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Abstract: X-ray photodynamic therapy (XPDT) has been recently considered as an efficient alternative
to conventional radiotherapy of malignant tissues. Nanocomposites for XPDT typically consist of
two components—a nanophosphor which re-emits X-rays into visible light that in turn is absorbed
by the second component, a photosensitizer, for further generation of reactive oxygen species. In
this study, BaGdF5 nanophosphors doped with different Eu:Gd ratios in the range from 0.01 to 0.50
were synthesized by the microwave route. According to transmission electron microscopy (TEM),
the average size of nanophosphors was ~12 nm. Furthermore, different coatings with amorphous
SiO2 and citrates were systematically studied. Micro-CT imaging demonstrated superior X-ray
attenuation and sufficient contrast in the liver and the spleen after intravenous injection of citric acid-
coated nanoparticles. In case of the SiO2 surface, post-treatment core–shell morphology was verified
via TEM and the possibility of tunable shell size was reported. Nitrogen adsorption/desorption
analysis revealed mesoporous SiO2 formation characterized by the slit-shaped type of pores that
should be accessible for methylene blue photosensitizer molecules. It was shown that SiO2 coating
subsequently facilitates methylene blue conjugation and results in the formation of the BaGdF5: 10%
Eu3+@SiO2@MB nanocomposite as a promising candidate for application in XPDT.

Keywords: X-ray photodynamic therapy; nanophosphor; photosensitizer; reactive oxygen species;
tumor; computed tomography; scintillating nanoparticles

1. Introduction

X-ray photodynamic therapy (XPDT) is a relatively new approach to treating cancer
diseases [1]. The basic principle of XPDT is similar to that of the traditional photodynamic
therapy (PDT) [2–5]. In PDT, nanocomposites are introduced into abnormal cells and
irradiated by ultraviolet–visible light (UV–vis). However, UV–vis radiation has low tissue
penetration. Thus, X-rays may be a promising source for deep photodynamic activation
due to overcoming the penetration capability [6–8]. In XPDT, nanocomposites consist
of nanophosphors and photosensitizers (PSs). Injected nanocomposites are irradiated
with X-ray beams and then nanophosphors reradiate X-rays into UV–vis fluorescence. The
converting energy is used in the activation process of photosensitizers for further generation
of reactive oxygen species (ROS) that destroy the vascular system of malignant tissues.

Nanophosphors based on BaGdF5 are of particular interest to the application in X-
ray photodynamic therapy [9–15]. They efficiently absorb ionizing radiation in the X-ray
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range and readily convert it into visible light [9,10,14,16–20] (Figure 1). Many works
have been conducted to obtain such Ln3+-doped BaGdF5 nanomaterials. For example,
BaGdF5 nanoparticles (NPs) doped with Yb3+, Ho3+ have been synthesized with different
morphologies, paramagnetic properties, higher down-conversion and up-conversion lu-
minescence via a facile additive assisted hydrothermal route [21]. Another hydrothermal
method was used in [22] to obtain BaGdF5:Eu3+ phosphors. The most intensive band
on the luminescent spectra was observed at 592 nm. In another investigation, Yang et al.
synthesized BaGdF5:Yb3+/Er3+ nanoparticles via active shell modification, revealing that
enhancement of the up-conversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles and
that luminescence colors of the active-core/active-shell nanoparticles can be tuned from
green to yellow by means of multilayer active-shell coating [23].
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BaGdF5:Ce3+, Eu3+, BaGdF5:Ce3+, Tb3+ were synthesized in [18] using the hydrother-
mal method. Transmission electron microscope images revealed an average size of 12 nm.
All the samples demonstrated luminescence under ultraviolet irradiation and emitted rays
in the visible range. The investigated nanoparticles exhibited a paramagnetic property. Cy-
totoxicity studies against human erythrocytes indicated that the synthesized nanoparticles
were nontoxic because they did not cause red blood cell shape, membrane structure and
permeabilization changes.

BaGd1–x–y–zF5: xYb3+, yEr3+, zEu3+ dual-mode luminescence nanophosphors were
synthesized in [12] using a simple one-step hydrothermal method. Under 274 nm UV light
excitation, nanophosphors emitted orange light. Under 980 nm near-infrared radiation,
nanophosphors intensively emitted visible green light. The enhanced up-conversion
luminescence of the BaGdF5: Yb3+, Er3+/Eu3+ nanophosphors was realized by modifying
the trisodium citrate surfactant. The trisodium citrate surfactant-modified and unmodified
nanoparticles all had sphere-like morphology, with an average size of 25 and 44 nm,
respectively. Furthermore, the nanoparticles had a paramagnetic feature in previously
discussed investigations [18,21].

Monodispersed BaLnF5:Yb3+(20%)/Er3+(2%) (Ln = La3+, Gd3+, Lu3+) nanocrystals
were synthesized in [24] using a thermal decomposition method. According to the inves-
tigation, the size of the nanocrystals decreased with the Ln3+ ionic radius in the BaLnF5
structure without affecting the phase and shape of the nanocrystals. The luminescence
efficiency also followed the same trend as the size of the nanoparticles.

BaGdF5:Yb3+/Tm3+ conjugated with anti-cancer drug doxorubicin nanoparticles was
reported in [10]. According to the transmission electron microscopy imaging, the size
of nanoparticles was approximately 10 nm. Doxorubicin can be selectively released by
the cleavage of hydrazone bonds in an acidic environment, which shows a pH-triggered
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drug release behavior. Long-term in vivo toxicity studies indicated that mice intravenously
injected with 10 mg/kg of the nanoparticles survived for 40 days without any apparent
adverse effects on their health.

Indeed, nanophosphors based on BaGdF5 have low cytotoxicity [25]. Zhigao Yi et al.
synthesized BaGdF5: x% Ln3+ (x = 0, 50 or 100; Ln3+ = Dy3+, Er3+ or Yb3+) nanoparticles,
which demonstrate high luminescence and paramagnetic properties [25]. The viability of
Hela cells for these nanoparticles was above 79.5% with 500 µg/mL concentrations. In vitro
cell viability studies revealed the low cytotoxicity of the nanoparticles. In vitro hemolytic
assay showed excellent blood compatibility of the nanostructures. The authors reported
that BaGdF5: 50% Er3+ nanophosphors can emerge as synergistic contrast-enhancing agents
for tumor detection in T1/T2 dual-weighted MRI.

In addition, biological macromolecules are larger than nanoparticles. The size of
nanoparticles is usually in the order of tens of nanometers, which is 1000 times smaller than
the size of a cancer cell. That is, unlike microparticles, nanoparticles show good cellular
uptake. This makes them ideal candidates for the delivery of anticancer drugs [26]. Because
of their small size, nanomaterials can overcome biological barriers. Small capillaries have
a diameter of about 3 micrometers, and nanoparticles with a size of 200 nm can be freely
transported through the circulatory system and carry pharmaceutically active substances.

Effectiveness of the drugs used in biomedicine also strongly depends on their biocom-
patibility with target cells. It is well-known that the outer surface of the lipid bilayer of the
cell membrane is negatively charged. Therefore, endocytosis depends on the nanoparti-
cle surface charge [27]. In addition, neutral nanoparticles have a lower endocytosis rate
compared to charged nanoparticles, while positive and negative nanoparticles have differ-
ent clearance speed and biodistribution [28,29]. In turn, neutral and negatively charged
nanoparticles have a long circulation period [28]. Due to endocytosis, the efficiency of inter-
nalization is highly dependent on the nanoparticles charge. Clathrin-mediated endocytosis
allows positively charged particles to be selectively internalized [27]. However, in spite of
the higher speed of endocytosis of positively charged nanoparticles, they accumulate on
the vascular endothelium without subsequent penetration into tissues or tumors, unlike
their neutral and negatively charged counterparts [28]. Furthermore, positively charged
nanoparticles evade lysosomes, causing disruption in their functioning, leading to swelling
and rupture [30]. Therefore, for biomedical applications, the most optimal is a neutral or
negative charge of the surface of nanoparticles.

To obtain particles with a negatively charged surface, nanoparticles are often coated
with surface ligands. Citric acid or amino acids (glutamic or aspartic) are usually used as
biocompatible ligands [31–34]. This choice is due to the presence of two or more carboxyl
groups. One of the carboxyl groups forms a chelate complex with Ln3+ ions while the
remaining groups create a negative surface charge, which promotes dispersion of the
particles due to electrostatic repulsion. It was also found that the stability of colloidal
particles coated with a citrate depends on pH. With pH decrease from 7.0 to 4.5, a stable
colloid begins to precipitate particles. However, when an alkali is added to the system,
the precipitate is dispersed. These pH-dependent coagulation/dispersion processes are
reversible many times over [35].

In this work, X-ray-scintillating nanoparticles BaGdF5:Eu3+ with varied Eu:Gd ratio
and controlled size distribution were obtained through microwave synthesis. We sys-
tematically considered the surface post-treatment with PEG and citrates for enhanced
biocompatibility and amorphous SiO2 which showed notably enhanced methylene blue
(MB) photosensitizer conjugation for the construction of BaGdF5:Eu3+@SiO2@MB nanocom-
posites. In addition, synthesized NPs demonstrate efficient X-ray attenuation, thus making
the obtained nanocomposites a promising candidate for both XPDT and CT imaging.
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2. Results

2.1. BaGdF5:Eu3+ Nanophosphors
2.1.1. Crystal Structure and Composition

The elemental composition of the BaGdF5 samples doped with the following different
initial concentrations (x = 1, 2.5, 5, 10, 25, 50%) of Eu3+ was assessed using X-ray fluo-
rescence analysis (XRF). The actual elemental composition percentage and molar ratio
of the Ba, Gd and F elements for each sample were calculated and reported in Supple-
mentary Table S1, while the expected and actual percentage of Eu3+ was reported in
Table 1. The obtained results demonstrate that the Eu3+ precursor almost entirely reacts
during the synthesis involved in NP formation and that BaGd1–xF5Eux stoichiometry is
well-established. Some notable deviations between the predicted and actual Eu content
observed for the lowest Eu loading were likely due to the presence of a tiny amount of
the nonreacted Eu precursor as well as an XRF experimental error in determination at the
low-concentration level.

Table 1. Cell parameters of the BaGdF5 and BaGdF5: x% Eu3+ samples calculated from full profile analysis in the Jana2006
software and crystal size calculated using the Scherrer equation and the Williamson–Hall analysis.

Sample Names

Initial
Elemental

Composition
at., %

Actual
Elemental

Composition
at., %

Cell
Parameters,

Å

Cell Volume,
Å3

Crystal Size
According to
the Scherrer

Equation

Crystal Size
According to

the W–H
Analysis

BaGdF5 0 0 5.9099 (5) 206.41 (3) 10.71 14.20
BaGdF5: 1% Eu3+ 0.14 0.02 5.9198 (8) 207.45 (3) 10.45 13.59

BaGdF5: 2.5% Eu3+ 0.36 0.20 5.9168 (8) 207.13 (8) 10.49 14.20
BaGdF5: 5% Eu3+ 0.71 0.50 5.9208 (14) 207.55 (8) 9.64 11.47

BaGdF5: 10% Eu3+ 1.43 1.37 5.9212 (7) 207.60 (1) 10.98 15.36
BaGdF5: 25% Eu3+ 3.57 3.51 5.9276 (9) 208.27 (4) 9.61 12.64
BaGdF5: 50% Eu3+ 7.14 8.33 5.9388 (8) 209.45 (5) 9.99 12.21

X-ray powder diffraction (XRD) profiles were collected for the BaGdF5 nanoparticles
doped with different amounts of Eu3+ reported in Figure 2a. Qualitative examination
revealed single-phase material formation for all the BaGdF5: x% Eu3+ samples with a
structure similar to those reported for undoped BaGdF5 in PDF database JCPDS No. 24-
0098, space group Fm-3m and cell parameter a = 6.023 Å, V = 218.49 Å (Figure 2b). No
detectable traces of a side Eu-containing product or amorphous phase were observed, thus
demonstrating that the overwhelming majority of Eu3+ ions were incorporated into the
BaGdF5 matrix.
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Cell parameters were calculated from profile analysis using the Jana2006 software
program package (Table 1). The value of the BaGdF5: x% Eu3+ cell parameters were
close to the value of the non-doped BaGdF5 sample a = 5.909 Å, but Eu doping led to the
tiny modification of cell parameters. This can be clearly observed by the gradual shift of
diffraction maxima with Eu content increase. The obtained cell parameter is smaller than
the PDF database value (a = 6.023 Å). This phenomenon of crystal lattice compression
is associated with the size effect of nanoparticles [36]. In addition, the crystalline size
was estimated using the Scherrer equation and the Williamson–Hall (W–H) analysis (see
Table 1).

In Figure 3, one can see that cell parameters increased with the increase in the Eu3+

doping percentage. This can be explained by the fact that Eu3+ Ri = 1.087 Å [37] has a larger
ionic radius compared to Gd3+ Ri = 1.078 Å [37]. The obtained trend and particularly its
linear character at higher Eu concentrations confirms that Eu3+ ion is inserted into the lattice
structure of BaGdF5. Thus, cell parameters depend on the amounts of doping elements.
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The purity of the final products was monitored by means of Fourier-transform infrared
spectroscopy (FTIR) (see Figure S1) and discussed in the Supplementary Materials.

The amount of PEG can be estimated by means of thermogravimetric analysis (TGA).
Comparison of the TGA and differential scanning calorimetry (DSC) curves performed on
PEG-modified and pure BaGdF5: 10% Eu3+ is reported in Figure S2. A slight difference in
the weight loss in the range of 150–350 ◦C apparently can be associated with the elimination
of PEG molecules from the surface.

2.1.2. Transmission Electron Microscopy Analysis and Particle Size Distribution

The shape, morphology and size of the nanoparticles were studied using transmission
electron microscopy (TEM). As seen in TEM images and from the analysis reported in
Figure 4, all the BaGdF5: x% Eu3+ samples were spherical particles.

The size distribution of the nanoparticles was estimated using the ImageJ program.
The total amount of nanoparticles taken into account for analysis was 1300 for the 1%
and 2.5% doped samples, 1160 for the 5% doped sample, 1374 for the 10% doped sample,
1360 for the 25% doped sample and 1300 for the 50% doped sample. It was found that
the nanoparticle size distribution peaked at approximately 11 nm for the 2.5% and 5%
doped samples, at 12 nm for the 1%, 25% and 50% doped samples and at 13 nm for the
2.5% doped sample.
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The sizes (small) of the synthesized samples were appropriate for further coating
with SiO2. Indeed, such small nanoparticles are known to readily overcome biological
barriers [26]. Small capillaries have a diameter of about 3 micrometers, and nanoparticles
with a size less than 200 nm can be freely transported through the circulatory system and
carry pharmaceutically active substances.

2.1.3. X-ray-Excited Optical Luminescence

Rare-earth metal ions such as Eu3+ doped into a wide range of materials exhibit optical
luminescence upon UV–vis and X-ray excitation [13,20,38,39]. The latter makes it possible
to convert ionizing radiation into visible light as part of the XPDT system. On the other
hand, a study of certain transition intensities in X-ray-excited optical luminescence (XEOL)
spectra could give additional information about the environment of the lanthanide ion.

The XEOL spectra reported in Figure 5a for a series of BaGdF5: x% Eu3+ samples show
typical spectral shape for the Eu3+-doped BaGdF5 matrix. The observed luminescence
spectrum of the synthesized NPs resulted from transition within the f-electron of the Eu3+

ions. The observed peaks in the optical range were related to the Eu3+ forbidden electric-
dipole and magnetic-dipole 4f→ 4f (5D0→ 7FJ = 0,1,2,3,4) transitions (as shown in Figure 5b)
which strongly depend on the symmetry of the Eu3+ sites [39–41]. While magnetic-dipole
5D0→ 7F1 (λ = 591 nm) and 5D0→ 7F4 (λ = 698 nm) transitions are relatively insensitive to
the environment, low intensity of electric-dipole transition 5D0 → 7F2 (λ = 617 nm) as well
as the absence of the 5D0 → 7F0 transition could be a sign of high symmetry of the Eu3+

site in the synthesized materials.
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It should also be emphasized that the presence of a weaker band 5D1→ 7F2 (λ = 556 nm)
was observed only for the sample with a moderate content of Eu, i.e., 2.5%, 5% and 10% of
Eu, see inset in Figure 5a. The low-phonon energy of the fluoride matrix caused a weak
probability of quenching due to multiphonon relaxation, which explains the observation of
such radiation at short wavelengths [42]. The peak intensity increased with an increase
in doping material Eu3+ from 2.5% to 10% and then decreased with an increase of the Eu
concentration up to 50%. The peak intensity was not in direct correlation with the number
of radiation centers. Probably, it is related to the effect of concentration like previously
observed quenching in some Eu3+-doped samples [42].

It is worth mentioning that except for the low-intensity peak centered at λ = 556 nm,
the relative intensity between other peaks remained the same. Thus, the total X-ray-excited
luminescence efficiency of nanophosphors can be estimated as signal intensity integrated
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over the range from 400 to 800 nm (as reported in Figure 6). Finally, we may declare that
the optimal actual content of doped Eu is equal to 1.37 at. % (i.e., BaGdF5: 10% Eu3+).
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2.1.4. Nanoparticles’ Colloidal Solution Stability

Dynamic light scattering (DLS) measurements directly characterize particles in disper-
sion and allow monitoring of dispersion effects such as the time effect on colloidal stability.
Moreover, hydrodynamic sizes of nanoparticles can be estimated from DLS data. Thus,
during the study, the stability of the solution and the hydrodynamic size of the dissolved
nanoparticles were verified. All the samples were dissolved in 10 mL of distilled water
with a concentration of 2 mg/mL.

In case of the BaGdF5: 10% Eu3+ sample after 1 min of data acquisition, a predomi-
nantly large fraction of the sample in the colloidal solution was observed (Figure 7a). After
5 min, the amount of the large fraction decreased (Figure 7b). Mostly smaller nanoparticles
with a hydrodynamic radius of about 30 nm remained in the colloidal solution. The large
fraction was likely to form a precipitate (Figure 7c).

Thus, the solution with the BaGdF5: 10% Eu3+ nanoparticles was stable for half an hour.
Moreover, a large fraction of the sample fell into the precipitate, leaving the nanoparticles
of smaller sizes in the colloid.

As can be seen from DLS data (Figure 7c), hydrodynamic sizes of nanoparticles in the
established colloid (after 30 min measurements) ranged from 30 nm to 400 nm. The large
fraction was due to the presence of aggregated nanoparticles in the solution (Figure 7a). It
is worth noting that the hydrodynamic size of the nanoparticles is always greater than their
real size. Therefore, the hydrodynamic size estimated from DLS was substantially different
from the size distribution obtained via TEM microscopy (Figure 4) and X-ray diffraction
calculations (Table 1).

Z-potential is the electrical potential in the slip plane. The plane separates the moving
fluid from the fluid that is attached to the surface. Z-potential is usually used as a detector
of droplet stability. Zeta-potential values above +30 mV or below −30 mV indicate good
stability of aqueous dispersions [43]. Thus, the stability of the solution can be verified via
ζ-potential measurements.
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Z-potential of the BaGdF5 and BaGdF5: x% Eu3+ samples is reported in Table 2. All
the samples were dissolved in 2 mL of distilled water with a concentration of 2 mg/mL.
No clear trends were observed in the measured ζ-potentials with the variation of the Eu
amount in the samples. The average ζ-potential of all the samples was +29.95 mV, revealing
that the BaGdF5 and the BaGdF5: x% Eu3+ suspensions were stable in an aqueous solution.

Table 2. Z-potential measurements for the BaGdF5 and the BaGdF5: x% Eu3+ samples.

Sample ζ-Potential, mV

BaGdF5 26.12
BaGdF5: 1% Eu3+ 29.89

BaGdF5: 2.5% Eu3+ 32.04
BaGdF5: 5% Eu3+ 25.16

BaGdF5: 10% Eu3+ 32.37
BaGdF5: 25% Eu3+ 25.49
BaGdF5: 50% Eu3+ 28.57

2.2. Citrate Surface Modification

For surface modification with a citrate and any further nanoparticle manipulations, the
BaGdF5: 10% Eu3+ sample was selected, as it turned out to be the most promising in terms
of X-ray scintillating efficiency. To confirm the particle surface modification, FTIR spectra
of the unmodified and citrate-coated nanoparticles were acquired (Figure 8). The spectra
of the coated sample displayed characteristic acyl C=O bands at 1560 and 1378 cm−1 at-
tributed to the asymmetrical and symmetrical stretching modes, respectively [44]. Further-
more, we observed bands at 1041 and 1271 cm−1 corresponding to citrate C−H bending
and acyl C−O asymmetrical stretching, respectively [45]. The increase in the peak at
1643 cm−1 was associated with an increase in the water molecules’ amount adsorbed on
the particles’ surface. These bonds were in agreement with the analogous modification of
Fe3O4 magnetite nanoparticles [46].
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To assess stability of the modified particles in the colloidal solution form, measure-
ments of their ζ-potential were carried out at pH = 7. As can be seen, the sign of the
ζ-potential changed from positive to negative. At the same time, the absolute value of the
ζ-potential remained quite high (−30 mV). The alternating surface charge of the coated
nanoparticles is strong evidence that the coating of the oppositely charged components was
successful. Nanoparticle dispersions with ζ-potential values of ± 20–30 mV are classified
as moderately stable in the drug delivery literature [47]. The obtained results demonstrated
that nanoparticles’ surface modification with citrates facilitates better stability of colloidal
solutions, which is important for the possible application in CT imaging. Thus, at the next
stage, we explored an X-ray attenuation capability and possible application as a contrast
agent for Cit3−-coated BaGdF5: 10% Eu3+ nanoparticles.

CT Imaging and Biodistribution

Prior to the in vivo CT imaging we estimated the X-ray attenuation capability of the
synthesized materials by comparison with commercial iodine-based nonionic contrast agent
Optiray-350®. For these purposes, we chose citrate-coated BaGdF5: 10% Eu3+ due to the
known positive effect of citrate coating on the biocompatibility of nanoparticles [48–50]. An
aqueous solution of nanoparticles and the commercial Optiray contrast agent were prepared
with different concentrations of I and heavy elements in the nanoparticle core, namely Ba
and Gd (44.5 mM, 31.1 mM, 18 mM), and X-ray attenuation efficiency was verified.

Similarly to the previously reported results for BaGdF5-based systems [10,51–53] using
both qualitative examination and calibration curves reported in Figure 9a, we observed that
the citrate-coated BaGdF5: 10% Eu3+ nanoparticles outperformed the contrast capability
of the commercial iodine-based Optiray-350 agent. The obtained contrast superiority was
due to the fact that Ba and Gd more readily absorb high-energy X-ray photons having a
larger X-ray attenuation coefficient compared with I (at 60 kV, Ba = 8.51, Gd = 11.75 and
I = 7.58 cm2 g−1) [54].

Biodistribution of the citrate-coated BaGdF5: 10% Eu3+ nanoparticles were assessed
through in vivo CT imaging mice after an intravenous injection of 200 µL nanoparticle
aqueous solution (total dosage of Gd, ca. 2.9 mg as estimated considering the TGA curve
of Cit3−-coated NPs, see Figure S3). Figure 9c demonstrates a series of CT images acquired
before the injection and at different time intervals after the injection (some contrast regions
in the gastrointestinal area were observed due to the residual amount of animal feed).

From the visual examination, one observes that just after the nanoparticles’ admin-
istration (5 min), significant contrast enhancement of the spleen was detected, and the
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border of the liver became better detectable compared with the pre-injection visualiza-
tion. Comparison of the CT scans taken after 30 min and 2 h demonstrates continuous
contrast increase in the liver and the spleen (more substantially). In addition, nanoparticle
biodistribution was quantitatively estimated by analyzing the contrast for ROI, which
corresponds to different mouse organs (liver, spleen, kidney and heart were considered).
This analysis confirmed the previously observed trends (see Figure 9b). In more detail,
just after contrast administration, a notable HU increase was observed for all the organs,
except for kidneys where the contrast level remained almost unchanged after different
time intervals probed. Interestingly, for the heart, some short-term threshold of contrast
enhancement was detected (5 min CT), which was further notably reduced. As for the liver,
a more than double HU enhancement was observed, and the nanoparticle concentration
in the liver peaked at 1–2 h after the injection, with subsequent smooth decline. Finally,
the greatest accumulation effect was observed for the spleen. Compared with the liver,
a more pronounced contrast increase was detected with 30 min delay after the injection
and remained almost unchanged for the next few hours (1 h and 2 h scan). However, a
further notable HU increase was obtained after 24 h, thus demonstrating quite pronounced
nanoparticle accumulation in the spleen.
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Figure 9. (a) In vitro CT imaging for the aqueous solution of the citrate-coated BaGdF5: 10% Eu3+

nanoparticles and commercial iodine-based contrast agent Optiray-350. (b) Time evolution of HU
values registered for different mouse organs after an intravenous injection of the citrate-coated
BaGdF5: 10% Eu3+ nanoparticles (HU values before the injection reported for the sake of comparison)
and (c) the corresponding CT images taken before and after the injection.

The obtained results are somewhat different from the ones recently reported by Wang
et al. [52] where CT-based biodistribution of RGD-loaded PEGylated nanoparticles was
reported for tumor-bearing mice and dominating nanoparticle accumulation was shown in
the liver. The observed difference might have been due to different reasons. First, in their
work, a well-defined contrast increase was observed for tumor tissues as well. Second,
despite the pretty similar size of nanoparticle cores (ca. 9–10 nm in [52] vs. 14–15 nm in
our work), the different coating and presence of an RGD agent (that likely resulted in the
different values of ζ-potentials) could significantly affect nanoparticle biodistribution. The
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metabolic behavior of nanoparticles in vivo depends not only on their own characteristics,
such as size, morphology, charge, surface functional groups, aspect ratio and so on, but
also on the tissue microenvironment [52].

Overall, the observed NP accumulation in the liver and the spleen is typical since
both organs are characterized by a well-developed vascular system, while the prolonged
effect of NP accumulation in the spleen will be addressed in our further work via in vivo
toxicity experiments.

2.3. SiO2 Surface Modification

Since the luminescent profiles of the BaGdF5: 10% Eu3+ sample were the most intensive
(according to Figure 5a), the Eu3+-doped nanophosphors were coated with SiO2 for further
impregnation of photosensitizer molecules in the silica porous structure. The coated
nanoparticles were investigated by X-ray diffraction, X-ray fluorescence, transmission
electron microscopy, automated surface area and the porosimetry (ASAP) method.

2.3.1. Structure and Morphology

Qualitative analysis of the X-ray powder diffraction profile confirms that after SiO2
coating, the core of a nanocomposite preserves a single-phase BaGdF5 structure. Moreover,
an additional broad peak centered around 2θ = 25◦ was observed (Figure 10). This peak
could be assigned to the SiO2 amorphous microspheres [55].
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The Fourier-transform infrared spectra were measured for the SiO2-coated samples
to detect amorphous silica. According to the FTIR spectra in Figure 11, the bands at
801 cm−1 and 498 cm−1 relate to the Si–O bond bending and bond rocking vibrations in
the three-dimensional SiO2 network [56]. The shoulder at 944 cm−1 is caused by the Si–O
and Si–OH bonds on the silica shell surface [57]. The most intense band at 1077 cm−1 with
a shoulder at 1187 cm−1 is attributed to the transverse optical and longitudinal optical
modes of Si–O–Si asymmetric stretching vibrations [58]. Thus, FTIR confirms formation of
the amorphous SiO2 structure in the BaGdF5: 10% Eu3+@SiO2 sample.
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Finally, according to the TEM images of the SiO2-coated samples (Figure 12), the
average size of the BaGdF5: 10% Eu3+@SiO2 core–shell nanoparticles was estimated as
164 nm, the width of the coating ~119 nm, the width of the core ~45 nm. The core size
increase was due to the agglomeration of nanoparticles under synthesis conditions. Thus,
even after the SiO2 coating, the obtained composites overcome biological barriers [26], the
nanospheres can be truly transported through the capillary system.
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2.3.2. Tunable SiO2 Coating

Next, the amount of SiO2 absorbed on the surface of nanoparticles was estimated
from XRF analysis. The obtained results demonstrate that the content of Si was about
60 at. %. Obviously, too thick an amorphous SiO2 shell might be a serious problem for
re-emitted light propagation and may substantially inhibit the Förster resonance energy
transfer (FRET) mechanism which is known to be limited by 5–10 nm [59–61]. On the one
hand, according to the Brunauer–Emmett–Teller (BET) surface analysis reported below,
amorphous SiO2 can be considered as a mesoporous material and PS molecules can be
located inside the pores in the proximity of scintillating nanoparticles. On the other hand,
for ROS generation, PS molecules must be easily achievable for molecular oxygen, while
this process can be partially inhibited by the thick amorphous silica shell.

Taking into account the abovementioned considerations, we demonstrated the possi-
bility of tunable shell thickness using two different routes: (i) varying the treatment time
(10, 20, 30 min) and keeping fixed the amount of tetraethyl orthosilicate (TEOS) (325 µL)
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and (ii) with a fixed treatment time (40 min) and varied TEOS amount (TEOS was reduced
by two, four, six and eight times). A similar approach was recently reported for LaF3:Tb
nanoparticle coating by Elmenoufy et al. [62].

The amount of SiO2 was subsequently measured with XRF. The first method resulted
in ca. 55–56 at. % of the Si content independently of the TEOS–nanoparticles interaction
time (see Figure S4a). At the same time, for the method based on different TEOS loading,
very good correspondence between the introduced TEOS amount and the measured Si
content was obtained (see Figure S4b). Moreover, XEOL spectra acquired for the set of
SiO2-coated samples obtained using different amounts of TEOS demonstrated the gradual
decrease of the signal intensity with the increase in TEOS loading upon surface coverage
(Figure 13).
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Figure 13. XEOL signal collected for the SiO2-coated BaGdF5: 10% Eu3+ nanoparticles obtained by
varying the amount of TEOS.

The observed trend in the registered XEOL intensity demonstrates an explicit expo-
nential character (as shown in Figure S5 in the Supplementary Materials). In addition,
the fact that after the interaction with TEOS the system was centrifuged at high rpm and
thoroughly washed, the Si content data obtained from XRF and XEOL signal attenuation
allowed us to declare the formation of SiO2-coated nanoparticles with varied thickness of
the SiO2 shell.

For the latter N2 adsorption–desorption isotherms characterization and methylene
blue conjugation, the sample with larger SiO2 layer thickness was selected in order to get a
more representative effect of SiO2 coating.

2.3.3. Measurements of the Specific Surface Area and Pore Size Distribution of the Silica
Shell Structure

After coating the samples with SiO2, the surface area and pore size of the nanostruc-
tures were verified. The isotherms of the samples can be attributed to type IV (IUPAC
classification), which is typical of mesoporous materials. Indeed, the most probable size
of the BaGdF5: 10% Eu3+@SiO2 nanoparticles was 164 nm according to the TEM analysis
(Figure 12). The size of pores corresponded to mesoporous nanostructures (according to
the IUPAC classification).

The phenomenon of hysteresis in the isotherms of low-temperature nitrogen ad-
sorption is related to capillary condensation in mesoporous structures. Different types of
adsorption and sorption environments (temperature and pressure) affect the hysteresis loop
shapes of the investigated samples. In the hysteresis loop of the BaGdF5: 10% Eu3+@SiO2
sample (Figure 14a), the shape of the pore corresponds to the H3 type of hysteresis. H3 is
associated with the slit-shaped type of pores. Thus, the BaGdF5: 10% Eu3+@SiO2 nanopar-
ticles had slit-shaped pores. This kind of pores assumes that it should be possible to
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impregnate several photosensitizer molecules in the pores. The desorption curve of H3
hysteresis contains a slope related to the force on the hysteresis loop due to the so-called
tensile strength effect (this phenomenon probably occurs for nitrogen at 77 K in the relative
pressure range from 0.4 to 0.45).

In comparisons with the noncoated sample (Figure 14b), the type of adsorption
isotherms changed. The isotherms of the noncoated sample can be attributed to type III
(IUPAC classification), which is typical of nonporous or macroporous materials. Indeed,
according to the Barrett–Joyner–Halenda (BJH) calculations, the pore size was 11.9 nm and
the surface area was 64 m2/g. The obtained value was in good correspondence with an
averaged interparticle distance estimated as 15 nm from TEM images (see Figure 4d). More-
over, the noncoated nanoparticles could be attributed to type H1 associated with capillary
condensation of nitrogen in spaces between uniform nanoparticles in agglomerates.
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Turning back to the coated nanoparticles, the sizes of pores were obtained from the
pore diameter logarithm differential distribution graph of BaGdF5: 10% Eu3+@SiO2 by
means of nitrogen adsorption (see Figure 15). The nonlocal density functional theory
(NLDFT) model was used to determine the porosity of a sample—pore width. According
to NLDFT, the pore sizes were 1.5 nm, 2.3 nm and 3.1 nm. Furthermore, according to the
BJH calculations, the pore size was estimated as 4.26 nm, the pore volume was 0.03 cm3/g
and according to the Brunauer–Emmett–Teller theory, the surface area was 160.11 m2/g.

2.3.4. Cytotoxicity Test

In addition to physicochemical characterization of the nanocomposites, we assessed
their comparative effect on the HeLa cells’ viability (Figure 16).

As seen from the collected data, the nanocomposites notably differed in their effects.
The noncoated variant, BaGdF5: 10% Eu3+, caused an approximately 3% increase in cell
viability. We would speculate that these effects might be due to the redox properties of the
nanocomposite increasing cell adaptation capabilities because of the respective signaling
changes and thanks to the elemental composition of the nanoagent [63]. This, in turn,
perfectly explains why the coated counterpart did not have this effect: silica coating is
known to hamper nanocomposite degradation, thus probably preventing the emanating
ions from causing any significant shifts in the oxidative status of the cells. This hypothesis
will be tested in our future research.
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Figure 16. HeLa cells’ viability following exposure to saline (control group), 50 µg/mL BaGdF5: 10%
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nanocomposite groups. The Kruskal–Wallis criterion testing returned p = 0.001.

As for the minor (~1%) yet significant decrease in viability in the silica-coated nanopar-
ticle group, when compared to the control group, although these changes were detected
statistically, they were nonrelevant biologically. The decrease might have been due to the
silica coating itself since it is not entirely inert [63], but this minimal magnitude of the
reaction would render the respective investigation of the cause cost-ineffective.

To conclude on the biological part of characterization, both formulations demonstrated
a perfect safety profile, with silica coating introducing an emergent biological influence on
cell viability. This influence was most likely due to physicochemical properties and surface
features of the amorphous silica layer itself and the decreased rare element-containing core
degradation rate.

2.3.5. Nanocomposite Impregnation by the Methylene Blue Photosensitizer

The construction of a nanocomposite for efficient XPDT remains an ongoing challenge
since several important aspects must be satisfied such as good biocompatibility and toxicity,
efficient energy transfer from scintillating NPs and PS molecules, close proximity of molec-
ular oxygen, etc. For an efficient energy transfer, two aspects are of crucial importance:
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(i) the FRET mechanism strongly depends on the spacing between the emitting sites and
the PS molecules [59–61] and (ii) the emission spectrum of nanophosphors must at least
partially overlap the absorption spectrum of the photosensitizer. The last criterion makes
composite construction based on Eu3+-doped NPs particularly challenging due to the lack
of suitable PS dyes.

Thereby, Chouikrat et al. [64] reported the design of europium-doped composite
GdO2S:Eu3+ conjugated with zinc chlorin (ZnTPC) and zinc phthalocyanine (ZnPc). It has
been shown that under direct excitation, PSs were capable of producing 1O2, while when
NPs were excited by UV light or X-rays, no efficient energy transfer was observed. An
efficient energy transfer and subsequent ROS generation were reported by Chen et al. [65]
for a composite based on SiO2-coated SrAl2O4:Eu2+ NPs. Bright green light emission (with
a maximum at ca. 520 nm) allowed using the MC540 dye for this composite. Generally, the
hypericin dye provides an almost perfect overlap with the typical emission spectrum of Eu3+

but it is unstable at room temperature without additional treatment [66,67]. Nevertheless,
Kascakova et al. [67] declared 1O2 ROS generation upon X-ray irradiation for hypericin-
conjugated GdEuC12 micelles. Finally, Yefimova et al. [38] investigated energy transfer for
GdVO:Eu3+ NPs conjugated with different cationic dyes DiOC2, DiDC1 and methylene
blue. The FRET efficiency for MB conjugation has been estimated at 90% and in the
latter work by the same group [67], efficient ROS generation for GdVO:Eu3+@ MB was
demonstrated under X-ray irradiation.

Thus, at the next stage, we prepared a composite based on SiO2-coated and uncoated
BaGdF5: 10% Eu3+ conjugated with the methylene blue dye, known as an efficient pho-
tosensitizer for different applications [68,69]. The emission spectrum of BaGdF5:Eu3+ at
least partially overlaps the optical absorption of MB (see Figure 17a), thus making the latter
suitable for nanocomposite construction.

For quantification, we first performed calibration using a stock MB solution with
different concentrations (2, 4 and 6 µg/mL). The corresponding UV–vis spectra obtained
for stock solutions and mother liquors are reported in Figure S6.

We observed that the mother liquor (ML) obtained after SiO2-coated nanoparticle
impregnation had a notably smaller amount of residual MB molecules compared with those
obtained after noncoated nanoparticles. For further quantification, we used the obtained
calibration curve which maintained the correspondence between the MB concentration
and the intensity of the signal at 664 nm (see the inset in Figure S6).

Thus, the sorption capacity was approx. 0.54 and 1.1 µg MB per 1 mg of nanoparticles
and SiO2-coated nanoparticles, respectively. Considering that the averaged size of SiO2-
coated nanoparticles used for the impregnation experiment (ca. 164 nm) was notably larger
compared with those without SiO2 coating (ca. 14 nm) as well as the mutual repulsion of
positively charged colloidal BaGdF5: 10% Eu3+ and positively charged MB molecules, we
can declare that SiO2 coating, due to the surface area increase and negative ζ-potential, can
significantly enhance the sorption capacity of the MB photosensitizer.

From the UV–vis spectra of the MB-impregnated and nonimpregnated samples (see
Figure 17a), we can see that the sample impregnated with MB had broad low-intensity
peaks characteristic of the photosensitizer. For greater clarity, we subtracted the BaGdF5:
10% Eu3+ spectrum from the BaGdF5: 10% Eu3+@SiO2@MB spectrum and obtained a
more accurate resulting adsorption peak position (dash–dot plot in Figure 17b). It is well-
known [70] that aqueous solutions of methylene blue have two main absorption peaks
at 664 and 614 nm, corresponding to the monomeric and dimeric dye forms, respectively.
However, we can also observe a hypsochromic shift of the main absorption peaks to
607 nm. This shift may indicate the binding of methylene blue molecules to the surface
of nanoparticles, as well as the formation of so-called H-aggregates [71]. H-aggregates
of methylene blue are dimers in which phenothiazine rings are stacked plane-to-plane,
resulting in a π–π (stacking) interaction of two molecules. For methylene blue, trimers and
tetramers are also known. The presence of the dimeric form is confirmed by the resulting
absorption peak wavelength (approx. 607 nm) [72]. The formation of H-dimers on the silica
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surface has already been discussed earlier [73]. The predominance of the dimeric form as
well as its absorption peak’s hypsochromic shift leads to a more efficient UV–vis spectrum
overlaps with the XEOL spectrum (Figure 17b). This contributes to a more efficient transfer
of radiation from the nanophosphor to the photosensitizer.
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3. Discussion

Thus, the BaGdF5: x% Eu3+ (x = 1, 2.5, 5, 10, 25, 50) nanophosphors, BaGdF5: 10%
Eu3+@SiO2, BaGdF5: 10% Eu3+@SiO2@MB and BaGdF5: 10% Eu3+@Cit3− were synthesized.
TEM imaging demonstrated the formation of monodispersed NPs with the average size
~12 nm and narrow size distribution for all Eu:Gd ratios. According to the XEOL spectra,
the BaGdF5: 10% Eu3+ nanophosphors demonstrated the most intensive luminescence. For
this reason, the 10% doped NPs were selected for subsequent surface modification with a
citrate and silica. Citrate coating results in improved colloidal solution stability while SiO2
substantially facilitates methylene blue conjugation upon BaGdF5: 10% Eu3+@SiO2@MB
nanocomposite construction. Moreover, we showed a possibility of coating with tunable
SiO2 layer thickness which is important for optimization of the energy transfer between
scintillating NPs and PS molecules. The synthesized nanostructures can be used as X-ray-
activated agents in an XPDT system. In addition, BaGdF5: 10% Eu3+@Cit3− nanophosphors
have been also shown as an efficient contrast agent for CT visualization.

4. Materials and Methods
4.1. Characterization Techniques

XRD of the synthesized nanoparticles was measured by means of D2 PHASER using
Cu Kα radiation (λ = 1.5406 Å) at 30 kV and 10 mA. For the measurements, we used
a low-background cuvette and the following parameters: 2θ range from 5◦ to 90◦, step
size—0.01◦.

An FEI Tecnai G2 Spirit BioTWIN was used to perform TEM for imaging of the
obtained samples. An accelerating voltage of 80 kV was used.

Qualitative and quantitative element analysis of the synthesized nanoparticles was
carried out using XRF spectrometer M4 Tornado. The data were collected with 20–25 points
of a sample surface, 10 s acquisition for each. Thermogravimetric analysis (TGA) was per-
formed using thermal gravimetric analyzer STA 449 F5 Jupiter (Netzsch). Corundum cru-
cibles for measurement in the flux of air with a heating rate of 10 ◦C/min were employed.
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An XEOL signal was detected by using an in-house setup based on an Agilent Cary
Eclipse fluorescence spectrophotometer with the emission slit set to 10 nm and an X-ray
tube. The following parameters of the X-ray tube were applied for XEOL registration: volt-
age of 35 kV, current of 1.6 mA. Powder samples were thoroughly grinded and deposited
on a thin film transparent both for optics and X-rays. Afterwards, the sample was placed
under X-rays maintaining the angle of 45◦ between the sample surface and both incident
X-ray beams and the fluorescence detector.

Both in vitro and in vivo imaging was performed on a Quantum GX-2 micro-CT device
(Perkin Elmer, Boston, MA, USA). For in vitro CT imaging, an aqueous solution of BaGdF5:
10% Eu3+ and commercially available nonionic contrast agent Optiray® (350 mg (I)/mL)
in different concentrations were prepared and placed in Eppendorf tubes in a 3D-printed
plastic sample holder for positioning inside a micro-CT chamber and the following CT
acquisition parameters were employed: tube voltage = 80 kV, tube current = 90 µA, scan
time = 2 min. Contrast capabilities were determined in Hounsfield units.

For the in vivo CT measurement, intact BALB/c male mice (ca. 3 months old, 34–35 g)
were anesthetized with 2% isoflurane (Laboratories Kari-zoo, S.A., Barcelona, Spain) using
a dedicated RAS-4 anesthesia device (Perkin Elmer, USA). An 89 mM aqueous solution of
citrate-coated BaGdF5: 10% Eu3+ (200 µL, ca. 7 mg of nanoparticles) was administrated
intravenously. After the different time intervals, micro-CT images were taken with the
following parameters: tube voltage = 80 kV, tube current = 90 µA, FOV was restricted to an
86 × 72 mm rectangle, voxel size = 140 µm. For each CT scan, acquisition time was equal
to 4 min, corresponding to a radiation dose of 136 mGy. All the animal experiments were
carried out in accordance with the Guide for the Care and Use of Laboratory Animals [74].

Fourier-transform infrared spectra were measured on a Bruker Vertex 70 spectrometer
in ATR (attenuated total reflectance) geometry using an MCT detector and a Bruker Plat-
inum ATR attachment. The spectra were measured in the range from 5000 to 300 cm−1 with
a resolution of 1 cm−1. Sixty-four scans were collected and averaged for each measurement.
Air at RT was utilized as the reference.

Hydrodynamic particle size distribution data were measured using a NANO-flex
particle size analyzer. The data were accumulated over five consecutive measurements
of 2 min each and then summarized considering temperature, dynamic viscosity, particle
concentration and many other parameters that affect the result. The signal collected for a
pure solvent (water) was subtracted as the background. The measurements were performed
for 10 mL of the sample solution with the concentration of nanoparticles of 1 mg/mL.
Before the measurement, the solution was stirred for 40 min.

Rapid particle charge titrations and size distribution analysis of the samples were
carried out using Stabino. The data were collected using the mode of statistics accumulation
for 24 points with an interval of 5 s. The solution was preliminarily stirred for two minutes
with the concentration of the substance in water of 2 mg/mL.

Nitrogen adsorption–desorption isotherms were measured at −196 ◦C obtained on
accelerated surface area and porosimetry analyzer ASAP 2020 (Micromeritics Instruments
Corp., Norcross, GA, USA). The samples were activated at 250 ◦C for 10 h under dynamic
vacuum before the measurement.

The UV–vis spectra of photosensitizers were obtained with Shimadzu UV-2600. The
spectra were measured in the range from 190 to 900 cm−1 with a resolution of 1 cm−1.

4.2. Synthesis Technique of the BaGdF5: x% Eu3+ Nanophosphors

The microwave method developed by our scientific group and previously described
in [75] was chosen as the synthesis technique. A series of ultra-small BaGdF5: x% Eu3+

nanoparticles were obtained with different concentrations of Eu (i.e., x = 1, 2.5, 5, 10, 25,
50—the EuCl3 percentage relative to the GdCl3 molar amount). The amounts of precursors
used in the synthesis and sample marking are presented in Table 3.
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Table 3. Amounts of precursors used in the synthesis process.

Sample
BaCl2·2H2O GdCl3 EuCl3·6H2O NH4F

mg mmol mg mmol Mg mmol mg mmol

BaGdF5: 1% Eu

244.3 1S

261 0.99 3.7 0.01

203.7 5.5

BaGdF5: 2.5% Eu 257 0.975 9.2 0.025
BaGdF5: 5% Eu 250.4 0.95 18.3 0.05

BaGdF5: 10% Eu 210.9 0.8 36.6 0.1
BaGdF5: 25% Eu 197.7 0.75 91.6 0.25
BaGdF5: 50% Eu 131.8 0.5 183.2 0.5

First, a mixture of GdCl3 and EuCl3·6H2O was dissolved in 20 mL of ethylene gly-
col by ultrasonic treatment. Then, BaCl2·2H2O was added to the resulting solution and
sonicated until complete dissolution, after which the solution was stirred with a magnetic
stirrer for 30 min. After that, 1.5 g of PEG-1500 was dissolved in the solution under ul-
trasonic treatment for 15 min. Separately, a solution of NH4F in 10 mL of ethylene glycol
was prepared. Then, the two solutions were combined, sonicated for 5 min, transferred
to a Teflon ampoule and placed in MW oven CEM Mars6 (microwave-accelerated reac-
tion system). The microwave synthesis conditions were as follows: rise time = 20 min,
temperature = 200 ◦C, temperature holding time = 2 h, with medium mixing of the solution
and power of 600 W. After that, the mixture was centrifuged (13,000 rpm for 10 min) twice
with water. The resulting solution was dried at 60 ◦C.

4.3. Citrate Coating

Sodium citrate (0.7 g) was dissolved in 50 mL deionized water; 0.06 g of BaGdF5: 10%
Eu3+ was added to this solution and the mixture was ultrasonicated at 50 ◦C for 30 min
instead of 1 h as described in [76]. White-colored nanoparticles were washed several times
with deionized water and then with acetone to remove excess citrate groups. The obtained
nanoparticles were dried for 24 h at 60 ◦C. The synthesized sample was marked as BaGdF5:
10% Eu3+@Cit3−.

4.4. SiO2 Coating

All the synthesized BaGdF5: x% Eu3+ (x = 1, 2.5, 5, 10, 25, 50) samples were coated with
SiO2. The preparation of the composites was carried out as follows: 100 mg of BaGdF5: x%
Eu3+ (x = 1, 2.5, 5, 10, 25, 50) were added to a 25 mL aqueous solution of polyvinylpyrroli-
done (concentration, 1 mg/mL). The obtained mixture was kept under ultrasonication
to obtain complete dissolution. After that, the solution was centrifuged (13,000 rpm for
10 min) twice in methanol. Then, the centrifuging precipitate was transferred to 20 mL of
methanol, 10 mL of a concentrated ammonia solution, and 325 µL of TEOS were added to
the solution. The solution was left stirring with a magnetic stirrer for 24 h. After that, the
mixture was centrifuged (13,000 rpm for 10 min) twice with water. The resulting solution
was dried at 60 ◦C for 24 h.

To vary the thickness of the SiO2 shell, two approaches were used: varying the
synthesis time and varying the amount of TEOS. In the first approach, particles during
the synthesis were sampled every 10 min for 1 h. In the second approach, a series of four
syntheses was carried out, but the amount of TEOS was reduced by two, four, six and eight
times, respectively.

4.5. Cytotoxicity Test

In this study, HeLa cells were used as the in vitro experimental model for the cy-
totoxicity test. The cells were seeded and cultured in 24-well plates (SPL LifeSciences,
Pocheon, Korea) in the GlutaMax DMEM medium (Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 10% fetal bovine serum (GE Healthcare, Chalfont St Giles, UK),
50 IU/mL penicillin and 50 µg/mL streptomycin (Thermo Fisher Scientific, Waltham, MA,
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USA). The cells were incubated at 37 ◦C and 5% CO2 in a Binder CB-150 incubator (Binder,
Tuttlingen, Germany). Monolayer formation was observed, and common assessment of
the cell culture was performed using a Premiere MIS-9000 inverted microscope (C&A,
Shanghai, China).

To assess cytotoxicity of the nanoagents, we performed a trypan blue exclusion assay
using automated cell viability analyzer Countess II FL and the protocol of the manufacturer
(Thermo Fisher Scientific, Waltham, MA, USA). During the experiment, stock solutions of
nanomaterials in saline were introduced into the culture medium at the concentration of
50 µg/mL. In the control group, saline was added to the medium. Following addition of
the test samples, the cells were incubated for 24 h.

4.6. Nanoparticle Impregnation with the Methylene Blue Photosensitizer

We prepared 15 mL of a methylene blue solution (concentration, 8 µg/mL (2.5 × 10−5 M)).
The UV–vis spectra of this solution were measured. The next two vessels were filled
with 15 mL of the MB stock solution and 50 mg of BaGdF5: 10% Eu3+ and BaGdF5: 10%
Eu3+@SiO2 were added, and the obtained mixture was stirred for 1 h at room temperature.
Then, the precipitate was separated from the solution by centrifugation, and the absorption
spectrum of the supernatant was measured. The precipitate was washed three times with
distilled water and dried at 60 ◦C, and the obtained samples were marked as BaGdF5: 10%
Eu3+@MB and BaGdF5: 10% Eu3+@SiO2@MB.
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