, Specht J, Rainey KM, Cregan P, Song Q, Ramasubramanian 
V, et al. Genetic architecture of soybean yield and agronomic traits. G3 
(Bethesda). 2018;8:3367–75.

	37.	 Xu S. Mapping quantitative trait loci by controlling polygenic back-
ground effects. Genetics. 2013;195:1209–22.

	38.	 Montesinos-López A, Montesinos-López OA, Montesinos-López JC, 
Flores-Cortes CA, de la Rosa R, Crossa J. A guide for kernel generalized 
regression methods for genomic-enabled prediction. Heredity (Edinb). 
2021;126:577–96.

	39.	 Searle SR, Casella G, McCulloch CE. Prediction of random variables. In: 
Variance components. New York: Wiley; 1992. p. 269–77. https://​doi.​org/​
10.​1002/​97804​70316​856.​ch7.

	40.	 Habier D. Improved molecular breeding methods. Google Patents. 
WO2015100236A1 (1988). https://​paten​ts.​google.​com/​patent/​WO201​
51002​36A1/​en.

	41.	 Rincent R, Charcosset A, Moreau L. Predicting genomic selection effi-
ciency to optimize calibration set and to assess prediction accuracy in 
highly structured populations. Theor Appl Genet. 2017;130:2231–47.

	42.	 Ouweltjes W, Schaeffer L, Kennedy B. Sensitivity of methods of vari-
ance component estimation to culling type of selection. J Dairy Sci. 
1988;71:773–9.

	43.	 Meyer K. Factor-analytic models for genotype× environment type prob-
lems and structured covariance matrices. Genet Sel Evol. 2009;41:21.

	44.	 Searle SR. Linear models. New York: John Wiley and sons; 1971.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1590/1984-70332021v21Sa15
https://doi.org/10.1590/1984-70332021v21Sa15
https://doi.org/10.1002/9780470316856.ch7
https://doi.org/10.1002/9780470316856.ch7
https://patents.google.com/patent/WO2015100236A1/en
https://patents.google.com/patent/WO2015100236A1/en

	A new approach fits multivariate genomic prediction models efficiently
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Statistical model
	Solving fixed effects and marker effects
	Solving variances and covariances
	Exact THGS
	Alternative methods
	Data and evaluation statistics

	Results
	Runtime
	Accuracy and bias of GEBV
	Bias and standard error of parameters
	Orthogonalization

	Discussion
	Conclusions
	Acknowledgements
	References




