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Abstract
Background: To estimate a threshold limit value for a compound known to have harmful health
effects, an 'elbow' threshold model is usually applied. We are interested on non-parametric flexible
alternatives.

Methods: We describe how a step function model fitted by isotonic regression can be used to
estimate threshold limit values. This method returns a set of candidate locations, and we discuss
two algorithms to select the threshold among them: the reduced isotonic regression and an
algorithm considering the closed family of hypotheses. We assess the performance of these two
alternative approaches under different scenarios in a simulation study. We illustrate the framework
by analysing the data from a study conducted by the German Research Foundation aiming to set a
threshold limit value in the exposure to total dust at workplace, as a causal agent for developing
chronic bronchitis.

Results: In the paper we demonstrate the use and the properties of the proposed methodology
along with the results from an application. The method appears to detect the threshold with
satisfactory success. However, its performance can be compromised by the low power to reject
the constant risk assumption when the true dose-response relationship is weak.

Conclusion: The estimation of thresholds based on isotonic framework is conceptually simple and
sufficiently powerful. Given that in threshold value estimation context there is not a gold standard
method, the proposed model provides a useful non-parametric alternative to the standard
approaches and can corroborate or challenge their findings.

Background
Estimation of a threshold limit value (TLV) is an impor-
tant task in many medical areas, where risk factors are
often scrutinized for values beyond which important
medical or political decisions need to be taken – e.g.
beyond which blood pressure value one should prescribe
antihypertensive. The classical approach suggests several
steps; a dose-response relationship needs to be estab-
lished by applying a test for trend and then a set of candi-
date threshold values xi is identified. Finally, a threshold

model is fitted at each of these candidate values. Consid-
ering an exposure variable in N doses x1,x2,...,xN, a widely
applied threshold model for a binary outcome p(xi) is

where f is the identity function for the 'elbow' shape or the
logit function for the logistic version, and l is the baseline
risk. Then, the threshold is estimated as the exposure xi
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associated with 'better model' in terms of a goodness of fit
criterion, e.g. the likelihood ratio statistics or the Akaike's
information criterion. Usually only a set of plausible
threshold locations is considered. To determine the set of
candidate threshold locations, one has to screen visually
the dose-response regression line and take a neighbour-
hood around a point where a 'jump' in the risk seems to
occur. This practice, although widely applied in practice,
is prone to bias and does not control efficiently the type I
error.

A justified approach is to consider all doses xi as possible
thresholds. The model

f(p(xi) = l + b log (xi/t)) if xi >t  (2)

has been previously proposed together with a likelihood
maximisation method for estimate the threshold and its
confidence interval [1]. Modifications and further devel-
opments on such threshold value models can be found in
[2,3].

A useful alternative to these parametric approaches is pro-
vided by isotonic regression. The main advantage com-
pared to the models developed so far is that no specific
assumption is made regarding the shape of the regression
and a flexible step function is fitted. Moreover, the fitting
algorithm automatically selects a small set of candidate
threshold values without any a priori information about
their location.

An underlying assumption throughout this paper is that a
threshold value exists in every dose-response relationship.
Evaluating this assumption is rather controversial. We
align ourselves with those arguing that the question
whether a threshold exists or not cannot be answered by
means of statistical analysis [1,4]. Assuming a threshold is
plausible in many toxicological and clinical studies, and
even in cases where there is no biological justification, the
threshold assumption can have practical implications.

Under this scope, we constrain this paper on presenting a
framework for estimating the TLV given that its existence
has been established as plausible. We explain the use of
isotonic regression and we discuss how to select the actual
threshold among the candidate locations suggested by the
isotonic transformation.

Methods
Threshold estimation and isotonic regression
Isotonic regression is a maximum likelihood estimator
under the assumption of a monotone dose response rela-
tionship. Whereas several algorithms are possible to fit the
data, we use the Pooled Adjacent Violators Algorithm
(PAVA) as it is the most efficient and comprehensive (see

appendix) [5]. The result is a step function that summa-
rizes the exposure in L constant risk groups (level sets)
that are automatically selected by the algorithm without
any a priori information about the location of the change-
points (here called isotonic cutpoints). The isotonic
model can be thought of as a categorisation's procedure,
where a set of cutpoints for the exposure variable is esti-
mated with respect to the monotonicity in the associated
risk [6].

Based on isotonic regression, we propose a two-stages
approach, where all possible xi doses are evaluated. In the
first stage, we take advantage of the fact that monotonicity
is a pre-requisite condition for the threshold hypothesis.
At this step, PAVA is screening all xi for compliance with
monotonicity and re-estimates the regression shape under
this condition. This screening is very powerful, given that
isotonic regression provides a powerful and robust test for
trend. Variations of the isotonic test and description of its
advantages have been outlined in several papers [7-10].
The result is a step function with few cutpoints.

Once isotonic regression is fitted, the second step needs to
be taken; the actual threshold needs to be selected among
the isotonic cutpoints. On this purpose, we propose two
methods described in the following sections.

The framework based on isotonic regression is in a sense
equivalent to the methods that check all the dose values;
however in isotonic regression most of the dose values are
'rejected' during the first stage on the basis of their com-
pliance to the hypothesis of monotonicity, and only few
are tested under the threshold value location hypothesis.
An assumption underlying the proposed methodology is
that the observations can be grouped in constant-risk
exposure intervals. Whereas we acknowledge that this
assumption may be questionable depending on the
nature of the exposure, it is true for many environmental
and toxicological factors.

Closed testing procedureFigure 1
Closed testing procedure. The arrows show the direc-
tion of the conditional testing.
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Selecting the threshold
Reduced isotonic regression
The cutpoints resulting from PAVA are estimated so that
monotonicity is achieved and they do not necessarily cor-
respond with a significant increase in the risk. The model
can become more parsimonious if these 'non significant'
level sets are eliminated. This parsimonious version is
called reduced isotonic regression (RIR) and has been
described and studied elsewhere [6,11]. When the out-
come is binary, the reduction is accomplished by a
sequence of Fisher tests for the adjacent 2 × 2 tables. The
correction for multiple comparisons is made by a-priori
estimation of the elimination significance level ε* in a
permutation procedure so that the actual type I error is
kept constant at a (e.g. a = 5%). The result is a step func-
tion with less level sets than the original isotonic model.
Moreover, each cutpoint defines now a significant
increase in the associated risk. Consequently the first 'step'

in an RIR line will indicate the TLV. The model can be
thought of as an extension of the 'elbow' threshold model
in equation (1) where the first level set estimates the back-
ground risk l and the first cutpoint defines the threshold t.

Closed testing procedure
An alternative for selecting the threshold out of several
candidate locations suggested by PAVA is to consider the
closed family of hypotheses. The classical closed testing
approach suggests that a hypothesis H is tested only if all
hypotheses that contain H have been rejected at some
fraction of the significance level a. The family-wise error is
controlled, but power is usually low.

An option to increase the power is to make one part of the
regression line conditional to the other [12]. This concept
suits the TLV estimation context where the beginning of
the dose-response is more important than its end and test-

Regression shapes studied in the simulation studyFigure 2
Regression shapes studied in the simulation study.
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ing for threshold among levels of higher exposure is con-
ditional on the rejection for the lower exposure levels.

The diagram in figure 1 presents a closed family of
hypotheses. Every 'vertical' hypothesis about testing an
isotonic cutpoint xi is conditional on the rejection of the
hypothesis above (vertical conditioning) and testing every
hypothesis on the right hand side is conditional on the
retention of the hypothesis on its left (horizontal condi-
tioning).

1. Every hypothesis H(l,k):' the risk is constant between two
isotonic cutpoints xl and xk' and its nested hypotheses are
conditional on the rejection of every hypothesis H(l',k')
with l< l' and k< k'

2. Retain every hypothesis implied by any other hypothe-
sis that has not been rejected

Consider for example that isotonic regression suggests 4
isotonic cutpoints as candidate thresholds defining 4 level
sets with associated risks p1,...,p4 (figure 1). The direction
of the arrows shows the conditioning in testing. The pro-
cedure starts by evaluating H(1,3) (between x1 and x3 the
risk is constant, i.e. p1 = p2 = p3). If we retain, then we test
H(2,4) (rejection: threshold = x3, no-rejection: no dose-
response relationship). If we reject H(1,3) then we test
H(1,2) (rejection: threshold = x1, no-rejection: continue
by testing H(2,3)). In every step, the exact isotonic test for
trend is used [10].

When the conditioning occurs 'horizontally' in addition
to the vertical restriction as in figure 1 (dotted arrows),
then the power increases. Consider that H(1,4) is not true
due to H(1,2) being not true. Then with only vertical
restriction the probability to correctly reject H(1,2) using
α = 5% is 0.955+0.9530.052+0.9520.05+0.9540.05 = 0.862
whereas with the horizontal conditioning it is
0.952+0.9520.05 = 0.947.

Compared to RIR, this approach is easier to apply, but
provides no information about the shape of the dose-
response relationship after the threshold. Closed testing
elimination concentrates on increases in the risk whereas
RIR achieves a complete re-estimation of the regression
line with overall improvement in the fit. For both meth-
ods, bootstrap can be used to calculate the confidence
intervals.

Extension: The isotonic surfaces model
There are situations where thresholds need to be identi-
fied for multiple factors that interact. One of the main
advantages of the presented methods is that they can be
easily combined with multivariate isotonic models; either
the isotonic-surfaces model where the level sets corre-

spond to combinations of the predictor variables or the
additive isotonic model [6,13,14].

Consider two continuous predictors x and y, a binary out-
come and their three-dimensional scatter plot. The isot-
onic surfaces model is simply a surface fitted in the scatter
plot that is monotone along both x- and y-axes. Two-
dimensional blocks of constant response are built, and a
reducing procedure similar to the one followed in univar-
iate regression is applied to improve parsimony. Details
on fitting and elimination algorithms can be found in [6].
This model can be used to estimate two-dimensional
thresholds, as we exemplify in the application.

Simulation study
The performance of the two methods described above as
threshold detectors depends upon their power to establish
a dose-response relationship. Consequently, in this simu-
lation study we first concentrate on evaluating the power
to reject the constant risk assumption. Higher power is
associated here with greater proportion of non-constant
estimated regression lines. Subsequently we evaluate the
ability to detect the isotonic level set that is associated
with a threshold, conditional to the rejection of the con-
stant risk assumption.

We simulate under 5 isotonic level sets, with equal
number of observations per group that varies from 50 to
250. Four shapes for the isotonic groups are studied. For
each combination of slope (for the increasing part of the
regression) and sample size, 1000 simulations are ana-
lyzed (figure 2).

Shape A assumes no dose-response and the type I error of
the methods as 'tests for trend' can be accessed. Shape B
corresponds to a linearly increasing relationship starting

Table 1: The average power for reduced isotonic regression and 
closed testing procedure in establishing a dose-response 
relationship for the two lower slopes and sample size 100 
observations per level set.

Shape Slope Power to establish dose-response 
relationship

Closed testing RIR

B 2% 19% 27%
5% 29% 88%

C 2% 10% 13%
5% 32% 40%

D 2% 7% 2%
5% 19% 10%
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with 20% risk and a threshold is assumed at the first dose
group. Shape C represents a segmented regression line
assuming a threshold at the second dose level. The base-
line constant risk is 20% and afterwards the risk increases
linearly. The last type of regression (Shape D) is also a seg-
mented line but assumes a threshold at the first cutpoint.
Between the first two dose groups the risk increases line-
arly and is flat between the second and the fifth. This dose-
response relationship is close to the horizontal line (figure
2). In every shape that includes linear regression part we
studied different slopes of 2%, 5%, 10% and 15%.

Application to MAK study
The study "Maximale Arbeitsplatz-Konzentration" was
conducted by the German Research Foundation and com-
prises among others a cohort of 920 smoking workers
exposed to a mixture of dust, mainly from iron, steel,
foundry and engineering [15,16]. The endpoint of the
study was chronic bronchitic reaction (CBR). Dust con-
centration and the length of exposure have been previ-
ously established as important risk factors. The goal in this
present application is first to estimate a TLV for the cumu-
lative exposure in dust over time in a univariate regression
and subsequently to assess a two-dimensional threshold
for both dust concentration and duration of exposure.

Results
Results from simulations
Establishing dose-response relationship
When RIR is applied, a dose-response relationship is
established for shape A in 5% of the simulated samples.
This was somewhat expected, since the elimination proce-
dure is designed to keep type I error fixed at the nominal
level [6]. The closed testing approach yields an error rate
of 2%.

Table 1 presents the estimated power to establish a dose-
response relationship in shapes B-D for sample size 100
and the two lower slopes. For comparability between the
two methods, the calculations were carried out by cali-
brating ε* so that the error rate is 2% for RIR. The RIR per-
forms better for shapes B and C, and although for flat
regression lines is not very powerful, its power increases
very fast with higher slopes or sample size. The power lies

between 78% and 99% for slopes higher than 5% for
every sample size. For shape D, both methods are largely
underpowered with closed testing procedure having dou-
ble the power of RIR. In this regression line, the contrast
in the risk is between a single level set versus four levels
having higher but equal risk, and both elimination proce-
dures are likely to miss it and pool all level sets together.
For RIR sample size as high as 200 observations per level
set and a slope higher than 10% are required to achieve
power of at least 65%.

Assigning thresholds to the level sets
The assignment of thresholds was studied among the
datasets where a dose-response relationship was estab-
lished. Closed testing procedure was less successful than
RIR for slopes lower than 5% and sample size less than
100 observations per isotonic level set. For these values,
the estimated threshold in shapes B and D was higher
than the first level set – and thus overestimated- in 99% of
the cases. It is only after sample size 150 that closed test-
ing procedure starts getting a bit more successful, follow-
ing similar patterns as the ones observed for RIR.

Table 2 presents the threshold assignment for RIR. The
estimated thresholds in shape B do not seem to follow any
specific pattern for slope 2% where every cutpoint has
more or less the same probabilities to be selected as
threshold. However, for slopes higher than 5% or greater
sample size, the first group is most likely to contain the
threshold.

Shape C is of particular interest regarding detection of the
threshold location. The probability to assess it correctly,
averaged for sample size and slope was 68%. Figure 3
presents the power in greater details for every slope and
sample size. The ability to detect the threshold increases
sharply with the slope and sample size in an almost linear
way. It is remarkable that the probability to assess a
threshold at the first level set is very low (4%) and
decreases with sample size. Both methods present an
important tendency to assign thresholds to the adjacent
group that corresponds to a higher dose is observed (aver-
age probability 24%). The estimated background risk is
slightly biased and lies within 20–20.6%. When the true

Table 2: Average probability (for sample size and slope) to select a threshold at a given isotonic cutpoint applying RIR, average for 
sample size and slope. In italic appears the number that is considered to be the pertinent estimation in each shape.

Probability to select an isotonic cutpoint as threshold among the non-constant lines

Shape 1st 2nd 3rd 4th

B 47% 37% 14% 3%
C 4% 68% 24% 5%
D 96% 3% 1% 0.5%
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threshold value was assumed to be at the third dose level,
we did not observe any important differences in the per-
formance of both methods apart from a slight drop in the
already low probability to assign a threshold to the first
cutpoint.

In shape D, the first group has the greatest probability to
be selected as threshold, which is in agreement with the
underlying regression shape.

Application to CBR study
Figure 4 depicts the fitted isotonic regression with 11 dose
groups along with its reduced version (4 dose-groups)
truncated for clarity at 250 mg/m3year. A smoothing
spline with 6 degrees of freedom shows that the level sets
defined by RIR are reasonable. The threshold was esti-

mated at 7 mg/m3year with 95% bootstrap confidence
intervals (4.9, 10) mg/m3year and background risk of
7.6%.

The isotonic level sets were analyzed with the closed test-
ing algorithm. The hypothesis H(1,10) for equal risk
between the lowest exposure and the tenth cutpoint
(exposure at 390 mg/m3year) was rejected with exact p-
value < 0.001 and so did all nested hypotheses up to
H(1,4). Hypothesis H(1,3) was retained (p-value = 0.33).
This means that the first three level sets are lumped
together, and the third isotonic cutpoint (7 (5–9.9) mg/
m3year) defines the threshold. The logistic regression
(equation (2)) estimated in a threshold of 7 (5–8) mg/m3

with a likelihood ratio statistics of 7.3 compared to the
model with no threshold (p-value < 0.01).

Power of reduced isotonic regression to detect the correct threshold in shape C for different slopesFigure 3
Power of reduced isotonic regression to detect the correct threshold in shape C for different slopes. The size of 
the circle is proportional to the sample size per dose group (N = 50, 100, 150, 200, 250).
Page 6 of 9
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In figure 5 we present the two dimensional isotonic
regression, after the reducing procedure. Three major
blocks are built for dust exposure and duration, and the
first important step sets the threshold for dust at 4.5 (3.1,
7.2) mg/m3 and more than 18 years of exposure. This esti-
mation is compatible with the threshold from the
extended logistic model in equation (2) using time and
ln(dust concentration) as covariates (3.8 [1.4, 4.6] mg/
m3). However, the isotonic surfaces model gives more
detailed information according to time subgroups. For
less than 10 years exposure for example, no increase in the
risk is observed.

Discussion
In this paper we presented a method for estimating
thresholds that does not rely on any parametric assump-
tion. Isotonic regression is flexible and easy to apply, and

detects thresholds with relative good power. It can be
applied both with continuous exposure variables and cat-
egorical, where every dose level is actually a range of val-
ues. In both cases the same framework is followed, since
isotonic regression groups the continuous predictor in
constant risk level sets, as we exemplified in the applica-
tion section. At this point some limitations of the meth-
ods should be discussed. Whereas we believe that the
bootstrap confidence intervals offer good coverage for the
true threshold, the point estimate may be biased. Some
observations right after the threshold may have lower risk
due to sampling error, misclassification or different indi-
vidual response, and subsequently PAVA will pool them
all together shifting the isotonic cutpoint towards higher
exposures. This means, the threshold may be overesti-
mated, as the simulation study revealed. Assigning a
threshold to the whole level set rather than its upper cut-

Full isotonic and reduced isotonic regression fitted in the sample from MunichFigure 4
Full isotonic and reduced isotonic regression fitted in the sample from Munich. The 95% confidence bands corre-
spond to the reduced regression.
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point may be a reasonable compromise. When the expo-
sure is in continuous form, the researcher has the
advantage of more detailed investigation; the level set that
appears to have the threshold can be re-analysed using
non-isotonic models to reveal any particularities of the
data. However the practice will be suggested by the work-
ing definition of the threshold i.e. whether a 'No
Observed Adverse Effect Level' or a 'Lowest Observed
Adverse Effect Level' is of interest.

Modifications of the proposed models are possible. Hot-
horn suggests a procedure based on odds ratios [17]. He
argues that when one wants to detect an important
increase in the risk, the use of confidence intervals is more

accurate than comparing p-values. This idea can lead to a
modification of backward elimination; instead of using p-
values, the confidence intervals for the odd ratios could
indicate a significant increase in the risk.

To our knowledge, there is no statistical model for thresh-
old estimation that claims high power. Thus, it is impor-
tant that more than one approach should be applied to
confirm a TLV's location. External validation for the
applied models can also provide useful information since
there are cases where the data can be fitted by a variety of
models (that consider a threshold or not) and all of them
may fit well yielding however discrepant estimates or con-
tradictory conclusions [1,18]. Modelling the data using

Two-dimensional reduced isotonic regression modelling the dust concentration and the duration of exposureFigure 5
Two-dimensional reduced isotonic regression modelling the dust concentration and the duration of exposure. 
The labels in the bars are the upper limit for the time and concentration intervals.
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smoothing splines or fractional polynomials would be
useful in revealing the true shape of the relationship and
avoid misinterpretations. In practice however the final
decision about establishing a threshold is often taken on
an ethical, political and economical basis. In threshold
value estimation context statistical methods are tools that
can eventually inform and direct the decision making
process.

Conclusion
If the dose-response relationship is flat (slope less than
5%), the closed testing procedure fails to reject the con-
stant risk assumption and thus has little power to detect
the correct threshold. The method based on RIR is prefer-
able as more powerful in most of the studied cases. When
the increase in the risk is sufficiently high (at least 5%)
both elimination approaches will detect the threshold
successfully with RIR presenting the best results. In such
situations, the threshold value estimation based on isot-
onic framework is conceptually simple and powerful.
Given that no threshold value estimation method has
been proven to have high power, isotonic regression pro-
vides at least a useful non-parametric alternative to the
standard approaches and can corroborate or challenge
their findings.

Appendix
The pooled adjacent violators algorithm
Consider a set x1,x2,...,xN of dose groups in increasing
order, the observed outcome g(xi) for each dose group
and the weights wi. To estimate g*(xi) the isotonic regres-
sion of g(xi), the pooled adjacent violators algorithm out-
lined below is the most popular approach. Note that the
isotonic estimator is a maximum likelihood estimator
under the monotonicity assumption. For simplicity
assume only non-decreasing trend.

If g(xi) is in non-decreasing order then g*(xi) = g(xi).

Otherwise there is somewhere a violator such that g(xi) >
g(xi+1) for some xi. Replace these two values by their
weighted average

Av(g(xi),g(xi+1)) = (wig(xi) + wi+1g(xi+1))/(wi + wi+1).

Now the elements xi, xi+1 form a block called level set (LS)
or solution block. If the new set of N-1 values is isotonic,
then g*(xi) = g*(xi+1) = Av(g(xi),g(xi+1)) for the violator
and g*(xi) = g*(xi+1) for all other observations.

If the set is not isotonic repeat the procedure using the
new set of values.

The algorithm assuming decreasing trend is similar. Start-
ing from the end of the shape and proceeding backwards
(reversing the monotonicity) would give the same results.
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