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Abstract

Purpose: The aim of the present study was to develop a nomogram for prognostic prediction of patients with lung cancer in
hospice.

Methods: The data was collected from 1106 lung cancer patients in hospice between January 2008 and December 2018. The
data were split into a training set, which was used to identify the most important prognostic factors by the least absolute
shrinkage and selection operator (LASSO) and to build the nomogram, while the testing set was used to validate the nomogram.
The performance of the nomogram was assessed by c-index, calibration curve and the decision curve analysis (DCA).

Results: A total of 1106 patients, including 835 (75%) from the training set and 271 (25%) from testing set, were retrospectively
analyzed in this study. Using the LASSO regression, 5 most important prognostic predictors that included sex, Karnofsky
Performance Scale (KPS), quality-of-life (QOL), edema and anorexia, were selected out of 28 variables. Validated c-indexes of
training set at 15, 30, and 90 days were .778 [.737-.818], .776 [.743-.809], and .751 [.713-.790], respectively. Similarly, the validated
c-indexes of testing set at 15, 30, and 90 days were .789 [.714-.864], .748 [.685-.811], and .757 [.691-.823], respectively. The
nomogram-predicted survival was well calibrated, as the predicted probabilities were close to the expected probabilities.
Moreover, the DCA curve showed that nomogram received superior standardized net benefit at a broad threshold.

Conclusions: The study built a non-lab nomogram with important predictor to analyze the clinical parameters using LASSO. It
may be a useful tool to allow clinicians to easily estimate the prognosis of the patients with lung cancer in hospice.
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Introduction

Lung cancer is one of the malignant cancers that seriously
threaten human health. According to the latest data from the
International Agency for Research on Cancer, it is estimated
that there were 2.09 million new lung cancer cases were re-
ported in 2018,1 and 1.76 million patients die out of it. In
China, the lung cancer incidence and mortality was relatively
high compared to most countries.2,3 More than 70% of pa-
tients with lung cancer diagnosed as advanced tumors, re-
sulting in only 16.1% of lung cancer patients could survive
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over 5 years after diagnosis, which was lower than that of
developed countries in Europe and the United States
(20.1%).4

More and more attention was paid to patients with terminal-
stage lung cancer in hospice in China. In China, the hospice is
an institution that provides free hospice care for advanced
cancer patients having financial conditions, funded by the Li
Ka-shing Foundation. To improve the management of patients
in hospice, research on the survival time of patients in hospice
is indispensable. There were several tools that had been used
to evaluate prognosis in terminally ill patients, such as the
Palliative Prognostic Index (PPI), the Palliative Performance
Scale (PPS) and modified Glasgow Prognostic Score
(mGPS).5-7 The Zhou LJ et al constructed a simple Chinese
Prognostic Scale (ChPS), to predict the survival rate of pa-
tients with terminal-stage cancer, of which accuracy rate of
prediction wasn’t satisfying.8 Jing C et al developed a new
prognostic scale for ChPS (new-ChPS Scale) by a prospective
survey on the prognostic factors.9 However, none of these
models were tailor-made for patients with advanced lung
cancer and the applicability of them still need to be verified.
Some of the Scale incorporated biologic and imaging pa-
rameters, however, the patients in Chinese hospice could not
afford their follow-up blood testing or imaging examination.
Therefore, an effective and economical tool was proposed to
evaluate the outcome of advanced cancer in our study, which
could also triage the patients and inform their family members.

Cox proportional hazard model is the most common
method for assessing the effects of various factors in the
survival analysis. However, under the condition that the
number of independent variables was high while sample size
was low. The Cox proportional hazard model was associated
with limitation such as multicollinearity, reduction in esti-
mation precision, and non-interpretability of the coeffi-
cients.10 Least Absolute Shrinkage and Selection Operator
(LASSO) is an advanced machine learning method, which can
overcome the above problems by adding a penalized function
to the estimation of the partial maximum likelihood. In this
way, the coefficients of redundant variables become exactly
zero and the most probable prognostic factors are retained in
the model.11,12 In some of the previous research, LASSO
method was applied and its superiority over traditional
methods was confirmed through different studies.13,14 In Viet-
Huan Le’s study, LASSO regression model was applied to find
out the best CT-based radiomics features for predicting the
overall survival (OS) of lung cancer.15

In this study, through collecting and analyzing the data of
the patients with lung cancer in hospice, we tried to identify
the most important prognostic factors by LASSO method.
Furthermore, we constructed a user-friendly nomogram with
the selected variables, which help clinicians to give rise to
rapid computation and evaluate the prognosis of patient.
Predicting the prognosis of patient had the following mean-
ings. First, medical staff in the hospice made follow-up
strategies according to patients’ conditions. Patients with

poor prognosis need more frequent visits, and the prediction
model could provide a certain reference. Second, in China,
many patients were very concerned about their survival time,
which was related to whether they need to deal with several
personal matters urgently, such as the disposal of property and
the fulfillment of last wishes. Third, the prediction of survival
time help patients prepare for the future challenges psycho-
logically and practically.16 A good prognosis not only could
increase patients’ confidence in survival but reduce their
mental burden.17

Material and Method

Study Population

We restricted our study cohort to 1106 patients who were
diagnosed with primary lung cancer between January 2008
and December 2018. The information of patients was obtained
from the Hospice Unit of the First Affiliated Hospital of
Shantou University. The study was approved by the Ethics
Committee of the First Affiliated Hospital of Shantou Uni-
versity (approval number: B-2022-164). Requirement for
informed consent was waived because the study was retro-
spective and the identity of all patients remained undisclosed.

Variables Extraction

The baseline demographics included age, gender, ethnicity,
literacy, history of alcohol use, smoking, history and effect of
analgesic treatment, awareness of the disease and past medical
history (hypertension or diabetes). The cancer-related infor-
mation included metastasis, previous cancer treatment, du-
ration of pain, concomitant symptoms, previous analgesic
treatment, and its effect. The Karnofsky Performance Scale
(KPS) was used to assess patient’s performance status, which
was translated into Chinese.18 The lowest score of KPS is 0
and the highest score is 100. The higher the score, the better
the health status of the patient. The quality-of-life (QOL) scale
in the study was developed by Dr Sun Yan in the 1990s by
adapting widely used international scales to a version suitable
for China.19 The QOL scale consists of 12 items (energy,
sleep, appetite, activities of daily life, perception of cancer,
attitude toward treatment, facial expression, fatigue, work
relationships, pain, side effects of treatment and family re-
lationships), with a total score of 60. X-tile 3.6.1 software
(Yale University, New Haven, CT, USA) was employed to
determine the best cutoff for KPS/QOL classified as different
groups.20 Karnofsky Performance Scale was categorized as 30
or lesser, 40, and 50 or more. Quality-of-life was divided into 3
levels: 30 or lesser, 31-35, 36 or more. The numeric rating
scale (NRS) score was used to evaluate the level of pain. The
score of 0-3 is mild pain, a score of 4-7 is moderate pain, and a
score of 8-10 is severe pain.21 The survival time was defined as
the number of days from registration to an event (dead or
service paused). All the information was collected and
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Table 1. Demographic, Clinical, and Tumor Characteristics of Patients with Lung Cancer in Hospice between the Training and Testing Set.

Characteristic Overall (n = 1106) Testing set (n = 271) Training set (n = 835) P

Time (median [IQR]) days 45 [21, 84] 45 [19, 84] 45 [21, 84] .765
Sex (%)
Female 301 (27.2) 73 (26.9) 228 (27.3) .968
Male 805 (72.8) 198 (73.1) 607 (72.7)
Age (median [IQR]) 62 [56, 71] 62 [56, 70] 62 [56, 71] .784

Area (%)
Rural 330 (29.8) 89 (32.8) 241 (28.9) .243
Urban 776 (70.2) 182 (67.2) 594 (71.1)

Education (%)
Illiteracy 159 (14.4) 34 (12.5) 125 (15.0) .231
Primary school 542 (49.0) 145 (53.5) 397 (47.5)
Middle school 276 (25.0) 68 (25.1) 208 (24.9)
High school 106 (9.6) 18 (6.6) 88 (10.5)
High school above 23 (2.1) 6 (2.2) 17 (2.0)

Awareness of the disease (%)
Full understanding 577 (52.2) 138 (50.9) 439 (52.6) .841
Partial understanding 145 (13.1) 38 (14.0) 107 (12.8)
Complete ignorance 384 (34.7) 95 (35.1) 289 (34.6)
Metastasis (%) 986 (89.2) 246 (90.8) 740 (88.6) .380
Operation (%) 104 (9.4) 25 (9.2) 79 (9.5) .999
Chemotherapy (%) 385 (34.8) 84 (31.0) 301 (36.0) .149
Radiotherapy (%) 172 (15.6) 45 (16.6) 127 (15.2) .650

Duration (%)
<1 month 216 (19.5) 47 (17.3) 169 (20.2) .016
1-6 months 730 (66.0) 179 (66.1) 551 (66.0)
6-12 months 111 (10.0) 24 (8.9) 87 (10.4)
>12months 49 (4.4) 21 (7.7) 28 (3.4)

Formal palliative care (%)
None 156 (14.1) 43 (15.9) 113 (13.5) .702
NSAIDs 170 (15.4) 39 (14.4) 131 (15.7)
Weak opioids 370 (33.5) 86 (31.7) 284 (34.0)
Strong opioids 410 (37.1) 103 (38.0) 307 (36.8)

Analgesic effect (%)
Bad 158 (14.3) 43 (15.9) 115 (13.8) .670
Average 154 (13.9) 33 (12.2) 121 (14.5)
Good 661 (59.8) 164 (60.5) 497 (59.5)
Excellent 133 (12.0) 31 (11.4) 102 (12.2)
Hypertension (%) 161 (14.6) 50 (18.5) 111 (13.3) .046
Diabetes (%) 86 (7.8) 20 (7.4) 66 (7.9) .881
Smoke (%) 327 (29.6) 80 (29.5) 247 (29.6) .999
Drink (%) 73 (6.6) 12 (4.4) 61 (7.3) .129
Formal constipation (%) 584 (52.8) 157 (57.9) 427 (51.1) .060
Weight lose (%) 963 (87.1) 238 (87.8) 725 (86.8) .748
Insomnia (%) 569 (51.4) 143 (52.8) 426 (51.0) .667
Anorexia (%) 880 (79.6) 211 (77.9) 669 (80.1) .475
Nausea (%) 206 (18.6) 46 (17.0) 160 (19.2) .475
Vomiting (%) 207 (18.7) 48 (17.7) 159 (19.0) .691
Abdominal distention (%) 39 (3.5) 8 (3.0) 31 (3.7) .689
Tachypnea (%) 632 (57.1) 161 (59.4) 471 (56.4) .425
Edema (%) 111 (10.0) 31 (11.4) 80 (9.6) .442

QOL (%)

(continued)
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recorded by 2 qualified doctors during the first follow-up visit.
Multiple Imputation was used to handle the missing data.22

Statistical Analysis

The patients were split into a training set and testing set in a
random manner without replacement at a ratio of 3:1. To
evaluate the differences between the training and testing sets,
continuous variables with normal distribution were presented
as the mean (± standard deviation) using student t-tests, while
continuous variables with skewed distribution were presented
as the median interquartile range (IQR) using the Mann-
Whitney U test. Categorical variables were presented as
frequency (proportion) and chi-square tests was applied for
their comparisons. Kaplan-Meier curves with risk table were
utilized to display the survival of the patients from training and
testing sets respectively.

Least absolute shrinkage and selection operator regression
was a machine learning algorithm first proposed by Robert
Tibshirani in 1996. In this study, the LASSO regression was
used to estimate the coefficients of COX regression model.
With LASSO method, coefficients of unimportant variables
were penalized to zero and important variables were retained,
which enabled to adjust for model’s over fitting and avoid
extreme predictions. For our analysis, the lasso method was
used to screen out the most representative variables for further
multivariate COX regression analysis and construction of
nomogram which enabled to predict the 15-days, 30-days and
90-days survival probability of the patients.

In evaluating the performance of the proposed nomogram,
we employed both calibration, which was performed using
1000 bootstrap resamples, and the concordance index (C-
index) which measured the classification accuracy. Further-
more, we also applied the decision curve analysis (DCA), a
novel method to evaluate the nomogram from the perspective
of clinical consequences by calculating the net benefit.

All analyses were carried out with R (Version 3.6.2, R
Foundation, Vienna, Austria) and R packages (‘survminer’,

‘glmnet’, ‘rms’, ‘timeROC’, ‘mice’, ‘ggDCA’). P-value < .05
was considered statistically significant.

Result

A total of 1106 patients, including 835 (75%) from the training
set and 271 (25%) from testing set, were retrospectively
analyzed in this study. Characteristics of patients were de-
scribed in Table 1. The overall population consisted of 805
males (72.8%) and 301 females (27.2%), with a median
survival time of 45 days. Most of them lived in urban areas and
had accepted a basic level of education (primary school or
above). However, only 52.2% of the patients had fully un-
derstood their physical conditions. In terms of treatment, 9.4%
had undergone surgery, 34.8% had undergone chemotherapy,
and 15.6% of the patients had undergone radiotherapy, while
the majority (89.2%) had evidence of tumor metastasis.
What’s more, 92% of the patients suffered from moderate or
sever pain, which led to the long-term use of analgesic
medicine. As for evaluation scale, 376 (34.0%) patients’ QOL
score were less than 34 and 318 (28.8%) patients’ KPS score
were less than 30. The general characteristics of the patients
showed that both datasets were similar with respect to all
variables except hypertension and duration of pain. In the
Kaplan-Meier plot (Figure 1), the survival situation of patients
in the training set and testing set was visually displayed. The
result also showed that there was no difference between these
2 group (P = .6). In addition, only 63 (7.5%) out of 835
patients survived beyond 6 months in the training set while 15
(5.5%) out of 271 patients survived beyond 6 months in the
testing set.

Using the LASSO regression, 5 prognostic predictors
which included sex, KPS, QOL, edema and anorexia, were
selected out of 28 variables which were probably associated
with OS in the training set (Figure 2). The optimal λ value for
LASSO regression with 10-fold cross-validation was .1026.
According to the coefficients obtained from LASSO method,
we inferred that KPS was the most important factor in

Table 1. (continued)

Characteristic Overall (n = 1106) Testing set (n = 271) Training set (n = 835) P

≤30 376 (34.0) 91 (33.6) 285 (34.1) .978
31-35 437 (39.5) 107 (39.5) 330 (39.5)
≥36 293 (26.5) 73 (26.9) 220 (26.3)

NRS (%)
≤3 88 (8.0) 14 (5.2) 74 (8.9) .136
4-7 821 (74.2) 205 (75.6) 616 (73.8)
≥8 197 (17.8) 52 (19.2) 145 (17.4)

KPS (%)
≤30 318 (28.8) 92 (33.9) 226 (27.1) .083
40 484 (43.8) 107 (39.5) 377 (45.1)
≥50 304 (27.5) 72 (26.6) 232 (27.8)

Abbreviations: Values are presented as no. (%) or median (Q1, Q3)
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Figure 1. Kaplan-Meier curves with risk table for patients with lung cancer in training set and testing set.

Figure 2. Selection of predictors using the LASSO regression analysis in patients with lung cancer (A) Using 10-fold cross-validation, the
dotted vertical lines were drawn at the optimal values by minimum criteria and 1-s.e. Criteria (B) LASSO coefficient profiles of the 28
variables. The vertical line was drawn in terms of the formula (x = log (λ1-s.e). At the optimal values λ1-s.e =.1026, 5 variables (sex, anorexia,
edema, QOL and KPS) with a nonzero coefficient were finally identified.
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predicting survival probability. Furthermore, a nomogram
with 5 prognostic predictors above selected by LASSO re-
gression was constructed based on COX regression model for
predicting the survival rate (Figure 3). To use the nomogram, a
patient can obtain each variable score by matching its value to
the top points axis. The total sum of each variable score was
marked on total points axis and a line was drawn downward to
determine the probability of median survival time. To examine

the performance of our predictive nomogram, we employed
both discrimination and calibration assessments. As shown in
Table 2, C-index analysis for the nomogram showed a good
discrimination at 15, 30, and 90 days in both training set (C-
index = .778 (95% CI .737-.818), .776 (95% CI .743-.809),
and .751 (95%CI .713-.790), respectively) as well as in testing
set (C-index = .789 (95% CI .714-.864), .748 (95% CI .685-
.811), and .757 (95% CI .691-.823), respectively. The

Figure 3. The Nomogram for predicting 15-days, 30-days and 90-days OS.
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nomogram-predicted survival was well calibrated at 15, 30,
and 90 days by the training and testing sets, and the predicted
probabilities were close to the expected probabilities (Figure
4). Moreover, the DCA curve was used to assess the clinical
utility of the nomogram by calculating the net benefit. The

result showed that nomogram received superior standardized
net benefit at a broad threshold (Figure 5).

Discussion

The incidence and mortality of lung cancer were both cur-
rently ranking first among all cancer reported worldwide. In
China, the lung cancer mortality was relatively high compared
to most countries.4 However, China’s hospice system was
established late, that results in limited research on lung cancer
patients. Most of the study on hospice patients in China were
the traditional survival analysis without offering a practical
tool to evaluate the prognosis of these patients.

The current study collected the follow-up data of 1106 patients
with lung cancer from the Hospice Unit of the First Affiliated

Table 2. The Concordance Index (C-index) with 95% CI at 15, 30,
and 90 Days in Both Training Set and Testing Set.

C-Index (95% CI)

15 days 30 days 90 days

Training set .778 (.737-.818) .776 (.743-.809) .751 (.713-.790)
Testing set .789 (.714-.864) .748 (.685-.811) .757 (.691-.823)

Figure 4. Calibration curves for predicting overall survival rate by the nomogram in the training and testing set. Calibration curves of the
prognostic nomogram for 15-days overall survival (A), 30-days overall survival (C) and 90-days overall survival (E) in the training set;
calibration curves for 15-days overall survival (B), 30-days overall survival (D), and 90-days overall survival (F) in the testing set.

Zeng et al. 7



Hospital of Shantou University Medical College. Different from
the traditional COX regression method for survival analysis, our
study adopted an advanced algorithm of machine learning-
LASSO, which can efficiently screen out key variables from
many clinical indicators. Available pieces of evidence suggest that
LASSO has better predictive performance than traditional
models.13,14 Furthermore, based on the selected predictors, we
interpreted a nomogram for clinicians to quickly assess the
prognosis of individual with lung cancer. Considering that most
patients in hospice could not afford their follow-up blood testing
and imaging examination, we chose not to incorporate any
laboratory indexes into our predictive model. Furthermore, the
economical and practical model still performedwell in prediction.

In this study, we identified sex as a significant prognostic
predictor for patients with lung cancer in hospice. According
to the statistics of World Health Organization (WHO), the
cumulative mortality risk of males with lung cancer was far
higher than females in 2018 (3.19% vs 1.32%), which proved
that sex was a significant factor related to prognosis.23 The
KPS and QOL were widely recognized as an effective indi-
cator for assessing the survival status of the patients, and the
results of this study was consistent with previous study.24 In
the existing literature, KPS and QOL were also used to
construct the prognostic models and had good predictive
performance.25-27 Moreover, some evidence suggested that
certain symptoms have an important impact on the prognosis
of cancer patients.9,28,29 In our study, symptoms including
edema and anorexia were selected by LASSO as key

predictors in the model. According to the existing studies
anorexia is one of the typical manifestations of cachexia and
cancer and anorexia-cachexia syndrome (CACS) is present in
57-61% of patients with lung cancer, which was directly at-
tributable for 20% of cancer deaths.30 Therefore, it is con-
vincing that the anorexic was selected as one of the predictors
in our study. We recommended a unique and robust model
which consists of prognosis scales and symptoms for survival
analysis in hospice patients with lung cancer.

There were still several limitations in our study. Firstly, this
was a retrospective study, which may cause recall bias and
prevent our model from getting better performance. Secondly,
sincemost of our patients survive less than half a year, hence, this
may lead to inaccurate predictions of the prognosis of the patients
with longer survival times. To solve this problem, we have
adopted 10-fold cross-validation to reduce this error. Thirdly,
since our data was only from one single research center and in the
absence of further external validation, the use of this prediction
model in other hospice care center should be cautious. Last but
not least, our nomogram didn’t require any laboratory indicators,
which probably prevented the nomogram from reaching ex-
cellent performance. However, themajority of home hospice care
patients in China was low-income and it was unrealistic for them
to afford the lab examination. Combined with the situation of
Chinese hospice, our non-lab nomogram could be a compromise
and economical tool to predict patients’ prognosis. In future,
studies involving large-sample size and multi-center still need to
be carried out and incorporated to improve our nomogram.

Figure 5. The decision curves analysis curve of the prognostic nomogram in the training and testing set.
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Conclusion

This study identified the most important and non-lab based
prognostic factors by LASSO method and built a nomogram
for clinical use. Our finding might be an important contri-
bution to the prediction of patients with lung cancer in hos-
pice, allowing clinicians to easily estimate the status of their
patients and to help adjust their follow-up management.
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