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Abstract: We report here high rates (47.5%, 48/101) of detection of porcine circovirus 2 (PCV2) in
diarrheic pigs from three pig farms in the Dominican Republic. Seventeen of the PCV2 positive
samples, representing the three pig farms, different age groups and sampling periods (2020–2021),
were amplified for the complete PCV2 genome. Based on analysis of open reading frame 2 and
complete genome sequences, the 17 PCV2 strains were assigned to the PCV2d genotype. Significant
differences were observed in PCV2 detection rates between the vaccinated (20% (10/50)) and unvacci-
nated (62.5% (10/16) and 80% (28/35)) farms, corroborating previous observations that PCV2a-based
vaccines confer protection against heterologous PCV2 genotypes. The present study is the first to
report detection and molecular characterization of PCV2 from the Dominican Republic, warranting
large-scale molecular epidemiological studies on PCV2 in pig farms and backyard systems across the
country. For the first time, PCV2d was identified as the predominant PCV2 genotype in a study from
the Caribbean region, suggesting that a genotype shift from PCV2b to PCV2d might be happening in
the Caribbean region, which mirrored the current PCV2 genotype scenario in many other parts of the
world. Besides PCV2, we also identified a pigeon circovirus-like virus, and a circular Replication-
associated protein (Rep)-encoding single-stranded (CRESS) DNA virus, which was characterized
for the complete genome. The CRESS DNA virus shared a similar genomic organization and was
related to unclassified CRESSV2 DNA viruses (belonging to the Order Cirlivirales) from porcine feces
in Hungary, indicating that related unclassified CRESS DNA viruses are circulating among pigs in
different geographical regions, warranting further studies on the epidemiology and biology of these
novel viruses.

Keywords: complete genome analysis; Dominican Republic; genotype shift; porcine circovirus 2;
porcine circovirus 2d; porcine-associated unclassified CRESS DNA virus
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1. Introduction

Porcine circoviruses (PCV), members of the genus Circovirus within family Circoviri-
dae, are small non-enveloped viruses with a circular, single-stranded ambisense DNA
genome [1,2]. To date, at least four species of PCV (designated as porcine circovirus 1–4)
have been recognized in pigs [2]. Among them, PCV2 is ubiquitous in swine populations
worldwide, incurring significant economic losses to the pork industry [2–5]. In pigs, PCV2
has been associated with various clinical and subclinical conditions (post-weaning mul-
tisystemic wasting syndrome (PMWS)/PCV2 systemic disease, porcine dermatitis, and
nephropathy syndrome (PDNS), PCV2-associated pneumonia, reproductive disorders, and
enteric diseases) that are collectively referred to as porcine circovirus-associated diseases
(PCVAD) [5–7]. Besides circoviruses, several diverse circular replication-associated protein
(Rep)-encoding single-stranded DNA (CRESS DNA) viral sequences have been reported
from healthy and clinically ill pigs, although the true host/s and pathogenesis of these
viruses are largely unknown [8–10].

The PCV2 genome consists of two major open reading frames (ORF): ORF1 codes
for the replication-related proteins—Rep and Rep’, whilst ORF2 encodes the capsid pro-
tein (Cap) [1,11,12]. The PCV2 Cap plays a crucial role in viral attachment to host cells,
and represents the major immunogenic protein, forming the basis of the current PCV2
vaccines [5,11,13,14]. Based on differences in ORF2 sequences, PCV2 strains have been
classified into at least eight established genotypes (PCV2a-h) [2,5,14–17]. A ninth PCV2
genotype, PCV2i, has also been proposed in a study from the US [16]. During the mid-2000s,
PCV2b replaced PCV2a as the predominant global genotype, and more recently, PCV2d
has emerged as the major genotype in many parts of the world [2,5,14–17]. Although
the currently licensed PCV2 vaccines, based on PCV2a, appear to confer cross protection
against the other PCV2 genotypes, the implications of the two major PCV2 genotype shifts,
especially the emergence of PCV2d, on vaccine efficacy and disease severity in porcine
populations remains to be clearly elucidated [5,14–16,18–31].

Although pig farming constitutes an important component of the livestock econ-
omy in the Caribbean region [32], limited information is available on PCV2 infection in
pigs from the region so far [32–38]. Single reports from the Dominican Republic, Haiti,
and Trinidad and Tobago have documented high prevalence of antibodies to PCV2 in
pig farms/premises [32–35]. On the other hand, two molecular epidemiological stud-
ies from Cuba and a single study from St. Kitts identified PCV2b as the major PCV2
genotype [36–38]. In the present study, based on diarrheic fecal samples collected dur-
ing 2020–2021, we report for the first time high rates of detection and complete genomic
analysis of PCV2 in pigs from the Dominican Republic, and provide the first evidence
for predominance of PCV2d from a Caribbean country. Furthermore, we also identified a
pigeon circovirus-like viral sequence, and an unclassified CRESS DNA virus, which was
analyzed for the complete genome.

2. Materials and Methods
2.1. Sampling

The present study was based on 101 fecal samples that were collected from pigs with
diarrhea at three different farms in the Dominican Republic for a project on ‘detection
and molecular characterization of adenovirus (AdV) and Rotavirus A (RVA) in porcine
enteritis’ (Supplementary Material S1). During August–November 2020, 35 fecal samples
were obtained from a pig farm (housing approximately 300 pigs) in the municipality of
Cabrera, whilst 16 fecal samples were collected from a pig farm (approximately 150 pigs)
in the municipality of Pedro Brand. Between January and February 2021, 50 fecal samples
were collected on a pig farm (approximately 500 pigs) in the municipality of Villa Mella.
The maximum number of diarrheic samples were from weaners (34.65%, 35/101 animals),
followed by growers (17.82%, 18/101) and piglets (16.83%, 17/101). Most of the diarrheic
weaners and growers exhibited retarded growth, pallor, and poor gain in body weight.
Four of the diarrheic pigs died (one each of a piglet, weaner, grower, and dry sow).
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The diarrheic pigs were identified and closely monitored by the farm veterinarian.
When the animal defecated, a sterile container (4 oz. Specimen Cup, Dynarex Corpora-
tion, New York, NY, USA) was held near the rectal orifice to collect a projectile of the
liquid/semi-liquid feces. To avoid contamination, the veterinarian changed gloves and
personal protective equipment between collection of samples. After sampling, the container
was sealed with sterile tape, placed in two layers of biohazard bags, and transported under
cold chain to the laboratory. The samples were stored at −20 ◦C until further use. The
Institutional Animal Care and Use Committee (IACUC) of the Ross University School of
Veterinary Medicine (RUSVM), St. Kitts and Nevis, acknowledged the collection and use of
the porcine samples for the present study (RUSVM IACUC #: TSU6.10.22).

2.2. Amplification of Viral Genome

Viral DNA was extracted from the porcine fecal samples using the QIAamp Fast DNA
Stool Mini Kit (Qiagen Sciences, Germantown, MD, USA) following the manufacturer’s in-
structions. The samples were screened for PCV2 DNA by a PCV2-specific nested PCR assay
targeting the Rep-encoding gene (Supplementary Material S2). The complete genomes of
PCV2 strains were amplified using three overlapping nested PCRs that included the screen-
ing PCR assay (Supplementary Material S2). Fecal samples from Cabrera and Pedro Brand
were screened for novel circoviruses/other CRESS DNA viruses by a circovirus/cyclovirus
pan-rep nested PCR assay as described in previous studies [39,40]. The full-length genome
of the porcine-associated CRESS DNA virus (designated as CRESSV2/ENG22) was am-
plified by an inverse nested PCR assay using additional primers derived from the partial
rep sequence. Polymerase chain reactions were performed using the Platinum™ Taq DNA
Polymerase (Invitrogen™, Thermo Fisher Scientific Corporation, Waltham, MA, USA) ac-
cording to the manufacturers’ instructions. Sterile water was used as the negative control
in all PCR reactions.

2.3. Nucleotide Sequencing

The PCR amplicons were purified using the Wizard® SV Gel and PCR Clean-Up kit
(Promega, Madison, WI, USA) following the instructions made available by the manufac-
turer. Nucleotide (nt) sequences were determined using the ABI Prism Big Dye Terminator
Cycle Sequencing Ready Reaction Kit on an ABI 3730XL Genetic Analyzer (Applied Biosys-
tems, Foster City, CA, USA).

2.4. Sequence Analysis

The standard BLASTN and BLASTP program (Basic Local Alignment Search Tool,
www.ncbi.nlm.nih.gov/blast, accessed on 1 June 2022) was employed to conduct homology
searches for related nt and deduced amino acid (aa) sequences, respectively. Putative ORFs
were determined using the ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/, accessed
on 1 June 2022). The map of the circular viral genome of CRESS DNA virus CRESSV2/ENG22
was constructed with the ‘Draw Custom Plasmid Map’ program (https://www.rf-cloning.
org/savvy.php, accessed on 6 June 2022). The putative stem-loop structure was identified in
the CRESSV2/ENG22 sequence using the mFold program [41]. Pairwise sequence identities
were calculated using the ‘align two or more sequences’ option of BLASTN/BLASTP
(https://blast.ncbi.nlm.nih.gov/, accessed on 5 June 2022), or the EMBOSS Needle program
(https://www.ebi.ac.uk/Tools/psa/emboss_needle/, accessed on 5 June 2022).

Multiple alignments of nt and deduced aa sequences were performed using the
CLUSTALW (https://www.genome.jp/tools-bin/clustalw, accessed on 5 June 2022) and
Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 5 June 2022)
program, respectively. The complete genomes of the PCV2 strains were evaluated for
recombination events using the RDP4 program with default parameters, and were consid-
ered as recombinants if supported by two, or >two detection methods (3Seq, BOOTSCAN,
CHIMAERA, GENECONV, MAXCHI, RDP, and SISCAN) with a highest acceptable p-value
of p < 0.01 with Bonferroni’s correction, as described previously [38,39,42]. Phylogenetic
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analyses of PCV2 were carried out by both maximum-likelihood (ML) and neighbor-joining
(NJ) methods using the MEGA7 software, with the Kimura 2-parameter model of substi-
tution and 1000 bootstrap replicates, whereas phylogenetic analysis of CRESSV2/ENG22
was performed by the ML method, supported with 1000 bootstrap replicates and the
LG + F + G + I model of substitution, as described in previous studies [8,15,38].

2.5. GenBank Accession Numbers

The GenBank accession numbers for the PCV1, PCV2, pigeon circovirus-like virus
and porcine-associated CRESS DNA virus CRESSV2/ENG22 sequences determined in the
study are ON813247, ON729964-ON729980, ON813248, and ON813249, respectively.

3. Results and Discussion

The Caribbean nation of the Dominican Republic (~18,619 square miles, human popula-
tion of ~10,622,000 in the year 2022) is located on the Greater Antillean Island of Hispaniola,
with Haiti to the west (Supplementary Material S1) (https://www.britannica.com/place/
Dominican-Republic, accessed 11 June 2022). Pork production (~100,829,500 kgs in 2021, ap-
proximately 1,800,000 pigs reared in commercial farms and backyard systems) contributes
significantly to the livestock economy and is an important source of animal protein in the
Dominican Republic (https://agricultura.gob.do, accessed on 11 June 2022).

3.1. Detection and Complete Genome Analysis of PCV2 in Diarrheic Pigs from the
Dominican Republic

In the present study, we observed high rates (47.5%, 48/101) of detection of PCV2 in
diarrheic pigs from three pig farms (Cabrera in Central-North, and Pedro Brand and Villa
Mella in Central-South) in the Dominican Republic (Supplementary Materials S1 and S3).
The only other published study on PCV2 from the Dominican Republic reported high
(59.6%, 65/109) seropositivity (antibodies to PCV2) on pig farms near the western border of
the country [33]. Taken together, these observations indicated that PCV2 might be widely
distributed in porcine populations in the Dominican Republic. Although the sample size
varied between the three pig farms, we observed significant differences in PCV2 detection
rates between the farm in Villa Mella (20%, 10/50) and those in Cabrera (80%, 28/35)
and Pedro Brand (62.5%, 10/16), which might be attributed to the routine vaccination
(CIRCUMVENT® PCV M vaccine, Merck & Co., Inc., Rahway, NJ, USA) of pigs at Villa
Mella. The high PCV2 detection rates in 2020 (74.5%, 38/51) and relatively low detection
rates in 2021 (20%, 10/50) might be due to sampling on unvaccinated and vaccinated farms
during 2020 and 2021, respectively. The rates of PCV2 detection in different age groups
of the diarrheic pigs was 23.52% (4/17), 45.71% (16/35), 94.44% (17/18), 0% (0/1), 46.15%
(6/13), 21.42% (3/14), and 66.66% (2/3) in piglets, weaners, growers, gilt, farrow/pregnant
sows, dry sows, and boars, respectively (Supplementary Material S3). Three of the PCV2
positive pigs died (one grower in Cabrera, and one weaner and one dry sow in Villa Mella),
and most of the PCV2 positive weaners and growers were of low body weight and showed
stunted growth. Although we could not obtain specific information on the reproductive
health of the PCV2 positive sows, especially pregnant animals, abortions, decreased litter
size and continuous repetition of estrous were important concerns for the farms. The fecal
samples were also screened for AdV and RVA as a part of another ongoing research project
(detection and molecular characterization of Adv and RVA in porcine enteritis) on the
farms. Adenoviral DNA was detected in 21 (43.75%) of the 48 PCV2 positive pigs, whilst
none of the animals tested positive for RVAs (Supplementary Material S3).

Based on available volumes of fecal samples, 17 PCV2 strains, representing the three
pig farms, different age groups, and sampling periods, were selected for molecular char-
acterization of the complete genome. Except for a single strain (strain Po/PCV2/DOM/
GES7/2020, 1756 bp in size), the complete genomes of PCV2 strains from the Dominican
Republic were 1767 nt in length, as observed in those of most other PCV2 [1,5,11,15]. A
unique 11 nt deletion was observed downstream of the putative nick site in the origin
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of replication (ori) of PCV2 strain GES7 (Figure 1). As a result, the putative ori of GES7
lacked the fourth hexamer (H4) repeat sequence (Figure 1). Among PCV2, this deletion
appears to have only been reported in a single PCV2a strain (strain Belgorod RA18) from
Russia [43]. Since the PCV Rep binds preferentially to the H1/H2 tandem, whilst H3/H4
are considered as optional binding sites, it has been proposed that H4 might not be essential
for the replication of PCV [44]. This observation was corroborated by the detection of GES7
and Belgorod RA18 [43] in live pigs, although the replication of either PCV2 strain remains
to be studied in vivo or in vitro.
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genome sequences of the 17 PCV2 strains from the present study. Since the PCV2 geno-
typing scheme is based on the NJ method [15], whilst the ML method is more robust than 

Figure 1. Multiple alignment of the partial origin of replication (ori) sequences (downstream
of the putative nick site) of porcine circovirus 2 (PCV2) strains from the Dominican Republic
(host/virus species/country/virus name/year) with those of reference PCV2 strains (host/PCV2
genotype/GenBank accession number). The four hexamer repeats, H1-4, are highlighted with orange,
yellow, pink, and gray, respectively. A unique 11-nucleotide (nt) deletion (shown with red) was
observed in the putative ori sequences of PCV2 strain GES7 (shown with blue) from the Dominican
Republic and PCV2a strain Belgorod RA18 (GenBank accession number MZ511700, shown with
green) from Russia. A ‘*’ denotes an identical nt residue, whilst ‘-’ indicates absence of an nt residue.
Numbers to the right indicate the positions of the nt for respective sequences.

To determine the genotype nature and evolution of PCV2 in the Dominican Republic
(DOM), phylogenetic analysis was performed on the ORF2 (nt 1734-nt 1030) and com-
plete genome sequences of the 17 PCV2 strains from the present study. Since the PCV2
genotyping scheme is based on the NJ method [15], whilst the ML method is more ro-
bust than the NJ method, the DOM PCV2 sequences were phylogenetically evaluated
by both methods. The ORF2 and complete genome sequences of the DOM PCV2 strains
exhibited similar clustering patterns with the ML and NJ methods, forming a single clus-
ter within the PCV2d genotype (Figure 2; Supplementary Material S4). The 17 DOM
PCV2 strains shared ORF2 and complete genome nt sequence identities of 99.57–100% and
98.98–100%, respectively, between themselves. With other PCVs, the DOM PCV2 strains
shared maximum ORF2 nt sequence identities of 99.86–100% with PCV2d strain 15-63-
GB (GenBank accession number KX808476) from South Korea or RQ2 (KX247818) from
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China and maximum complete genome nt sequence identities of 99.21–99.89% with PCV2d
strain PCV2/PhuTho/G40312/2018 (LC602996) from Vietnam or KSU-IA-2018-PCV2-28
(MK504407) from the USA. Considering the implications of recombination events on PCV2
evolution, especially on viral antigenicity and virulence [5,15,45], the complete genome
sequences of the DOM PCV2 strains were subjected to recombination analysis. However,
the RDP4 program did not provide evidence for recombination events involving the DOM
PCV2 sequences (data not shown).

The putative Cap of the DOM PCV2 strains shared deduced aa identities of 99.15–100%
between themselves, and maximum identities of 99.57–100% with those of other PCV2
(PCV2d) strains. The PCV2d genotype nature of the DOM strains was further corrob-
orated by multiple alignment of the DOM Cap sequences with those of viruses repre-
senting the eight PCV2 genotypes (Supplementary Material S5). The putative Cap of
the DOM PCV2 strains contained an extra aa (K) at the end (aa position 234) of the
carboxyl terminus (proposed to facilitate viral attachment to host cells) and retained
the signature motif (86SNPLTV91) that distinguishes PCV2d from PCV2a and PCV2b
(Supplementary Material S5) [13,38,46]. Only two aa mismatches (G/R and T/A at posi-
tions 169 and 170, respectively) were observed between the Cap sequences of the DOM
PCV2 strains (Supplementary Material S5). Whilst 169G, or 169R has been reported in sev-
eral other PCV2d strains, the T170A substitution (observed in DOM PCV2 strain DE102) ap-
pears to have only been reported in a PCV2d strain (GenBank accession number MH323413)
from China (Supplementary Material S5). Although the implications of these mutations
are not known, the PCV2 Cap region spanning aa positions 169–180 has been proposed
to serve as a decoy epitope, with aa residues at 170–172, 174 and 175 participating in the
recognition by antibodies [47]. The putative Rep of the DOM PCV2 strains shared deduced
aa identities of 98.41–100% between themselves, and maximum identities of 99.04–100%
with those of other PCV2 strains. A total of 10 aa mismatches were observed between
the DOM Rep sequences, of which 7 substitutions appear to be unique/rarely reported in
PCV2 Rep sequences (Supplementary Material S6).

Taken together, the present study is the first report on detection and molecular char-
acterization of PCV2 in the Dominican Republic. For the first time, PCV2d was identi-
fied as the predominant PCV2 genotype in a study from the Caribbean region. In the
Americas, PCV2d has been identified as the major PCV2 genotype in the USA [48], and
recently, some South American countries have reported the emergence/genotype shift
to PCV2d [30,31,49,50]. On the other hand, previous studies from the Caribbean region
(Cuba and St. Kitts) reported PCV2b as the sole genotype, except for identification of
3 PCV2b-PCV2d recombinant strains from St. Kitts [36–38]. Since the studies from Cuba
and St. Kitts were based on porcine samples collected before 2010 and 2016, respectively,
they might not reflect the present status of PCV2 genotypes circulating in the region [36–38].
The present study, based on samples collected during 2020–2021, indicated that a poten-
tial PCV2 genotype shift from PCV2b to PCV2d might be happening in the Caribbean
region, which mirrored the current PCV2 genotype scenario in many other parts of the
world [2,5,15]. However, large-scale molecular epidemiological studies involving several
other Caribbean islands are required to confirm this observation. The emergence of PCV2d
as the major PCV2 genotype, even in vaccinated farms, has sparked a debate between vac-
cine efficacy versus vaccination failure, especially with regards to the current PCV2a-based
vaccines [5,14,18–20,23–25,28–31]. In the present study, we observed significant differences
in PCV2 detection rates between the vaccinated (20%) and unvaccinated (62.5% and 80%)
farms, corroborating previous observations that PCV2a-based vaccines confer protection
against other PCV2 genotypes [5,14]. However, the PCV2 detection rates among diarrheic
pigs was still high in the vaccinated farm, which might be related to varying levels of
vaccine efficacy against heterologous genotypes, and/or other factors, such as co-infections
with other pathogens, individual host factors, and husbandry practices [5].
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Figure 2. Phylogenetic analyses of the nucleotide sequences of open reading frame 2 (A) and complete
genomes (B) of porcine circovirus 2 (PCV2) strains from the Dominican Republic with those of viruses
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belonging to the eight PCV2 genotypes (PCV2a-PCV2h). The trees were constructed using the
maximum-likelihood method. The host/virus species/country/virus name/year are shown for
the PCV2 strains from the Dominican Republic, whilst the host/PCV2 genotype/country/virus
name/year of detection, or year of GenBank submission/GenBank accession number have been
mentioned for the other PCV2 strains. Red and black circles indicate the PCV2 strains detected in
vaccinated animals during 2021 and in unvaccinated animals during 2020, respectively, from the Do-
minican Republic. In (B), porcine circovirus 1 strain Po/PCV1/UK/PCV1-Eng-1970/1970/KJ408798
was used as the outgroup sequence (not shown here due to space constraints). Bootstrap values < 65%
are not shown. Scale bar, 0.01 substitutions per nucleotide. Phylogenetic analyses performed using
the neighbor-joining method are shown in Supplementary Material S4.

Although the present study has implications on the regional pork industry and adds
important information to our current knowledge on geographical distribution of PCV2
genotypes, there were a few limitations: (i) The samples were screened for PCV2 by a
nested PCR, whilst qPCR has been the preferred screening assay in many other studies [17].
However, the PCV2-specific nested PCR assay employed in our study reported high PCV2
detection rates (47.5%, 48/101) in the diarrheic pigs. Nested PCR assays exhibit higher
sensitivity and specificity than conventional PCRs [51], and identical PCV2 detection rates
have been reported with nested PCR and qPCR assays [52]; (ii) Since the study was limited
to diarrheic fecal samples, our findings may not reveal the overall PCV2 scenario in the
farms; (iii) Due to lack of sufficient volumes of fecal samples, we could not sequence all
the PCV2 positive samples. However, the 17 genotyped samples represented the three
pig farms, different age groups of animals and sampling periods; and (iv) Since the PCV2
positive samples were screened for only two (AdV and RVA) of the several other enteric
pathogens, we could not establish whether PCV2 caused diarrhea in the animals.

3.2. Identification of a Pigeon Circovirus-like Sequence and Complete Genome Analysis of an
Unclassified CRESS DNA Virus from Diarrheic Pigs

In the present study, porcine fecal samples from Cabrera and Pedro Brand were also
screened for novel circoviruses/other CRESS DNA viruses using a circovirus/cyclovirus
pan-rep nested PCR assay. Seven samples (six of which had tested positive with the
PCV2-specific nested-PCR (Supplementary Material S3)) yielded the expected ~400 bp
amplicon and were sequenced for the partial rep gene. By BLASTN analysis of the partial
rep sequences, ENG10, GE2, GES4, and GES72 shared maximum homology with PCV2
strains, whilst VE22 was closely related to PCV1 strains. ENG7 shared maximum nt
sequence identity of 92.49% with circovirus strains (GenBank accession numbers JN183455,
MW181954, and MW181966-67) from pigeons in China. A previous study speculated that
PCV2 was transmitted to wild boars from avian species, and subsequently infected domestic
pigs [53]. Therefore, it would have been interesting to study the evolution of the pigeon
circovirus-like viral strain from a diarrheic pig. However, despite repeated efforts, we
could not amplify the complete genome of the pigeon circovirus-like virus in sample ENG7.
Since the pigeon circovirus-like sequence was detected in a fecal sample, we could not
determine whether the virus infected pigs, or was of dietary origin (consumption of avian
feces). The partial rep sequence in ENG22 shared maximum homology with unclassified
CRESS DNA viral sequences from porcine feces [8] and was eventually characterized for
the complete genome.

The complete genome of the CRESS DNA virus (CRESSV2/ENG22) in sample ENG22
was 2851 nt in length, and shared maximum nt sequence identities of ~93% with those of
porcine-associated CRESS DNA viruses 303_7 and 453_7 from porcine feces in Hungary [8].
Based on the genome organization, CRESSV2/ENG22 was assigned to type V CRESS DNA
genomes (Figure 3) [54]. At least three putative ORFs (rep, ORF1 and ORF2) were located on
the genome-sense strand of CRESSV2/ENG22 (Figure 3). The ori (located in the large inter-
genic region (LIR)) of CRESS DNA viruses is characterized by a conserved nonanucleotide
motif at the apex of a stem loop structure, and presence of repeat elements [8,55]. The
LIR (between rep and ORF2) of CRESSV2/ENG22 consisted of a putative nonanucleotide
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motif (CATTATTACC) that was surrounded with 15 nt-long complementary sequences,
indicating potential loop formation (Figure 3). A 64 nt-long region of repeat elements
was observed upstream of the nonanucleotide motif (Figure 3). Interestingly, the LIR of
CRESSV2/ENG22 contained a 19 nt-long region (that included repeat elements) upstream
of the nonanucleotide motif which was lacking in the related porcine-associated CRESS
DNA viral sequences (Figure 3). The putative Rep of CRESSV2/ENG22 retained the rolling
circle replication and superfamily 3 helicase motifs that are conserved in other CRESS
DNA viruses (Figure 3; Supplementary Material S7) [55], and shared maximum deduced aa
identities of 98.75% with the Rep of 303_7 and 453_7. Phylogenetically, CRESSV2/ENG22
grouped with 303_7 and 453_7 within a large cluster that predominantly consisted of several
diverse porcine-associated unclassified CRESSV2 genomes belonging to the order Cirlivi-
rales (Figure 4). The amino terminus of the putative ORF1 product of CRESSV2/ENG22
accumulated slightly more arginine residues, corroborating previous speculations that
ORF1 might encode the capsid protein (Supplementary Material S8) [8,55]. The putative
ORF1 product of CRESSV2/ENG22 shared maximum deduced aa identities of 99.43% with
those of 303_7 and 453_7.

Although the circovirus/cyclovirus pan-rep nested PCR assay employed in the present
study has been successfully used to identify novel CRESS DNA viruses [39,40,55,56], we
detected unclassified CRESS DNA viruses in a single porcine fecal sample. This might sug-
gest that porcine-associated CRESS DNA viruses are circulating at low frequencies in the
sampled farms. On the other hand, a recent study from Hungary, based on metagenomic
analysis, reported high detection rates (86.9%, 20/23 samples) of porcine circovirus-like
CRESS DNA viral sequences in stool samples [8], indicating that next generation sequenc-
ing technologies might allow a broader-spectrum detection of porcine-associated novel
CRESS DNA viruses compared to the circovirus/cyclovirus pan-rep nested PCR assays.
The complete genomic analysis of CRESSV2/ENG22 suggested that related unclassified
CRESS DNA viruses are circulating among pigs in different geographical regions, indi-
cating possible spread of the virus, or parallel evolutionary events [8]. Although the
porcine-associated CRESS DNA viruses have been proposed to be derived from the gut mi-
crobiome/diet/environmental contamination, their detection in diseased animals warrants
further investigation [8–10,54,55].
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Figure 3. Genome organization of porcine-associated circular Rep-encoding single-stranded (CRESS) DNA virus CRESSV2/ENG22. The nonanucleotide motif at the
apex of a putative stem-loop structure (marked in the large intergenic region) and the three predicted open reading frames (ORFs) were located on the genome-sense
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strand of CRESSV2/ENG22. The ORF encoding the putative replication associated (Rep) protein is shown with red, whilst ORF1 (speculated to encode the putative
capsid (Cp) protein) and ORF2 is shown with blue and green, respectively (A). Presence of the conserved rolling circle replication (motifs I through III) and
superfamily 3 helicase (Walker A and B, and motif C) motifs in the putative Rep proteins of CRESSV2/ENG22, other porcine-associated CRESS DNA viruses, and
porcine circovirus 2. The number below the motif denotes the position of the amino acid (aa) residue in the respective Rep protein. Sample ENG22 also tested positive
for porcine circovirus 2d. The GenBank accession numbers are shown in parentheses (B). The putative nonanucleotide motif (highlighted with blue), complementary
sequences flanking the nonanucleotide motif (underlined), and repeat sequences (shown with green) in the large intergenic region of porcine-associated CRESS DNA
viruses CRESSV2/ENG22, CRESSV2/303_7 (GenBank accession number MW847281), and CRESSV2/453_7 (MW847282). A ‘*’ denotes an identical aa residue,
whilst ‘-’ indicates absence of an aa residue. The numbers correspond to the positions of nucleotides in the complete genome sequence of CRESSV2/ENG22 (C).
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4. Conclusions

The present study is the first to report high rates of detection (47.5%, 48/101) and
molecular characterization of PCV2 in diarrheic pigs from the Dominican Republic, war-
ranting large-scale molecular epidemiological studies on PCV2 in pig farms and backyard
systems across the country. Based on analysis of viral genomes of the 17 PCV2 positive
samples that were representative of sampling sites, age groups of animals, and sampling
periods, PCV2d was identified as the predominant/sole genotype. To our knowledge,
this is the first report on predominance of PCV2d from a Caribbean country, suggest-
ing that a genotype shift from PCV2b to PCV2d might be happening in the Caribbean
region, which reflected the current PCV2 genotype scenario in many other parts of the
world [2,5,14–17]. Significant differences were observed in PCV2 detection rates between
the vaccinated farm and unvaccinated farms, emphasizing the importance of vaccination
against PCV2 (including heterologous strains) in porcine populations. The identification
of a pigeon circovirus-like virus and an unclassified CRESS DNA virus highlighted the
diversity of the CRESS DNA viruses in porcine fecal samples, warranting further studies
on the epidemiology and biology of these novel viruses.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v14081799/s1, Supplementary Material S1: Map of the Dominican
Republic showing the locations of the three pig farms that were sampled in the study; Supplementary
Material S2: Six primer pairs were used in three overlapping nested PCR assays to amplify the
complete genomes of porcine circovirus 2 (PCV2) strains from the Dominican Republic. Nested
PCR reaction ‘A’ was used to screen the porcine fecal samples for PCV2; Supplementary Material S3:
Details of the diarrheic pigs that tested positive for porcine circovirus 2 (PCV2) in the Domini-
can Republic; Supplementary Material S4: Phylogenetic analyses of the nucleotide sequences of
open reading frame 2 (A) and complete genomes (B) of porcine circovirus 2 (PCV2) strains from
the Dominican Republic with those of viruses belonging to the eight PCV2 genotypes (PCV2a-
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PCV2h); Supplementary Material S5: Multiple alignment of the putative capsid proteins of porcine
circovirus 2 (PCV2) strains from the Dominican Republic with those of virus strains representing
the 8 PCV2 genotypes (PCV2a-h); Supplementary Material S6: Multiple alignment of the putative
replication-associated proteins (Rep) of porcine circovirus 2 (PCV2) strains from the Dominican
Republic with those of virus strains representing the 8 PCV2 genotypes (PCV2a-h); Supplementary
Material S7: Multiple alignment of the putative replication-associated proteins (Rep) of porcine-
associated CRESS DNA virus CRESSV2/ENG22, other porcine-associated CRESS DNA viruses
(CRESS group/virus name/GenBank accession number), and porcine circovirus 2 strains (PCV2
genotype/virus name/GenBank accession number); Supplementary Material S8: Multiple alignment
of the putative protein encoded by open reading frame 1 (ORF1) of porcine-associated CRESS DNA
virus CRESSV2/ENG22 and other porcine-associated CRESS DNA viruses (virus name/GenBank
accession number).
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