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Abstract

Background: Tissue regeneration includes delivering specific types of cells or cell products to injured tissues or organs
for restoration of tissue and organ function. Stem cell therapy has drawn considerable attention since transplantation
of stem cells can overcome the limitations of autologous transplantation of patient’s tissues; however, it is not perfect
for treating diseases. To overcome the hurdles associated with stem cell therapy, tissue engineering techniques have
been developed. Development of stem cell technology in combination with tissue engineering has opened new ways
of producing engineered tissue substitutes. Several studies have shown that this combination of tissue engineering
and stem cell technologies enhances cell viability, differentiation, and therapeutic efficacy of transplanted stem cells.

Main body: Stem cells that can be used for tissue regeneration include mesenchymal stem cells, embryonic stem cells,
and induced pluripotent stem cells. Transplantation of stem cells alone into injured tissues exhibited low therapeutic
efficacy due to poor viability and diminished regenerative activity of transplanted cells. In this review, we will discuss
the progress of biomedical engineering, including scaffolds, biomaterials, and tissue engineering techniques to
overcome the low therapeutic efficacy of stem cells and to treat human diseases.

Conclusion: The combination of stem cell and tissue engineering techniques overcomes the limitations of stem cells
in therapy of human diseases, and presents a new path toward regeneration of injured tissues.
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Background
The growing tendency of increased life expectancy as well
as increased incidence of age-related degenerative diseases
and tissue damage requires the use of allogenic or autolo-
gous grafts for tissue repair. Although transplantation of
tissues or cells is innovative and has been applied to a lot
of treatments, its application in clinical settings is still lim-
ited [1]. Accumulating evidence suggests that stem cells
can accelerate the tissue regeneration through various
mechanisms. To date, a variety of stem cells, including
mesenchymal, embryonic, and induced pluripotent stem
cells, have been reported to promote regeneration of
damaged tissues [2]. Although stem cell therapy provides
a new paradigm in tissue regeneration, they have limita-
tion in clinical application due to poor survival and

differentiation potentials of the transplanted cells [3]. To
overcome these limitations, tissue engineering technology
has been used to improve the viability and proliferative
capacity of stem cells. Tissue engineering is the use of a
combination of cells, biomaterials, biochemical and physi-
cochemical factors, and engineering technologies to
improve or replace biological tissues [4]. In this paper, we
will review the types of stem cells, their use in various
tissues, and tissue regeneration through stem cell engin-
eering. In addition, there are many other kinds of stem
cells that can be used for tissue regeneration; however, in
this review, we focus on the above-mentioned stem cells
for tissue regeneration.

Types of stem cells for tissue regeneration
Mesenchymal stem cells (MSCs) can be isolated from
various tissues, such as adipose tissue, tonsil, and bone
marrow. MSCs show plastic adherent properties under
normal culture conditions and have a fibroblast-like
morphology. They express specific cell surface markers
including CD73, CD90, and CD105. MSCs have the
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potential for self-renewal and differentiation potential into
mesodermal lineages, including adipocytes, muscles,
chondrocytes, and osteoblasts [2]. In addition to the differ-
entiation potential, increasing body of evidence suggests
that MSCs possess immune modulatory function and
pro-angiogenic activity which are beneficial for tissue re-
generation [5]. MSCs interfere with dendritic cell and
T-cell function and generate a local immunosuppressive
environment by secreting various immune-modulatory
cytokines [6]. Moreover, MSCs promote angiogenesis by
secreting pro-angiogenic factors [7]. Therefore, MSC-
based clinical trials have been conducted worldwide for
various human diseases, including cardiovascular, bone
and cartilage, neuronal, and inflammatory diseases [8].
Several MSC-based cell therapeutics are commercially
available [9], although their therapeutic efficacy is still
in debate.
Embryonic stem cells (ESCs) are pluripotent stem cells

derived from the inner cell mass of blastocysts, and they
can differentiate to specific cell types by controlling
culture conditions [10]. Recently, clinical trials were ini-
tiated to test the safety and potential efficacy of human
ESCs in several diseases, including spinal cord injury,
macular degeneration, diabetes and heart diseases. In
2010, Geron Corporation transplanted hESC-derived
oligodendrocyte precursors, GRNOPC1, into five pa-
tients with spinal cord injury, and the clinical trial data
suggest long-term safety of the therapy as well as re-
duced spinal cord cavitation in four of the five patients
[11]. In addition, Advanced Cell Technology (MA, USA)
tested human ESC-derived retinal pigment epithelium
for age-related macular degeneration and Stargardt dis-
ease, a juvenile form of macular degeneration, and the
clinical trial data have shown positive safety data with no
tumorigenicity and improved clinical data in some
patients [12]. Although ESCs have prominent advantages
such as pluripotency and self-renewal potential, there
are several obstacles hindering the clinical application of
ESC-based cell therapeutics [13]. Because ESCs are de-
rived from an embryo, they are allogenic cells to the pa-
tient and thus can be subjected to immune rejection.
[14]. Secondly, it is difficult to induce differentiation into
a desired cell type with 100% efficiency, thus a small
fraction of undifferentiated cells might remain and form
teratomas. Moreover, there are ethical issues because
human ESCs are derived from human embryo, which
has delayed clinical application of ESCs.
These ESC-associated issues were alleviated by the

work of Yamanaka and colleagues on somatic cell repro-
gramming [15]. They demonstrated that somatic cells
could be reprogrammed to a primordial stem cell state
by introducing four pluripotency-inducing transcription
factors. Since induced pluripotent stem cells (iPSCs)
could be reprogrammed from adult somatic cells, they

are free from ethical concerns [16]. Although iPSCs do
not negate the risk of generating tumors, transplantation
of autologous iPSC-derived cell therapeutics could help
solve the immunological problem associated with
transplantation of ESC-derived cells [17]. Japan’s RIKEN
Institute successfully transplanted the world’s first
iPSC-derived therapy into age-related macular degener-
ation patients [18]. However, there is a risk of neoplastic
development from cells differentiated from iPSCs,
because reprogramming factors are associated with the
development of tumors [19].

Development of stem cell-activating growth factors and
peptides
Stem cells can differentiate into different kinds of cell
types in response to specific ligands or growth factors
(Fig. 1) [20]. Direct transplantation of stem cells into
injured tissues was found to be effective in animal
models; however, the possibility of inducing local ische-
mia or thrombosis has been raised [21]. Moreover, stem
cell-based cell therapy has been hampered by poor sur-
vival of transplanted stem cells in vivo. Therefore, there
is a need to develop stem cell-activating factors that
enhance the survival, paracrine effects, and therapeutic
efficacy of transplanted stem cells. In particular, BMPs
have been shown to exert novel effects on cartilage and
bone regeneration in several animal experiments. It
has been reported that bone morphogenetic proteins
(BMPs) and bone-forming peptide-3 stimulated differ-
entiation of MSCs to osteoblasts [22, 23]. Among the
various types of BMPs, both BMP2 and BMP7 have
been shown to play important roles in bone and car-
tilage regeneration [24, 25].
Not only growth factors but also extracellular matrix

proteins have been shown to promote the regenerative
potentials of stem cells. Co-transplantation of MSCs
along with collagen matrix or fibrin to the injured tissue
site is now widely used clinically [26]. Periostin, an
extracellular matrix protein that is expressed in the peri-
osteum and periodontal ligaments, has been identified as
a secreted protein of MSCs. Recombinant periostin
protein stimulates proliferation, adhesion, and survival
of MSCs in vitro, and co-implantation of MSCs and re-
combinant periostin protein significantly accelerates
bone regeneration by increasing angiogenesis in a calvar-
ial defect animal model [27]. Moreover, recombinant
periostin and its fasciclin I domain promote therapeutic
angiogenesis in a murine model of chronic limb ische-
mia [28]. Periostin stimulates angiogenesis and chemo-
taxis of endothelial colony forming cells through a
mechanism involving β3 and β5 integrins. Recently, a
short peptide sequence (amino acids 142–151), which is
responsible for periostin-mediated angiogenesis, has
been identified by serial deletion mapping of the first
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fasciclin I domain [29]. These results suggest that
periostin can be applied for cell therapy by stimulat-
ing the pro-angiogenic and tissue regenerative poten-
tials of MSCs.
In addition, it has been reported that co-transplantation

of N-acetylated proline-glycine-proline, a peptide pro-
duced by the degradation of collagen, accelerates repair of
dermal wounds by stimulating migration and engraftment
of transplanted endothelial colony forming cells [30].
These results demonstrate that pro-angiogenic peptides,
including periostin and N-acetylated proline-glycine-pro-
line, promote regenerative potentials of transplanted stem
cells by accelerating angiogenesis.

Stem cells engineered with nanomaterials
While growth factors and cytokines can affect the bio-
logical functions of stem cells from “outside”, there are
several ways to manipulate them from “inside”, as an ap-
proach on a more fundamental level. Gene therapy using

viral expression systems is a well-known traditional
method for manipulating the biological functions of
stem cells from “inside”. However, viral expression sys-
tems have been reported to induce immune and inflam-
matory reactions in host tissues, and genetic mutations
in host DNA can occur [31]. Therefore, development of
highly efficient non-viral expression system is important
for stem cell research. For instance, reprogramming or
direct conversion of somatic cells by using non-viral
gene expression system have great potential for clinical
application of the reprogramming cells. Replacing
viruses with alternative extracellular chemicals or deliv-
ery systems can reduce tumor formation. Non-viral
methods include electroporation of cell membrane or
delivery of genes in a form complexed with liposome or
cationic polymers. Several types of nanoparticles have
been developed for non-viral delivery of reprogramming
factors into cells. These nanoparticles are composed of
mesoporous silica, calcium phosphate, chitosan, cationic

Fig. 1 Stem cell differentiation in response to specific ligands or growth factors
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polymers, and magnetic nanoparticles [32]. Recently,
graphene oxide-polyethylenimine complexes have been
reported to be an efficient and safe system for mRNA
delivery for direct reprogramming of somatic cells to
induced neurons [33]. Therefore, improvement of
gene delivery efficiency using nanoparticles will be
highly useful for direct conversion or reprogramming
of somatic cells.

Biomaterials enhancing the therapeutic efficacy of
stem cells
Tissues are composed of two components: cells and
their surrounding extracellular matrix (ECM), which is
known to play an important role in cell proliferation and
differentiation. The main function of the ECM is main-
taining cell growth and supplying essential components
to cells [34]. ECM has been reported to create a frame-
work for cell growth and to efficiently provide the
nutrients or growth factors needed for cells [35]. It is
difficult to naturally repair a large-size tissue defect by
supplying cells to the injured sites, since not only the
cells, but also the ECM are lost. Therefore, to promote
tissue regeneration, it is necessary to make an artificial
ECM environment for transplanted cells, and biomate-
rials are useful substitutes for ECM, and are also useful
in cell therapy. The biomaterial scaffold should be por-
ous for infiltration by cells into scaffolds, and for the
supply of oxygen and nutrients to cells. In addition, the
scaffold should be biodegradable for proper replacement
of damaged tissues with the transplanted cells [36].
In terms of biomaterials, a variety of synthetic and

natural materials have been developed. In particular,
biodegradable polymers, such as collagen, gelatin, fibrin,
hyaluronic acid, and poly(lactic-co-glycolic acid), are
highly useful for tissue engineering [37]. The combination
of these scaffolds and stem cells was used for skin wound
healing [38]. The osteogenic efficiency of MSCs was con-
firmed in duck’s foot-derived collagen/hydroxyapatite scaf-
folds [39]. In addition, the increase of chondrogenic
differentiation of MSCs in 3D alginate hydrogels was ex-
perimentally confirmed [40]. Neural stem cells have been
used for treatment of neurodegenerative disease or stroke

in pre-clinical and clinical studies; however, differentiation
of neural stem cells to functional neurons, reconnection
with host neural cells, and correct transmission of nerve
signals are still obstacles to overcome [41]. Therefore, to
enhance the survival and differentiation potentials of
transplanted stem cells, it is necessary to combine bioma-
terials with growth factors, cytokines, and cell adhesive
substances (Fig. 2).

3D bioprinting for tissue engineering
Biomaterial scaffolds can be used as structural compo-
nents for different parts of tissues, such as blood vessels,
skin, and corneal tissues [42, 43]. Making 3D scaffolds
and culturing stem cells on them improves the regenera-
tive activity of stem cells for damaged bone and cartil-
age. Most tissues are composed of different cell types
and multi-layered structures. Therefore, multi-layered
3D scaffolds are needed for construction of engineered
tissues using stem cells. Currently, 3D bioprinting has
drawn attention in the field of biotechnology for produ-
cing multi-layered structure. Since the first technology
for 3D bioprinting cells had been reported, there have
been great advances in 3D bioprinting-based tissue en-
gineering [44]. Using 3D bioprinting, various cell types
can be positioned in specific locations in multi-layered
structures for constructing different tissues or organs
(Fig. 3) [45]. Bioprinting technologies include inkjet [46]
and laser deposition [47].
In using inkjet printer technology, however, since the

cells are printed in the same manner as a commercial
printer, various problems arise. For example, in order to
print stem cells through an inkjet printer, the material
that is added to the cells must be in a liquid form and,
subsequently, have a 3D structure after injection [48].
However, employing crosslinking agents to form 3D
structures can impair cellular viability [49]. Despite these
drawbacks, remarkable advances have been made due to
the advantage of 3D printing cells being possible with
slight modifications to commercial inkjet printers on the
market [50–54]. Just as laser printers have become
popular, laser printers for 3D bioprinting have also been
developed. Unlike inkjet printers, laser printers do not

Fig. 2 Stem cell engineering strategy
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apply physical stresses and do not require additives to
maintain a liquid form. The viability of cells is higher
than 95% after being printed, and apoptosis and cell pro-
liferation are not affected [55].
For 3D bioprinting, bioinks are needed for printing of

stem cells into 3D structures, and hydrogels are widely
used as bioinks. Each bioink has its own characteristics
and is used for specific purposes [56]. Natural bioinks
include alginate, gelatin, collagen I, and fibrin; synthetic
bioinks include polyethylene glycol and pluronic gels
[57]. These materials have chemical and physical
properties appropriate for bioink, and they serve as scaf-
folds, similar to those of the ECM [58]. In order to mimic
the ECM in vivo, de-cellularized extracellular matrix
(dECM) scaffold has been developed. dECM is obtained
by processing original tissues with chemicals, or using en-
zymatic methods to remove cellular components [59].

Therefore, dECM is highly useful for 3D bioprinting of
stem cells, or their differentiated progeny cells.
In the regeneration of thick tissues, not only the regen-

eration of the tissue itself, but also the regeneration of
blood vessels plays an important role in maintaining the
viability of the tissue. Artificial blood vessels applied to the
human body need to have various characteristics, such as
elasticity, permeability, and biocompatibility comparable
to the original vessels [60]. To control blood vessel fabri-
cation, the printer should have sufficient resolution, and
bioinks should not deform under the printing conditions
[61]. In one study, treatment with angiogenin, a stimulator
of angiogenesis, in a fibrin/bone powder scaffold enhanced
angiogenesis and bone formation, compared to a control
group [62]. Therefore, it is possible to add pro-angiogenic
factors during 3D bioprinting to facilitate blood vessel for-
mation in the 3D printed tissues.

Fig. 3 3D bioprinting of stem cells
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Application of 3D bioprinting technology for tissue
regeneration
Recently, application of digital light processing stereo-
lithography 3D printing technology for production of
biodegradable polymeric vascular grafts has been re-
ported [63]. Vascular grafts formed by 3D printing of
human umbilical vein cells with poly propylene fumarate
were applied for surgical grafting in patients with cardio-
vascular defects, suggesting that 3D bioprinting is highly
useful for production of patient-specific vascular grafts
[63]. In addition, 3D printing is also used for bone re-
generation. Printed calcium phosphate scaffold have
been widely used for bone regeneration [64]. Transplant-
ation of calcium phosphate scaffold has proved effective
in multiple animal studies [65]. Methods for increasing
the osteogenicity of stem cells by applying polydopamine
have also been developed [66]. In addition, 3D printing
can be applied for cartilage regeneration. In one study,
nanofibrillated cellulose plus alginate were used as scaf-
folds for making ears formed with a 3D printer, and the
survival rate of chondrocytes in the scaffolds after trans-
plantation was 73 to 86% [67]. In the case of bone and
cartilage tissues, the size and shape of defects that occur
in individual patients can be varied, therefore, 3D bio-
printing technology may be highly useful for repair of
damaged skeletal tissues [68].
Skin is the largest organ of the body, protecting the in-

ternal organs from external environments, retaining
fluid, and acting as a sensory organ [69]. Thus, regener-
ation of skin wounds is important for not only cosmetic
purposes but also restoration of physiologic function. In
a clinical trial of treatment of burns, ulcers and other
non-healing chronic wounds, stem cells have been
proven to be an effective therapy for most patients [70].
In the case of burns or other large skin wounds, a method
of transplanting through artificial skin fabricated out of
polymers or human skin is widely used nowadays [71]. Al-
though artificial skin substitutes for wound healing are
commercially available, they have disadvantages such as a
lack of viability, difficulty in reforming shape, and high
costs [72]. It has been reported that skin-derived dECM
bioinks can used to compensate for the rapid degradation
and high contraction trends of traditional bioinks using
conventional collagen. A printed mixture of adipose
tissue-derived MSCs and endothelial progenitor cells with
the skin-derived dECM for production of pre-vascularized
skin grafts effectively accelerates cutaneous wound healing
in animal models [73].

Conclusions
Most therapies or treatments eventually aim to enhance
tissue regeneration, and stem cell engineering has opened
a new path to regenerative medicine. In this paper, we
reviewed the current status of stem cell technologies,

biomedical engineering, and nanotechnology for tissue re-
generation. Biomedical engineering and nanotechnology
will be helpful for overcoming the shortcomings of stem
cell therapeutics by supporting stem cells to grow to an
appropriate concentration, offering homogeneity, and
resulting in proliferation at the desired location. However,
biomaterials may cause toxicity when applied to the hu-
man body; hence, several methods have been developed to
increase the biocompatibility of biomaterials. Tissue en-
gineering can be applied for construction of various tis-
sues, such as blood vessels, nervous tissue, skin, and bone.
For stem cell engineering, several techniques should be
developed involving new materials, new structures, and
novel surface modifications of biomaterials; in addition, a
deeper understanding of the interactions between cells
and biomaterials will be needed.
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