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Porcine β-defensin 2 inhibits proliferation
of pseudorabies virus in vitro and in
transgenic mice
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Abstract

Background: Porcine β-defensin 2 (PBD-2), produced by host cells, is an antimicrobial cysteine-rich cationic peptide
with multi-functions. Previous studies have demonstrated that PBD-2 can kill various bacteria, regulate host immune
responses and promote growth of piglets. However, the antiviral role of PBD-2 is rarely investigated. This study
aimed to reveal the antiviral ability of PBD-2 against pseudorabies virus (PRV), the causative pathogen of Aujeszky’s
disease, in PK-15 cells and in a PBD-2 expressing transgenic (TG) mouse model.

Methods: In this study, the cytotoxicity of PBD-2 on PK-15 cells was measured by CCK-8 assay. PK-15 cells were
incubated with PRV pre-treated with different concentrations of PBD-2 and PRV titers in cell culture supernatants
were determined by real-time quantitative PCR (RT-qPCR). TG mice and wild-type (WT) mice were intraperitoneally
injected with PRV and the survival rate was recorded for 10 days. Meanwhile, tissue lesions in brain, spleen and liver
of infected mice were observed and the viral loads of PRV in brain, liver and lung were analyzed by RT-qPCR.

Results: PBD-2 at a maximum concentration of 80 μg/mL displayed no significant cytotoxicity on PK-15 cells. A
threshold concentration of PBD-2 at 40 μg/mL was required to inhibit PRV proliferation in PK-15 cells. The survival
rate in PBD-2 TG mice was 50% higher than that of WT mice. In addition, TG mice showed alleviated tissue lesions
in brain, spleen and liver compared with their WT littermates after PRV challenge, while viral loads of PRV in brain,
liver and lung of TG mice were significantly lower than that of WT mice.

Conclusions: PBD-2 could inhibit PRV proliferation in PK-15 cells and protect mice from PRV infection, which
confirmed the antiviral ability of PBD-2 both in vitro and in vivo. The application of PBD-2 in developing anti-viral
drugs or disease-resistant animals can be further investigated.
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Background
Defensins are a group of cationic microbicidal peptides,
which are constituted of 18–45 amino acids with three
intramolecular disulfide bonds formed between pairs of
conserved cysteine residues [1]. Defensins in vertebrates
are subdivided into α, β and θ defensins based on their
spatial structure and disulfide connectivity [2, 3]. Within
pigs, β defensin is the only subfamily of defensins which
has been characterized so far [4–6]. Porcine β-defensin 2

(PBD-2) was first determined by sequence alignment
with the existing sequence of porcine β-defensin 1 [6]. It
was further identified that PBD-2 was distributed in dif-
ferent pig tissues using a polyclonal antibody against
PBD-2 [7]. The antimicrobial activity of PBD-2 against
gram-positive and gram-negative bacteria has been well
described [8–10]. PBD-2 also exhibited immunomodula-
tory properties [11, 12]. Our recent research demon-
strated that PBD-2 could alleviate inflammation through
interacting with toll-like receptor 4 and suppressing the
downstream NF-κB signaling pathway [13]. Additionally,
it has been found that PBD-2 can attenuate proliferation
of porcine reproductive and respiratory syndrome virus
(PRRSV) in MA-104 cells [8]. Molecular docking
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evaluation has revealed that peptides derived from
PBD-2 have the potential to be used to inhibit hepa-
titis E virus by interacting with its capsid protein
[14]. However, the effect of PBD-2 on virus prolifera-
tion in vivo remains unknown.
Pseudorabies virus (PRV), an enveloped double-

stranded DNA herpesvirus, is the etiological pathogen of
Aujeszky’s disease causing meningoencephalitis and
paravertebral ganglioneuritis in pigs [15]. The Bartha-
k61 vaccine was brought to China from Hungary in the
1970s to prevent PRV infection, which has led to the
successful control of PRV since 1980s [16]. However,
PRV variants in Bartha-K61-vaccinated pigs have re-
sulted in resurgence of PRV prevalence in China since
late 2011 [17]. In China, with the infection rate being
13.14% in 2016, it still requires more efforts to achieve
eradication of PRV [18]. In addition to vaccination de-
velopment, studies on novel strategies to combat PRV
are also of great significance.
On the basis of amino acid sequence alignment and

molecular biological analyses, PRV resembles other
alphaherpesviruses within the family Alphaherpesvirinae
[15]. The antiviral abilities of defensins against alphaher-
pesviruses have been described previously. Some α-
defensins with antiviral ability against herpes simplex
virus (HSV) infection were characterized, such as human
neutrophil peptide (HNP) 1–4, human α-defensin (HD)
5 and 6, rabbit α-defensin NP-1 and NP-2 [19–24]. In
terms of β-defensins, human β-defensin (HBD) 3 and a
synthetic β-defensin analog constituted by domains of
HBD-1 and HBD-3 have been confirmed to inactivate
HSV [20, 25, 26]. Bovine neutrophil β-defensin 3 has
been found to show inhibitory activity against bovine
herpes virus 1 [27, 28]. Besides, HBD-2 has been re-
ported to inhibit varicella zoster virus infection [29]. Ret-
rocyclins 1 and 2 and rhesus θ defensin 3 belonging to
θ-defensins have been found to suppress HSV infection
[30, 31]. Therefore, the utilization of defensins as drugs
or target genes for generation of disease-resistant ani-
mals may be useful to control virus infection.
Although swine serves as the natural host and reser-

voir of PRV, mice are often utilized as a preferred model
organism to study PRV infection because of their sus-
ceptibility to PRV. In this study, the effects of PBD-2 on
the proliferation of PRV were investigated both in PK-15
cells and transgenic (TG) mice generated in our previous
study [13]. The results confirmed the effectiveness of
PBD-2 to suppress virus proliferation and provided novel
ideas to control PRV infection.

Materials and methods
Cell line and virus
The PRV strain Ea, isolated from Hubei province of
China, was used in this study [32]. Porcine PK-15 cells

were maintained in Dulbecco’s Modified Eagle Medium
(Thermo Fisher Scientific, Waltham, MA, USA) supple-
mented with 10% fetal bovine serum (FBS) (Thermo
Fisher Scientific) in an atmosphere of 5% CO2 at 37 °C.

Propagation and titration of PRV
PK-15 cells were used to propagate PRV. Briefly, 100 μL
of virus stock was added to PK-15 cells which reached
70% confluence on a T75 cell culture flask for 1 h at
37 °C. After removal of virus inoculum, 15 mL of main-
tenance medium was added. When 80% cytopathic effect
(CPE) was present, cells were harvested and repeatedly
freeze-thawed before centrifugation. PRV was obtained
in the supernatant and titration of PRV was measured
and calculated using the Reed-Muench method in ac-
cordance with protocols described previously [33].

Cytotoxicity assay
Cell Counting Kit-8 (CCK-8) (DOJINDO, Shanghai,
China) assay was used to determine cell viability in ac-
cordance with the manufactures’ instruction. Briefly,
100 μL of PK-15 cell suspension (6000 cells/well) was in-
oculated in a 96-well plate. After 4 h in culture, cells
were attached to the bottom of the plate. Different con-
centrations of PBD-2 ranging from 5 to 80 μg/mL were
subsequently added into the plate without the presence
of FBS. Cells were co-incubated with PBD-2 at 37 °C for
16 h before adding 10 μL of the CCK-8 solution. After
another three-hour incubation, the absorbance was mea-
sured at 450 nm using a microplate reader (TECAN,
Zürich, Switzerland). Cell viability (% of control) = [(ab-
sorbance of test sample - absorbance of blank)/(absorb-
ance of control - absorbance of blank)] × 100%.

Detection of antiviral effect of PBD2 in PK-15
Synthetic mature PBD-2 peptide (DHYI-
CAKKGGTCNFSPCPLFNRIEGTCYSGKAKCCIR, Chi-
naPeptides, Shanghai, China) was used to evaluate its
antiviral activity against PRV. PRV stocks diluted in
DPBS were preincubated with PBD-2 of different con-
centrations (5 μg/mL, 10 μg/mL, 20 μg/mL, 40 μg/mL,
80 μg/mL) at 37 °C for 1 h. The mixture was then added
to a 96-well plate with 10,000 cells in each well (MOI =
0.1), and the plate was incubated at 37 °C for another 1
h. The inoculums were discarded and wells were washed
with PBS before adding fresh maintenance medium.
After 48 h, cell culture supernatants were collected for
viral DNA isolation using a Quick-DNA/RNA Viral Kit
(Zymo Research, Irvine, CA, USA). The resulting viral
DNA was subjected to real-time quantitative PCR (RT-
qPCR) along with a standard plasmid. The plasmid con-
taining a glycoprotein D (gD) gene, a highly conservative
gene of PRV, was serially diluted and subjected to RT-
qPCR to generate a standard curve using the primers P1
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(5′-CATCCTCACCGACTTCAT-3′) and P2 (5′-TAC-
CAGTAGTTCACCACC-3′) for amplifying a part of gD
gene which is 192 bp in length. The number of PRV cop-
ies was determined from the standard curve by convert-
ing the corresponding Ct value.

Mice grouping and viability test of PRV infection
C57/BL TG mice expressing PBD-2 were generated by
our lab previously [13]. Genomic DNA from mouse tail
samples was extracted and used for identification of TG
mice expressing PBD-2 by using primers NP03 (5′-
GCTGGTTGTTGTGCTGTCTC-3′) and NP04 (5′-
AGGTCCCTTCAATCCTGTTG-3′). At 6–8 weeks of
age, TG mice (n = 4) weighing 20 ± 2 g were intraperito-
neally injected with 0.2 mL of PRV (2 × 103.3 TCID50/
mL) each. Their wild-type (WT) littermates (n = 4) were
treated with the same amount of PRV each. Survival was
assessed in two groups of mice daily for 10 days.

Quantification of PRV copies in mice tissues
Both TG and WT mice intraperitoneally injected with 0.2
mL of PRV (2 × 103.3 TCID50/mL) were sacrificed on day
5 post-infection and brain, spleen, liver and lung were har-
vested for further analyses. DNA from 30mg of brain,
liver and lung tissues each was extracted using E.Z.N.A
Tissue DNA kit (Omega Bio-tek, Norcross, GA, USA) ac-
cording to the manufacturer’s instructions. The PRV cop-
ies in the total DNA of tissue samples were measured by
RT-qPCR and calculated as described above.

Histopathological analysis
Brain, spleen and liver tissues from TG and WT mice
were fixed in PBS-buffered 4% formaldehyde for 48 h at

37 °C. Tissues were than embedded in paraffin and sliced
into sections of 5 μm thickness. After that, sections were
subjected to haematoxylin and eosin (HE) staining. Tis-
sue lesions were observed under a microscope.

Statistics
Statistical analyses were performed with GraphPad
Prism 5 (GraphPad Software, La Jolla, CA, USA) using
unpaired one-tailed Student’s t-test and shown as
mean ± SD. *P < .05, **P < .01, ***P < .001, ****P < .0001.

Results
Antiviral effect of PBD-2 in PK-15 cells
The cytotoxicity of PBD-2 on PK-15 was evaluated using
CCK-8 assay. The cell viability analysis indicated that
PBD-2 displayed no significant cytotoxicity on PK-15
cells at a maximum concentration of 80 μg/mL and at a
minimum concentration of 5 μg/mL (Fig. 1a). Then,
PBD-2 of different concentrations were used to assess
the antiviral effect against PRV in PK-15 cells. Compared
with PRV without pretreatment of PBD-2, significant re-
duction in viral titer was observed when PRV was pre-
incubated with 40 μg/mL and 80 μg/mL of PBD-2
(P < .05) (Fig. 1b). These results indicated that PBD-2 at a
relatively high concentration could significantly inhibit PRV
proliferation in PK-15 cells without cytotoxicity activity.

Survival rate analysis of TG mice after infection of PRV
The antiviral effect of PBD-2 on the survival of mice in-
fected with PRV was investigated. WT mice intraperitone-
ally infected with 0.2mL of PRV (2 × 103.3 TCID50/mL)
showed a survival rate of 25% while expression of PBD-2
increased the survival rate of TG mice to 75% (Fig. 2).

Fig. 1 Effect of porcine β-defensin 2 (PBD-2) on PK-15 cells. a Cytotoxicity of PBD-2 on PK-15 cells. PK-15 cells were incubated with different
concentrations of PBD-2 for 16 h (5, 10, 20, 40, 80 μg/mL). The cytotoxicity was measured by CCK-8 assay (n = 8); b Pseudorabies virus (PRV) was
pre-incubated with PBD-2 of different concentrations and used to inoculate cells, the PRV copies were measured 2 days after infection (n = 5).
Data are presented as mean ± SD from three independent experiments. * P<0.05, **P<0.01, ns = no significance, unpaired one
tailed Student′s t-test
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Thus, the results revealed that TG mice expression PBD-2
were more resistant to PRV infection than control mice.

Viral loads in TG mice after PRV infection
The PRV genomic copy numbers were quantified in
brain, liver and lung tissues of TG and WT mice in-
fected with PRV by RT-qPCR. PRV viral loads in brain
tissues of TG mice and WT mice were higher than those
in liver and lung tissues. However, PRV viral loads in
brain (P < .001), liver (P < .0001) and lung (P < .05) of TG
mice were significantly lower than that of WT mice
(Fig. 3). Hence, PBD-2 could significantly depress viral
loads of PRV in different tissues.

Histopathological analysis of TG mice after infection of
PRV
The pathological changes of WT mice and TG mice
after PRV infection were also detected. Microglia nod-
ules associated with neuronal degeneration and necrosis
were observed in brain tissue of WT mice (Fig. 4a) while
neuron swelling, dissolution of Nissl bodies and baso-
philic inclusions were present in TG mice (Fig. 4b). Be-
sides, necrosis of cells was found in spleen tissue of WT
mice (Fig. 4c) and TG mice showed a slight hyperemia
in spleen (Fig. 4d). Degeneration of cells and congestion
in the liver of WT mice were observed (Fig. 4e) while
there were no apparent lesions in that of TG mice (Fig.
4f). Together, these results demonstrated that TG mice
displayed milder tissue lesions than WT mice after PRV
infection.

Discussion
The impact of PBD-2 on viral pathogenicity has not
been well examined experimentally yet. A previous study
has showed that PBD-2 exhibits antiviral ability against
PRRSV when the concentration reaches 64 μg/mL [8].
Similarly, in this study, PBD-2 at 40 μg/mL and 80 μg/

mL was found to inhibit PRV proliferation in PK-15 cells
while no significant effect was observed for lower con-
centrations of PBD-2 (Fig. 1b). These indicate that a
threshold concentration is required for PBD-2 to inhibit
viral proliferation. According to the survivability, detect-
able virus copies and pathological changes, the TG mice
displayed significantly increased resistance to PRV infec-
tion compared with the WT mice. Therefore, the anti-
viral effect of PBD-2 was confirmed both on cells and in
TG mice expressing PBD-2. It has been revealed that
defensins can direct inactive enveloped viruses by dis-
rupting viral lipid bilayers [34]. In this study, PRV was
preincubated with PBD-2 and then used to infect cells.
According to the result, we hypothesize that PBD-2
might have a direct virucidal effect on PRV by damaging
the viral envelopes. Besides, it may also affect PRV entry
because PBD-2 was still present during the whole
process of viral adsorption. Since PRV shared high struc-
tural and sequence similarity with other alphaherpes-
viruses [15], the antiviral mechanisms of other defensins
against alphaherpesviruses would help understand how
PBD-2 inhibited PRV proliferation. HNP-4 and HD-6
were capable of block HSV binding by interacting with
heparan sulfate, the primary receptor for HSV binding,
while HBD-3 with enhanced inhibitory effect against
HSV bound both heparan sulfate and gB [20]. HD-5
was able to prevent viral adhesion and entry of HSV
by binding to both gB and gD [20, 21, 23]. Likewise,
rabbit NP-1 and HNP-1, -2, -3 inactivated HSV by
preventing viral entry [22, 31, 35]. Retrocyclin 2 pre-
vented HSV binding, entry and intercellular spread by
binding carbohydrate moieties on glycoprotein B [31].
In general, these defensins prevent HSV infection by
blocking viral binding, penetration or both. Whether
PBD-2 is able to block viral binding and penetration
by interacting with specific host membrane recep-
tor(s) can be further studied.

Fig. 2 Survival of transgenic mice (TG) expressing PBD-2 and wild-type (WT) mice after PRV infection (n = 4 for each group). The mice were
intraperitoneally injected of 0.2 mL of PRV (2 × 103.3 TCID50/mL). This result represents three independent experiments with similar results
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Fig. 3 Viral loads of PRV in tissue samples of mice infected with PRV. Total DNA used to determine PRV copy numbers were obtained from brain,
liver and lung tissues of WT and TG mice (n = 4 for each group) on day 5 after PRV injection. Data are presented as mean ± SD and are plotted
from three independent experiments. *P<0.05, ***P<0.001, ****P<0.0001, unpaired one tailed Student′ s t-test with Welch′ s correction

Fig. 4 Histopathological analysis on brain, spleen and liver tissues of TG and WT mice infected with PRV. Tissues were fixed in 4% formaldehyde
and subsequently embedded paraffin for sectioning and HE staining. Black arrows indicate histopathological damages. a, c and e showed HE
stained brain, spleen and liver tissues of represented WT mice; b, d, f showed HE stained brain, spleen and liver tissues of represented TG mice
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Defensins have been confirmed to be effective to resist
pathogens. Chen et al. argued that higher expression
levels of PBD-2 and other β-defensins in Meishan pigs
than those in crossbred pigs conferred stronger immun-
ity of Meishan pigs against diseases [36]. Our previous
study revealed that PBD-2 overexpressing pigs and PBD-
2 TG mice showed enhanced resistance to bacterial in-
fection [10, 13]. In this study, we further verified that
PBD-2 TG mice displayed increased resistance to viral
infection. Thus, PBD-2 can be a useful target to generate
disease-resistant animals against both bacterial and viral
infections. PRV is an important pig pathogen which is
still present in China, Japan, USA and some European
countries [37, 38]. The inhibitory effect of PBD-2
in vitro and in vivo discovered in this study provided
possible new strategies to control PRV, such as overex-
pressing PBD-2 in pig tissues. In transgenic mice in-
fected with PRV, PBD-2 could reduce viral loads and
alleviated tissue lesions at different degrees in different
tissues (Figs. 3 and 4). Our previous study has discov-
ered that PBD-2 expression level in organs differed in
TG mice [39], which suggests a correlation between
PBD-2 expression level and its anti-PRV effect in differ-
ent organs. It is worth noting that PRV loads of brain
tissues (Fig. 3) were the highest and damages of brain
tissues were the severest (Fig. 4) either in TG mice or in
WT mice, confirming that PRV had a distinct tissue
tropism [15]. Herein, increasing PBD-2 expression in an-
imals, especially in brains, using gene-editing techniques
might promote the resistance of animals to PRV in vivo.
On the other hand, PBD-2 may be used as drug addi-

tives or vaccine adjuvants to develop alternative strat-
egies to control PRV and other viruses. Attempts at
using β-defensins to control viral diseases in vivo have
been carried out. Expression of zebrafish β-defensin 2 in
fishes improved their resistance to spring viraemia of
carp virus infection [40]. Application of murine β-
defensin 2 as a DNA vaccine adjuvant protected mice
against H5N1 avian influenza viruses [41]. In addition,
mice intranasally or intratracheally inoculated with P9, a
derivative of mouse β-defensin 4, were protected from
infections of three types of influenza A viruses and
SARS-associated coronavirus [42]. Besides, intraperito-
neal injection of recombinant mouse β-defensin 3
(rMBD3) in mice was found to alleviate coxsackievirus
B3-induced myocarditis [43]. Similarly, intravenous in-
jection of rMBD3 improved the survival rate of mice in-
fected with influenza A virus [44].

Conclusions
In summary, within this study, the antiviral effect of
PBD-2 in vitro and in vivo were confirmed using PRV
infection model. The technique of large-scale production
of PBD-2 [45] and the existing transgenic pigs

overexpressing PBD-2 [10] have created possibilities for
the application of PBD-2 as novel prophylactic and
therapeutic methods against Aujeszky’s disease and
other viral diseases. In addition, it is worthy of further
studies on the underlying mechanism for the inhibitory
effect of PBD-2 on PRV, which will offer more insights
regarding antiviral effects of defensins.
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