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In the adult hippocampus, neurogenesis—the process of generating mature

granule cells from adult neural stem cells—occurs throughout the entire life-

time. In order to investigate the involved regulatory mechanisms, knockout

(KO) experiments, which modify the dynamic behaviour of this process,

were conducted in the past. Evaluating these KOs is a non-trivial task

owing to the complicated nature of the hippocampal neurogenic niche. In

this study, we model neurogenesis as a multicompartmental system of ordin-

ary differential equations based on experimental data. To analyse the results

of KO experiments, we investigate how changes of cell properties, reflected

by model parameters, influence the dynamics of cell counts and of the exper-

imentally observed counts of cells labelled by the cell division marker

bromodeoxyuridine (BrdU). We find that changing cell proliferation rates or

the fraction of self-renewal, reflecting the balance between symmetric and

asymmetric cell divisions, may result in multiple time phases in the response

of the system, such as an initial increase in cell counts followed by a decrease.

Furthermore, these phases may be qualitatively different in cells at different

differentiation stages and even between mitotically labelled cells and all

cells existing in the system.
1. Introduction
In the adult hippocampus, neurogenesis occurs in the subgranular zone of

the dentate gyrus [1]. Here, individual stem cells are capable of generating

astrocytes and neural progenitors. Recent data obtained from single cell level

analysis demonstrate that stem cells perform four different types of events in

order to produce progeny: symmetric divisions by dividing into two stem

cells; two types of asymmetric divisions by either dividing into a stem cell

and an astrocyte or a stem cell and a neural progenitor and astrogenic trans-

formation; the direct conversion of a stem cell into an astrocyte [2]. Being

born from stem cells, neural progenitors are capable of expanding their own

pool by symmetric divisions and produce immature neurons called neuroblasts,

which, in turn, mature to become neurons [2]. On a population level, it was

shown that the number of stem cells, neural progenitors and immature neurons

decreases during the ageing process [3,4] and alongside the number of newborn

neurons depletes with time [5].

Over the past few years, knockout (KO) experiments have been used to study

the neurogenic niche of the dentate gyrus, and the involved mechanisms govern-

ing stem cells’ fate choice [2,6–10]. Evaluating the results of such experiments is a

non-trivial task owing to the multifactorial nature of the neurogenesis process.

These complex dynamics severely limit intuitive interpretation of experimental

data and call for tools such as mathematical modelling and analysis. The aim of

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.0144&domain=pdf&date_stamp=2014-03-05
mailto:Anna.Marciniak@iwr.uni-heidelberg.de


rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140144

2
this study was to establish a basic model of adult hippocampal

neurogenesis using previously published data. Because KO

experiments had targeted stem cell compartments, a mathemat-

ical model describing the dynamics of cell counts for a given set

of stem cell parameters provides a theoretical framework to

identify the function of such KOs.

Mathematical and computational models have been

applied before to study adult neurogenesis. Ashbourn et al.
[11] provide a system of partial differential equations to

model the migration of immature neurons from the subventri-

cular zone along the rostral migratory stream to the olfactory

bulb and investigate parameters that lead to biologically

plausible solutions. Aimone et al. [12] model the functional

integration of new neurons to the hippocampus as an artificial

neural network. To the authors’ best knowledge, there exists

no model addressing the cellular dynamics in the subgranular

zone niche of the dentate gyrus.

Our proposed model of the adult hippocampus is a neuro-

genesis-adjusted modification of the model of haematopoiesis

investigated by Marciniak-Czochra et al. [13] and Stiehl &

Marciniak-Czochra [14]. Dynamics of hierarchical cell pro-

duction systems, which maintain a continuous supply of

differentiated functional cells to various parts of a living

organism, have attracted the attention of biologists and

mathematicians for many years in the context of blood cell

production [15]. Besides common elements that can be found

in all cell production systems, there are significant differences

depending on the type of cells considered. To model the hierarch-

ical structure of the system, we apply a system of ordinary

differential equations (ODEs), each of which describes a discrete

differentiation stage. In such models, the pace of commitment

is dictated by successive divisions. However, in the case of

neurogenesis, there are indications that stem cell differentiation

also involves direct (continuous) transitions. Furthermore,

neural stem cells are multipotent and generate, both, neuro-

genic progenitors and astrocytes. We develop a new model

accounting for these observations, as presented in §2. Another

important application of modelling is in the choice of regulatory

mechanisms. Because we aim to model short-term dynamics

of labelled cells, and there is no experimental evidence of

feedback loops governing this process, we propose a linear

model. This assumption stays in linewith a parsimonious (reduc-

tionist) approach to modelling, in which comprehensive models

are better understood in view of simpler models. It allows closed-

form solutions to be obtained for the mathematical analysis of

derivatives with respect to stem cell parameters.

Our study is organized as follows: in §2, we state an ODE

model of adult hippocampal neurogenesis based on the

experimental observations reviewed in the first paragraph of

this introduction. Moreover, we introduce parameters that

model the dynamics of neural stem and progenitor cells,

namely the fraction of self-renewal, the proliferation rate

and the division probability. In §3, we infer relations among

these model parameters by deriving parameter conditions

that account for the age-related decline in stem cell and pro-

genitor counts as demonstrated by experimental data.

Section 4 provides a mathematical analysis of the effects of

a KO experiment. Because a stem-cell-targeting inducible

KO spontaneously changes the dynamics of its target, we

model such a KO by analysing the effects of alterations (calcu-

lating partial derivatives) with respect to the stem cell

parameters proliferation rate, fraction of self-renewal and div-

ision probability on cell counts and on the number of
bromodeoxyuridine (BrdU) incorporating cells. Section 5 con-

tains parameter estimations and numerical investigations that

could not be treated analytically and, in §6, we summarize

and discuss our findings.

Basic notation: we occasionally write x(t; p) to emphasize the

dependence of the solution x(t) of a differential equation on a

parameter p and sgn(a) denotes the sign of a real number a.
2. Derivation of a multicompartmental model
Based on the experimental data outlined in §1, we assume a

model of adult neurogenesis with five cellular compartments:

stem cells (c1), (neural) progenitors (c2), neuroblasts (c3),

mature neurons (c4) and astrocytes (c5):

dc1

dt
¼ (2a1u1 � 1) p1c1(t),

dc2

dt
¼ u12(1� a1)k p1c1(t)þ ((2a2u2 � 1) p2 � d2)c2(t),

dc3

dt
¼ ((1þ u2)� 2a2u2) p2c2(t)� p3c3(t)� d3c3(t),

dc4

dt
¼ p3c3(t)� d4c4(t),

dc5

dt
¼ (u12(1� a1)(1� k)þ 1� u1) p1c1(t)� d5c5(t):

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;
(2:1)

The model equations describe the following events: stem cells

can either divide with probability u1 or perform an astrocy-

tic transformation with probability 12u1. The rate at which

stem cells undergo these events is given by the parameter

p1, called hereafter as the proliferation rate. The balance

between symmetric self-renewal and asymmetric divisions

is reflected by the fraction of self-renewal a1 � 1/2, which is

the probability that a daughter cell has the same fate as the

mother cell. The relation

a1 ¼ 1(2a1 � 1)þ 1

2
(1� (2a1 � 1)),

shows that 2a1 2 1 is the corresponding probability of a sym-

metric division and 1 2 (2a1 2 1) ¼ 2(1 2 a1) the probability

of an asymmetric division, because the fraction of daughter

cells that continue as stem cells is 1 in a symmetric and 1/2

in an asymmetric division. It follows that the expected net

change of the number of stem cells after one stem cell event

(division or transformation) is given by

u1(2a1 � 1)þ (1� u1)(� 1) ¼ 2a1u1 � 1:

Asymmetric cell divisions may lead to two types of differen-

tiated cells. The non-stem daughter cell is assumed to be

either a neural progenitor with probability k or an astrocyte

with probability 1 2 k (see figure 1 for the diagram showing

possible scenarios followed by a stem cell).

For the proliferative capacity of progenitors, we again

assume two possible modes of generating progeny: division,

which occurs with probability u2 or direct transformation to a

neuroblast with probability 1 2 u2. Analogous to stem cells,

progenitors have a proliferation rate p2 and a fraction of self-

renewal a2. Neuroblasts mature by transforming into a neuron

with rate p3. Furthermore, we assume that all cell types

except stem cells are subjected to decay via apoptosis, modelled

by the parameters di corresponding to cellular compartment i.
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Figure 1. Proliferation diagram of a stem cell. Red nodes indicate events with stochastic outcome (e.g. division or transformation; symmetric or asymmetric division),
blue nodes describe the outcome of particular events using chemical reaction notation (S, stem cell, P, neural progenitor, A, astrocyte). u1 denotes the probability of
stem cell division, p1 denotes the proliferation rate; a1 reflects the probability that a daughter cell has the same fate as its parent cell (self-renewal takes place) and
k is the probability that a neural progenitor is produced in an asymmetric division rather than an astrocyte.
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The independent time variable t is used in two contexts. In

§3, we analyse age-related properties of the neurogenesis

system and use time for the adult age of the animal, i.e. the

time point, t¼ 0, refers to the beginning of adult age, and the

initial data consist of the number of cells present at t ¼ 0 for

each compartment. In §§4 and 5, we investigate the effect of

altered stem cell dynamics on cell counts and on the number

of BrdU-labelled cells in the framework of an inducible KO

experiment, which imposes altered dynamics upon adminis-

tration of a certain chemical. In this context, time is used as the

time after the KO occurred, i.e. t¼ 0 refers to the start at which

the neurogenesis system operates under the altered dynamics.
3. Decline of stem cell and progenitor counts
Because it was observed that the number of stem and pro-

genitor cells declines with age [3], we first derive parameter

conditions that account for this effect. The proof of the

subsequent lemma is given in appendix A 1.

Lemma 3.1. The solutions c1(t) and c2(t) of (2.1) are monotoni-
cally decreasing for all t � 0 if and only if

a1u1 ,
1

2
and

c1(0)

c2(0)
,

d2 � (2a2u2 � 1) p2

ku12(1� a1) p1
:

Furthermore

lim
t!1

c1(t)
c2(t)

. 0 (2a1u1 � 1) p1 . (2a2u2 � 1) p2 � d2,
¼ 0 otherwise.

�

Biological interpretation: Lemma 3.1 states that the deple-

tion of the stem cell pool takes place if and only if symmetric

stem cell divisions, accompanied by a gain of stem cells, are

less likely than astrocytic transformations with the resulting

loss of the stem cell. The second part states that the ratio

of the number of stem cells to the number of progenitors

converges to zero, if the net depletion rate of stem cells is

higher than the one of progenitors. Otherwise, it goes to a posi-

tive value. Furthermore, the positive steady state is attained

monotonically, either increasing or decreasing. Interestin-

gly, both behaviours have been observed experimentally.

In reference [3], it was reported that the ratio of the number

of stem cells to the number of progenitors is monotonically
decreasing, whereas Jinno [16] reports an increasing pro-

gression. The discrepancy in both observations might thus

come from different labelling paradigms and observations of

different subpopulations.

In [3, electronic supplementary material, table S2], a time

series for the age-related decline of the stem cell and progeni-

tor count was obtained. Fitting these data to the solution of

(2.1) indicates that the parameters of our model satisfy the

relations (2a2u2 2 1)p2 2 d2 2 (2a1u1 2 1)p1 , 0 and a1u1 ,

1/2 (see §5.1). Hence, these data are consistent with the scen-

ario in which the net depletion rate of progenitors is higher

than the net depletion rate of stem cells. To summarize, we

further make the following assumption in our subsequent

mathematical analysis in order to remain consistent with

the experimental data of reference [3]:
Assumption 3.2. The parameters of model (2.1) have the

properties

(2a2u2 � 1) p2 � d2 � (2a1u1 � 1) p1 , 0,

and

a1u1 ,
1

2
:

4. Mathematical analysis of altered stem cell
parameters

4.1. Preliminaries
4.1.1. The inducible knockout experiment
A gene-KO is a procedure that eliminates a certain gene (a

DNA sequence encoding a protein) from an organism’s

DNA. Thus, the corresponding protein is not synthesized.

In order to study the protein-driven regulatory mechanisms

involved in the dynamics of adult neural stem cells, such

KO experiments were conducted in the past. A particular

version of KO experiments is the inducible KO: cells with

a pre-marked gene-sequence react to the administration of a

chemical that is injected in the animal, with the activation of

a cutting enzyme that excises the marked sequence. Because

it is possible that this cutting enzyme is only present in cells

expressing a certain other protein, for instance, the adult
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Figure 2. Graphical representation of the analysed knockout (KO) scenarios. (a) Cell counts ci(t) are evaluated at time t after the KO. (b) The number of BrdU-
labelled cells is evaluated at time t after the end of the labelling period (t ¼ 0) and BrdU was given at time tw after KO.
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stem cell characteristic protein nestin, one can selectively

knock out the gene of interest in stem cells.

If the KO of a certain gene in the stem cell compartment

results in a difference between KO and wild-type (non-KO)

animals regarding the number of counted cells, the question

arises as to which stem cell parameter was affected by the

KO and caused the observed difference. To treat this ques-

tion in a general way, we examine the effects of alterations

of the stem cell parameters a1 (fraction of self-renewal), u1

(division probability) and p1 (proliferation rate) on the

number of existing cells and the number of cells labelled

by BrdU, a chemical that is incorporated in the cells’ DNA

after cell division has taken place and during the stage of

DNA synthesis.

4.1.2. Modelling two experimental scenarios
We consider two scenarios related to KO experiments, for

which we analyse the effect of altered stem cell parameters.

Scenario (i)—(figure 2a): starting from a time point zero,

which corresponds to the fixed age of the studied animal at

which the KO is conducted, the number of cells of compart-

ment i is analysed at t time units after time point zero.

Scenario (ii)—(figure 2b): at time tw after the initial time

point of the KO, BrdU is administered and is present in the

organism for a duration d, thus labelling DNA-synthesizing

cells during that period. At t time units after the labelling

has ended, the number of BrdU-labelled cells (li(tw, t))

is examined.

To evaluate for both scenarios the effects of a change of a

parameter p [ {a1, p1, u1} from a value p̂ to a value p̂þ Dp
(Dp . 0), we analyse the sign of the derivative @pci(t; p̂),

respectively, @pli(tw, t; p̂) with respect to the parameter p.

Thus, we assume that Dp is so small, that

sgn(ci(t; p̂þ Dp)� ci(t; p̂)) ¼ sgn(@pci(t; p̂)),

and

sgn(li(tw, t; p̂þ Dp)� li(tw, t; p̂)) ¼ sgn(@pli(tw, t; p̂)):

To model scenario (i), we use our model (2.1) together

with initial data ci(0) corresponding to the number of cells

of compartment i, which are present at the time point of

the KO. For scenario (ii), the initial data are li(tw, 0), the

number of cells that have incorporated BrdU at the end of

the labelling period, where BrdU was given at time point

tw and the independent variable in this scenario is t, the

time that passed since the end of the labelling period.

4.1.3. Initial data for BrdU-labelled cells
It is known from the theory of branching processes that

in a model of proliferation in which particles (cells) have

exponentially distributed lifetimes, mean counts of particles

(cells) follow a system of ODEs [17, ch. 4]. Conversely, if the
population of cells is described by a system of ODEs, then

the interpretation is that the cells have exponentially distrib-

uted lifetimes. This is a simple and widely used model (see

relevant discussion of the cell proliferation models in

Kimmel & Axelrod [17]), despite the fact that it has been

known that cell lifetime distributions are not exponentially

distributed [18]. Thus, we use this relationship between

ODEs and the exponential distribution in order to derive

equations for the number of cells belonging to type i and

have incorporated BrdU (li(tw, 0)).

Recall that BrdU is a chemical that is incorporated in cells

after they performed a division and are in the stage of DNA

synthesis. Thus, in order to be labelled by BrdU, a cell must

be in S phase during the time interval of length d in which

BrdU is present in the animal. Assuming that the fraction

of dividing cells equals the fraction of DNA-synthesizing

cells during any time interval of fixed length, it follows that

the number of cells that have incorporated BrdU at the end

of the labelling period, starting with labelling at time tw,

is given by

l1(tw, 0) ¼ 2a1u1(1� e� p1d)c1(tw),

l2(tw, 0) ¼ ku12(1� a1)(1� e� p1d)c1(tw)

þ u2(2a2 � 1)(1� e� p2d)c2(tw),

l3(tw, 0) ¼ u22(1� a2)(1� e� p2d)c2(tw),

l4(tw, 0) ¼ 0,

l5(tw, 0) ¼ (1� k)u12(1� a1)(1� e� p1d)c1(tw),

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(4:1)

where ci(tw) is the number of cells of compartment i, present

at time tw of BrdU injection. More specifically, a random

variable X, exponentially distributed with parameter l, has

the property

Pr({X [ [t, tþ d]}j{X . t}) ¼ 1� e�ld: (4:2)

Thus, the fraction of stem cells performing a transformation

or division during marker exposure is 1� e� p1d, and a frac-

tion u1 of them divides with each division contributing, on

average, 2a1 stem cells. Analogous considerations lead to

the equations for all other cell compartments. Note that neur-

ons are assumed to be the result of a transformation from

neuroblasts rather than a division. Thus, there are no BrdU-

labelled neurons right after the BrdU-labelling period

has ended.

4.2. Effects of altered stem cell parameters
Based on the considerations of §4.1.3, we model the scenarios

(i) and (ii) of §4.1.2 using the system of ODEs that follow. The

equations for the quantities li(tw, t), describing the number

of BrdU-labelled cells of type i at t time units after BrdU

was started at time t ¼ tw, have been derived based on the

assumption that labelled cells of type i follow the same
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dynamics as their corresponding compartment ci. Thus, the

initial data for these labelled cells, li(tw, 0), depend on

ci(tw), the number of cells present at the time point t ¼ tw

of BrdU injection.

dc1

dt
(t)¼ (2a1u1�1)p1c1(t),

dc2

dt
(t)¼u12(1�a1)kp1c1(t)þ ((2a2u2�1)p2�d2)c2(t),

dc3

dt
(t)¼ ((1þu2)�2a2u2)p2c2(t)�d3c3(t),

dc4

dt
(t)¼ p3c3(t)�d4c4(t),

dc5

dt
(t)¼ (u12(1�a1)(1�k)þ1�u1)p1c1(t)�d5c5(t),

ci(0)¼ni,

dl1
dt

(tw, t)¼ (2a1u1�1)p1l1(tw, t),

dl2
dt

(tw, t)¼u12(1�a1)kp1l1(tw, t)þ ((2a2u2�1)p2�d2)l2(tw, t)

dl3
dt

(tw, t)¼ ((1þu2)�2a2u2)p2l2(tw, t)�d3l3(tw, t),

dl4
dt

(tw, t)¼ p3l3(tw, t)�d4l4(tw, t),

dl5
dt

(tw, t)¼ (u12(1�a1)(1�k)þ1�u1)p1l1(tw, t)�d5l5(tw, t),

l1(tw, 0)¼2a1u1(1�e�p1d)c1(tw),

l2(tw, 0)¼ku12(1�a1)(1�e�p1d)c1(tw)þ2a2u2(1�e�p2d)c2(tw),

l3(tw, 0)¼u22(1�a2)(1�e�p2d)c2(tw),

l4(tw, 0)¼0,

l5(tw, 0)¼ (1�k)u12(1�a1)(1�e�p1d)c1(tw),

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(4:3)

where ni is the number of cells of compartment i at the fixed age

of the animal where the KO is induced. We mathematically

analyse the derivatives of c1(t), c2(t) and l1(t, 0), l2(t, 0) and

l5(t, 0) with respect to the parameter p [ {a1, u1, p1}, thus

evaluating the implications of altered stem cell parameters on

the number of existing stem cells and progenitors and on the

number of BrdU-labelled stem cells, progenitors and astrocytes

at the end of the labelling period. The parameter-derivatives of

the number of neurons and BrdU-labelled neurons (c4(t) and

li(t,t)) cannot be analysed in full generality for arbitrary t

and are thus investigated numerically in §5. For notational

convenience, we define

l0i (tw) :¼ li(tw, 0),

and denote this quantity as the number of BrdU incorporating

cells of compartment i.
By a straightforward calculation (see appendix A 2), one

obtains the identities

@a1
c1(t; a1) ¼ 2u1 p1tc1(t)

@ p1 c1(t; p1) ¼ (2a1u1 � 1)tc1(t)
@u1

c1(t; u1) ¼ 2a1 p1tc1(t),

9=
; (4:4)

and

@pci(t; p) ¼ (eat � 1)(abþ g)� agt
a2

c1(t), (4:5)

for i [ {2, 5} and p [ {a1, u1, p1}, where a, b and g depend on

both, i and p (cf. table 2).
In order to evaluate (4.5), we need a technical lemma.

Lemma 4.1. For t � 0, a , 0 and b, g [ R, consider the
function

f(t) ¼ (eat � 1)(abþ g)� agt
a2

:

It holds f (0) ¼ 0, f(t) [ O(t) and f has the following
properties:

(P1) If b . 0 and g . 0,

f is monotonically increasing:

(P2) If b . 0 and g , 0, there exists a unique t0 . 0 such
that for all t . 0

sgn(f(t)) ¼ �sgn(t� t0):

(P3) If b , 0 and g . 0, there exists a unique t0 . 0 such
that for all t . 0

sgn(f(t)) ¼ sgn(t� t0):

Proof. Follows from evaluating f 0(t) ¼ ((abþ g)eat � g)=a for

every single case.

Furthermore, we introduce the notion of the sign-sequence
of a real-valued function:

Definition 4.2. (sign-sequence). Let f : [0, 1)! R be a func-

tion. The sign-sequence s(f ) is defined as the sequence of

distinct signs of f(t) that are encountered by traversing the

domain of f from zero to infinity. For instance,

s((t� 1)(t� 2)) ¼ (þ , 0, � , 0, þ ).
4.2.1. Altered fraction of self-renewal
Here, we describe the effect of increasing the fraction of

self-renewal of stem cells. Recall that this fraction a1 is

defined as the probability that a daughter cell, which

resulted from a stem cell division, becomes a stem cell

itself. Thus, increasing the fraction of self-renewal increases

the proportion of symmetric stem cell divisions that give

rise to two stem cells at the expense of asymmetric stem

cell divisions.

Lemma 4.3. The solution of (4.3) satisfies

s (@a1 c1(t; a1)) ¼ (0, þ ),
s (@a1

l01(t; a1)) ¼ (þ ),
s (@a1 c2(t; a1)) ¼ (0, � , 0, þ ),
s (@a1

l02(t; a1)) ¼ (� , 0, þ ),
s (@a1 l05(t; a1)) ¼ (� , 0, þ ):

9>>>>=
>>>>;

(4:6)

Proof. From (4.3) and (4.4), it follows that

@a1 c1(t; a1) ¼ 2u1 p1tc1(t),

@a1
l01(t; a1) ¼ 2u1(1� e� p1d)(1þ 2a1u1 p1t)c1(t),

@a1 l02(t; a1) ¼ ku1(1� e� p1d)(� 2þ 2(1� a1)2u1 p1t)c1(t)

þ 2a2u2(1� e� p2d)@a1 c2(t; a1),

@a1
l05(t; a1) ¼ (1� k)u1(1� e� p1d)(� 2þ 2(1� a1)2u1 p1t)c1(t):

9>>>>>>>>>=
>>>>>>>>>;

(4:7)

Thus, @a1
c1(t; a1) and @a1

c1(0; a1) are positive for all positive t
and @a1 c1(0; a1) ¼ 0. Consider now the quantity @a1 c2(t; a1).
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Figure 3. Simulated responses to an infinitesimal increase in stem cells fraction of self-renewal a1 of the number of stem cells (c1), progenitors (c2), BrdU
incorporating stem cells (l0

1 ) and BrdU incorporating progenitors (l0
2 ), respectively, at time t after the increase. The parameter set of §5.2 was used.
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Assumption 3.2 together with table 2 implies that the first

factor of @a1
c2(t; a1) in (4.5) has the property (P3) in lemma

4.1. Consequently, @a1
c2(t; a1) is negative on (0, t0) and posi-

tive on (t0, 1) for some positive on t0. From (4.7), we

deduce that the same is true for @a1
l02(t; a1) and @a1

l05(t; a1),

because the term 2 2 þ 2(1 2 a1)2u1p1t is negative for t ¼ 0

and positive for sufficiently large t. B

Biological interpretation. Lemma 4.3 shows that increasing

stem cells’ self-renewal increases the stem cell count and the

number of BrdU incorporating stem cells at any time

point after the increase was performed. Conversely, this

increased self-renewal initially decreases the progenitor

count and the number of BrdU incorporating progenitors

and astrocytes. But this decrease is reversed and turns into

an increase after the initial period. Furthermore, the effect

of altered self-renewal is instantaneous on the number of

BrdU-labelled cells in the sense that the corresponding

parameter-derivative is non-zero at time zero. Figure 3 depicts

a simulation of the time-dependent responses of an increased

fraction of self-renewal. This simulation is consistent with

lemma 4.3.

The two-phase progression on progenitors and astrocytes

can be explained intuitively as follows: the increased number

of symmetric stem cell divisions at the expense of asymmetric

divisions reduce the proportion of events at which progeni-

tors are born. Thus, a decreased number of progenitors is

observed initially. At the same time, the increased number

of symmetric stem cell divisions, which result in an enlarged

stem cell pool, benefits the progenitor count in the long run:

although a reduced fraction of stem cells generates progeni-

tors via asymmetric divisions, the increased number of

stem cells dominates this effect, meaning that the total

number of asymmetric stem cell divisions is elevated. The

immediate effect on BrdU incorporating progenitors and

astrocytes can be explained by the observation that changing

a parameter that affects division instantaneously changes the

output of the division and that the mitotic marker BrdU

exactly labels this output. Thus, the number of cells labelled

by BrdU is faster influenced by a parameter change than

the actual cell count.
4.2.2. Altered proliferation rate
The proliferation rate p1 is the rate at which stem cells

undergo division or transformation events. Increasing this

rate shortens the waiting time between successive events of

a given stem cell.
Lemma 4.4. The solution of (4.3) satisfies

s(@ p1
c1(t; p1)) ¼ (0, � ),

s(@ p1 l01(t; p1)) ¼ (þ , 0, � ),

s(@ p1 c2(t; p1)) ¼ (0, þ , 0, � ),

s(@ p1
l02(t; p1)) ¼ (þ , 0, � ),

s(@ p1 l05(t; p1)) ¼ (þ , 0, � ):

9>>>>>>>>=
>>>>>>>>;

(4:8)

Proof. Equations (4.3) and (4.4) imply

@ p1
c1(t; p1) ¼ (2a1u1 � 1)tc1(t),

@ p1 l01(t; p1) ¼ 2a1u1(de� p1d þ (1� e� p1d)(2a1u1 � 1)t)c1(t),

@ p1
l02(t; p1) ¼ ku12(1�a1)(de� p1dþ(1�e� p1d)(2a1u1 � 1)t)c1(t)

þ 2a2u2(1� e� p2d)@ p1 c2(t; p1),

@ p1
l05(t; p1) ¼ (1� k)u12(1� a1)(de� p1d

þ (1� e� p1d)(2a1u1 � 1)t)c1(t):

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(4:9)

Because of the assumption 3.2, 2a1u1 2 1 , 0. Thus,

@ p1 c1(t; p1) is negative on (0, 1) and @ p1 l01(t; p1) is positive

on (0, t0) and negative on (t0, 1) for some positive t0. The

same is true for @ p1
l05(t; p1), but with different t0. Consider

now @ p1 c2(t; p1). The first factor of @ p1 c2(t; p1) in (4.5) has

the property (P2) in lemma 4.1. Hence, @ p1 c2(t; p1) and

@ p1
l02(t; p1) show the same qualitative progression as stated

for @ p1 l01(t; p1). Analogous to the considerations of an altered

fraction of self-renewal, the BrdU incorporating quantities

@ p1
l01(t; p1), @ p1

l02(t; p1) and @ p1
l05(t; p1) are positive at time

zero, whereas @ p1 c1(0; p1) ¼ @ p1 c2(0; p1) ¼ 0. B

Biological interpretation. Lemma 4.4 shows that an increased

proliferation rate of stem cells decreases the stem cell count,

whereas the number of BrdU incorporating stem cells initially

increases and later on decreases. This effect can be explained

by the observation that an increased proliferation rate causes

more stem cell divisions over any given time interval, resulting

initially in more BrdU incorporating stem cells. Furthermore,

the increased proliferation rate also causes a higher rate of astro-

cytic transformations, the events responsible for the depletion of

the stem cell pool. As time progresses, the increased decay rate

of stem cells compensates for the higher proportion of BrdU

incorporating cells and results thus in a net decrease of labelled

stem cells. See figure 4 for a corresponding simulation, which is

consistent with lemma 4.4. It is not surprising that the number
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Figure 4. Simulated responses to an infinitesimal increase in stem cells proliferation rate p1 of the number of stem cells (c1), progenitors (c2), BrdU incorporating
stem cells (l0

1 ) and BrdU incorporating progenitors (l0
2 ), respectively, at time t after the increase. The parameter set of §5.2 was used.
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2 ), respectively, at time t after the increase. The parameter set of §5.2 was used.
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of progenitors and BrdU-labelled progenitors and astrocytes

display the same qualitative trend as labelled stem cells, because

these quantities also depend on stem cell divisions.

4.2.3. Altered division probability
The division probability u1 of a stem cell is the probability

that the next event a stem cell undergoes is a division

rather than a transformation. Consequently, increasing the

division probability causes more division and fewer trans-

formation events.

Lemma 4.5. The solution of (4.3) satisfies

s (@u1
c1(t; u1)) ¼ (0,þ ),

s (@u1 l01(t; u1)) ¼ (þ ),

s (@u1 c2(t; u1)) ¼ (0,þ ),

s (@u1
l02(t; u1)) ¼ (þ ),

s (@u1 l05(t; u1)) ¼ (þ ):

9>>>>>>>>=
>>>>>>>>;

(4:10)

Proof. It holds

@u1
c1(t; u1) ¼ 2a1 p1tc1(t),

@u1 l01(t; u1) ¼ 2a1(1� e� p1d)(1þ u12a1 p1t)c1(t),

@u1 l02(t; u1) ¼ k2(1� a1)(1� e� p1d)(1þ u12a1 p1t)c1(t)

þ 2a2u2(1� e� p2d)@u1
c2(t; u1),

@u1 l05(t; u1) ¼ (1� k)2(1� a1)(1� e� p1d)(1þ u12a1 p1t)c1(t):

9>>>>>>>>>=
>>>>>>>>>;

(4:11)

Thus, @u1 c1(t; u1), @u1 l01(t; u1) and @u1 l05(t; u1) are positive for

positive t. Furthermore, the first factor of @u1
c2(t; u1) in (4.5)

has the property (P1) in lemma 4.1. Hence, @u1
c2(t; u1) and

@u1 l02(t; u1) are also positive for positive t. B

Biological interpretation. From lemma 4.5, we conclude that

increasing the stem cell division probability causes an
increase in cell counts and in the number of BrdU incorporat-

ing cells for all considered compartments. There is no two-

phase progression displaying increased or decreased cell

numbers in the distinct phases after the change in stem cell

dynamics. The effect on the progenitor count is qualitatively

the same as on the stem cell count; the same holds true for

BrdU incorporating stem cells and progenitors. Figure 5 illus-

trates a corresponding simulation of the discussed quantities.

4.3. Final remarks
The above considerations show that all derivatives of the

quantities c1, c2, l01, l02 and l05 with respect to the stem cell par-

ameters fraction of self-renewal, proliferation rate and

division probability are products of the exponentially

decreasing function c1(t) and a factor that can be bounded

by an affine linear function of t. Thus, the effects of an altered

stem cell parameter on the number of existing cells and the

number of BrdU incorporating cells weakens with time

owing to the decline of the stem cell compartment. The

effect of altered stem cell parameters on the number of exist-

ing astrocytes, @pc5(t; p), could not be analysed owing to no

available data on the sign of ab þ g with a, b and g as

stated in table 2.

The sign sequences of the parameter-derivatives of the

five quantities stem cell count, progenitor count and BrdU

incorporating stem cells, progenitors and astrocytes with

respect to the three considered parameters a1, p1 and u1 are

summarized in table 1.
5. Numerical investigations
5.1. Parameter estimations
Our neurogenesis model (2.1) involves 18 parameters,

including five parameters for the initial data of each compart-

ment. We first analyse the parameter region that is consistent

with the data presented in [3, electronic supplementary
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Figure 7. Fitting model (2.1) to the number of stem cells and the number of progenitors in [3, electronic supplementary material, table S2] results in a poor
agreement with the ratio of the number of stem cells to the number of progenitors.
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Figure 6. Fitting model (2.1) to the number of stem cells and the ratio of the number of stem cells to the number of progenitors in [3, electronic supplementary
material, table S2] results in a poor agreement with the number of progenitors.

Table 1. Time-dependent responses of stem cells (c1), BrdU incorporating stem cells (l0
1 ), progenitors (c2), BrdU incorporating progenitors (l0

2 ) and BrdU
incorporating astrocytes (l0

5 ), respectively, to an infinitesimal increase of the respective parameter p.

p
s(@pc1(t; p))
(stem cells)

s(@pl0
1 (t; p))

(BrdU inc. stem cells)
s(@pc2(t; p))
( progenitors)

s(@pl0
2 (t; p))

(BrdU inc. progenitors)
s(@pl0

5 (t; p))
(BrdU inc. astrocytes)

a1 (0, þ) (þ) (0, 2, 0, þ) (2, 0, þ) (2, 0, þ)

p1 (0, 2) (þ, 0, 2) (0, þ, 0, 2) (þ, 0, 2) (þ, 0, 2)

u1 (0, þ) (þ) (0, þ) (þ) (þ)
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material, table S2]. For this purpose, we simultaneously fitted

the analytical solution of (2.1) either for c1 and c1/c2 (the

number of stem cells and the ratio of the number of stem

cells to the number of progenitors), depicted in figure 6, or

for c1 and c2 (the number of stem cells and the number

of progenitors), shown in figure 7. Fitting was performed

by using the NonlinearModelFit procedure of MATHEMATICA

v. 9 to numerically minimize the sum of squared residuals

weighted by the inverse-square of the data points standard

error of the mean as documented in the MATHEMATICA reference

for fitting data involving measurement errors. For numeri-

cal minimization, the random search method was chosen,

which resulted in the highest R2 value among all available

minimization methods.

Fitting the solution for c1(t) and c1(t)/c2(t) of (2.1) to the

stated data results in the values

(2a1u1 � 1) p1 ¼ �5:16� 10�4 h�1,
ku12(1� a1) p1 ¼ 1:71� 10�4 h�1,

d2 � (2a2u2 � 1) p2 ¼ 5:41� 10�4 h�1:

9=
; (5:1)

Although this parameter set is in good agreement with the

data of reference [3] for the age-related decay of the stem

cell compartment and the dynamics on the ratio of the

number of stem cells and the number of progenitors, the fit
to the decay of the progenitor compartment is not good

(figure 6). Conversely, fitting the solution for c1(t) and

c2(t) to the data of [3, electronic supplementary material,

table S2], displays a good agreement of the stem cell and

the progenitor compartment and a poor agreement of their

ratio (figure 7).

It appears that the decay of the stem cell compartment

involves a saturation effect for late time points, which cannot

be reproduced by our linear model. More precisely, the

solution of (2.1) for the number of stem cells (c1) is an exponen-

tially declining curve and fitting this curve to the data

estimates five stem cells remaining at 2 years of age, whereas

this number was measured to be 320. We hypothesize that

this saturation is caused by either a feedback mechanism on

stem cells that induces their quiescence with increasing age

or by the existence of a mixture of two populations with one

population performing adult neurogenesis and a quiescent

one. Moreover, physiological conditions of a1, p1, u1 and k,

i.e. a1 � 0.5, 1/p1 , 2 years, u1 . 0.1 and k . 0.5 contradict

the restrictions imposed by (5.1), potentially because of the

missing saturation effect that cannot be explained with our

model. Thus, our current model indicates that there are some

novel aspects in adult neurogenesis required to explain

obtained experimental data such as this saturation effect. The
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proposed explanation of how saturation could be achieved

should be the subject of future experimental validation.
terface
11:20140144
5.2. Simulations
The mathematical analysis conducted in §4 depends on

assumption 3.2. Because the purpose of this section is to

extend our analysis to the effects of altered stem cell par-

ameters on the number of neurons (c4) and the number of

BrdU-labelled cells (li(t,t)) for t . 0, we use a parameter set

satisfying assumption 3.2 for our numerical investigations.

Unless otherwise stated, we set a1 ¼ 0.55, u1 ¼ 0.7, p1 ¼ 1,

k ¼ 0.6, a2 ¼ 0.7, u2 ¼ 0.4, p2 ¼ 2.5, d2 ¼ 0.1, p3 ¼ 1.5, d3 ¼ 0.4,

t̂ ¼ 10, d4 ¼ 0.05, d5 ¼ 0.05, c1(0) ¼ 10 000, c2(0)¼ 5000,

c3(0) ¼ 15 000, c4(0) ¼ 350 000, c5(0) ¼ 100 000 to numeri-

cally solve (2.1) by using the NDSolve framework of the

MATHEMATICA. Note that the stated parameter set does not

include any time units, because a choice of physiological

parameters was not feasible as stated in §5.1. Thus, there

are no time units in any figure using this parameter set.

At first, we investigate the effect of altered stem cell par-

ameters on the number of existing neurons at time t after the

change of stem cell dynamics, i.e. @pc4(t; p) for p [ {a1, p1, u1}.

An increase of a1, which increases the proportion of

symmetric stem cell divisions at the expense of asymme-

tric divisions, displays the same qualitative progression on

the number of neurons as the effect of an increase in a1

on the number of progenitors: initially, the neuron count is

decreased, followed by an always ongoing period displaying

an increase, but our simulations suggest that the magnitude

of the increase weakens with time, i.e. lim t!1@a1
c4(t; a1) ¼ 0:

Interestingly, the existence of this weakening depends on the

decay rate of neurons: if there is no decay (d4 ¼ 0), then we

find that @a1
c4(t; a1) converges to a positive value (figure 8a).

Hence, the magnitude of the increase is not declining with

time, if neurons are not allowed to decay.

Increasing the proliferation rate p1 of stem cells also affects

the number of neurons in the same way as the number of

progenitors, so that in the initial period, the neuron count

is increased, in a subsequent period, the neuron count is

decreased and the magnitude of the effect declines with

time. Interestingly, if we assume, in this case, that neurons

do not decay, the two-phase progression is lost and, the

number of neurons is always increased, but the magnitude

of the increase still weakens with time (figure 8b).

Increasing the probability of stem cell divisions u1 dis-

plays an increase in the number of neurons. If d4 . 0, our

simulations indicate that the magnitude of the increase con-

verges to zero and if d4 ¼ 0 that it converges to a positive

value (no figure is shown).
Our analysis indicates that the effect of altered stem cell

dynamics on the number of neurons depends on the death

rate of neurons. Thus, investigating whether neurons have

the ability to decay and if so determining their decay rate is

vital in order to understand the short- and long-term impact

of altered stem cell dynamics on the number of neurons in

the dentate gyrus.

Next, we turn our investigations to the quantity li(tw, t),

the number of BrdU-labelled cells of cellular compartment i,
where BrdU was applied at a particular time point t ¼ tw and

t ¼ 0 corresponds to the time point of the KO. The effect of an

increase of stem cells fraction of self-renewal on BrdU-

labelled cells depends on the time point tw. If BrdU was

given directly after the fraction of self-renewal was increased,

i.e. tw ¼ 0, the number of BrdU-labelled progenitors l2(0,t)

shows a two-phase progression with an initial decrease and

subsequent increase. The same holds true for the number of

BrdU-labelled neurons l4(0, t) (figure 9, top row). As the

time tw between the change of dynamics and the BrdU

administration increases, the first phase that shows a decrease

in the number of progenitors and neurons becomes shorter

(figure 9, middle row) until there remains only a one-phase

progression, with increased numbers of BrdU-labelled pro-

genitors and neurons at every time point t after BrdU was

given (figure 9, bottom row).

Similar to an increased fraction of self-renewal, the effect of

an increased stem cell proliferation rate depends on the time tw

between the change of dynamics and the BrdU administration.

If tw ¼ 0, then BrdU-labelled progenitors and neurons display

a two-phase progression with increased numbers in the initial

phase and decreased numbers subsequently (figure 10, top

row). Interestingly, the two-phase progression after BrdU-label-

ling gains an additional phase as tw increases, displaying now

an initial decrease, a subsequent increase and again later on a

decrease in the number of BrdU-labelled progenitors and

neurons (figure 10, middle row). Increasing tw further, the

three-phase progression is lost, and then the number of labelled

progenitors and neurons is decreased at any time t after BrdU

was given (figure 10, bottom row).
6. Discussion and conclusion
We have established a mathematical model of adult hippo-

campal neurogenesis based on experimental data. Although

we consider a basic model not accounting for any feedback

mechanisms or a spatial component, we demonstrate that

modifying the dynamics of adult neural stem cells, which

corresponds to inducing a stem-cell-targeting KO, exhibits a

rich variety of effects owing to the high complexity of the

hippocampal neurogenic niche.
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Our investigation shows that observed differences in cell

numbers owing to altered stem cell dynamics depend not

only on the alteration that was induced by a particular KO,

but also on the time at which cell counts were measured.

Therefore, it is necessary to perform measurements at mul-

tiple time points in order to draw conclusions from KO

experiments. Moreover, we find that cell numbers of cells at

different differentiation stages may respond qualitatively

different to altered stem cell dynamics. Additionally, this

response may also be different between the total number of

cells and the number of BrdU-labelled cells of a given cellular

compartment and also depends on the time point of BrdU

administration after the KO. Thus, labelling cells with BrdU

does not generate a subset of the neurogenesis system that

is sufficient to perform an analysis of the impact of altered

stem cell dynamics. The reason for this is that changing

stem cell dynamics influences either the number of cell div-

isions or the ratio of symmetric to asymmetric divisions,

which, in turn, affects the initial distribution of cell types

among all BrdU-labelled cells. Furthermore, our reasoning

proves that under the assumptions of our model, the effect

of altered stem cell dynamics declines as time passes and

that this decline is a result of the depletion of the stem cell

pool. Evaluating differences in cell counts at late time
points after a KO can therefore be used to test the notion of

a declining stem cell population.

With the help of our study, the available data on KO

experiments can be revisited in a new theoretical context:

in reference [6], a KO of the gene Notch1 is analysed at

multiple time-points after the KO. The counts of stem cells,

neural progenitors and mature neurons decreased at late

time points, whereas they slightly decreased or remain

unchanged at earlier time points [6] (figure 2). The authors

conclude that Notch1 KO results in a decreased self-renewal

of stem cells. Moreover, they infer from neurosphere assays

that neural progenitors also exhibit decreased self-renewal

in the case of Notch1 KO. Their reasoning and data are

consistent with our theoretical findings: decreasing the self-

renewal of stem cells (cf. §4.2.1) results in decreased counts

of stem cells at any time after the KO, whereas the pro-

genitor cell counts exhibit an initial growth followed by a

subsequent decline. Additionally, decreased self-renewal of

progenitors is observed. This simultaneous decrease can

compensate the initial increase of progenitor numbers

caused by the decreased self-renewal of stem cells such that

the number of progenitors is also decreased at any time

after the KO. In another study of Furutachi et al. [8], it is

reported that p57 is responsible for the quiescence of adult
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where BrdU was given at time t ¼ 0 (a), t ¼ 5.5 (b) and t ¼ 10 (c).
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neural stem cells in the hippocampus: a KO of p57 resulted in

a decrease of the number of BrdU-label-retaining stem cells at

60 days after the KO (fig. 2k of [8]), whereas the progenitor

count initially displayed an increase and a subsequent

decrease (figs 4b and 6f of [8]). In the context of our model,

the claim of the authors corresponds to the statement that

the KO of p57 causes an increase of the stem cell proliferation

rate p1. As stated in §4.2.2, an increase of p1 results in an

initial increase and subsequent decrease in the number of

progenitors. Thus, the data presented and the authors’ expla-

nation that p57 KO decreases the quiescence of stem cells is

consistent with the proposed mathematical model.

Our modelling approach qualitatively describes the

effects of altered stem cell dynamics on cell counts and on

BrdU-labelled cells. In order to calculate the magnitude of

these effects and the time points at which positive and negative

effects are to be expected, an estimation of model parameters

accompanied by a possible data-driven modification of the

proposed model has to be performed. Thus, a thorough charac-

terization of wild-type neurogenesis is needed in order to

evaluate KO experiments within a mathematical framework

and to draw conclusions about the underlying dynamics of

adult hippocampal neurogenesis.
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Appendix A

A.1. Proof of lemma 3.1
It holds dc1/dt , 0, if and only if a1u1 , 1/2: To analyse

the decay conditions of the progenitor compartment c2, we

introduce the abbreviations

p :¼ (2a1u1 � 1) p1,
q :¼ ku12(1� a1) p1,
r :¼ d2 � (2a2u2 � 1) p2:

9=
; (A 1)

First, let us note that p , 0 and r . 0 is a necessary

though not sufficient condition for dc2/dt , 0. Furthermore,

it can be seen that the quantity c1/c2 satisfies a Riccati

differential equation:

d

dt
c1(t)
c2(t)

� �
¼ c1(t)

c2(t)
pþ r� q

c1(t)
c2(t)

� �
: (A 2)

Because q . 0, the right-hand side of (A 2) describes a

downward opening parabola with roots 0 and (pþ r)=q: If

p þ r . 0, the state (pþ r)=q is globally asymptotically

stable. Otherwise, 0 is globally asymptotically stable. In



Table 2. Coefficients of @pci(t; p) for p [ {a1, p1, u1}:

p i 5 2 i 5 5

a1
a ¼ (2a2u2 � 1) p2 � (2a1u1 � 1) p1 � d2

b ¼ �2ku1 p1

g ¼ 4ku2
1p2

1(1� a1)

a ¼ �(d4 þ (2a1u1 � 1) p1)

b ¼ 2u1(k� 1) p1

g ¼ 2u1p2
1(u1(1� k)2(1� a1)þ 1� u1)

p1 a ¼ (2a2u2 � 1) p2 � (2a1u1 � 1) p1 � d2

b ¼ ku12(1� a1)

g ¼ ku12(1� a1)(2a1u1 � 1) p1

a ¼ �(d4 þ (2a1u1 � 1) p1)

b ¼ u1(1� k)2(1� a1)þ 1� u1

g ¼ (2a1u1 � 1) p1(u1(1� k)2(1� a1)þ 1� u1)

u1
a ¼ (2a2u2 � 1) p2 � (2a1u1 � 1) p1 � d2

b ¼ k2(1� a1) p1

g ¼ ku14(1� a1)a1p2
1

a ¼ �(d4 þ (2a1u1 � 1) p1)

b ¼ ((1� k)2(1� a1)� 1) p1

g ¼ 2a1p2
1(u1(1� k)2(1� a1)þ 1� u1)
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both cases, the steady state is approached monotonically. Fur-

thermore, p , 0 and q, r . 0 imply

pþ r
q

,
r
q

, (A:3)

and hence

c1(0)

c2(0)
,

r
q

implies
c1(t)
c2(t)

,
r
q

for all t � 0: (A 4)

Note from (2.1) that dc2/dt , 0 holds if and only if

c1(t)
c2(t)

,
r
q
:

Taken together with (A 4), we see that dc1/dt , 0 for all

t � 0 if and only if

c1(0)

c2(0)
,

r
q
: (A 5)

B

A.2. Derivatives with respect to parameters
Here, we derive the identities (4.4)–(4.5) and the parameter-

dependent values for a, b and g in the latter equation. For

this purpose, we need lemma A.1, which we prove at the

end of the section.

Lemma A.1. Let p, h [ R, f, g real-valued, non-zero functions
and consider the system

dx
dt
¼ f(p)x(t),

dy
dt
¼ g(p)x(t)þ hy(t),

9>=
>; (A 6)

together with non-zero initial conditions x(0) and y(0), which are
independent of p. The solution then satisfies

@px(t; p) ¼ f 0(p)tx(t), (A 7)

and

@py(t; p) ¼ (eat � 1)(abþ g)� agt
a2

x(t), (A 8)

where

a ¼ h� f(p), b ¼ g0(p) and g ¼ f 0(p)g(p): (A 9)

In order to obtain (4.4) and (4.5), we apply lemma A.1 to

(4.3) with x ¼ c1, y [ {c2, c4} and p [ {a1, p1, u1}. Thus, the
derivatives appearing in (A 9) have to be understood as par-

tial derivatives with respect to the considered parameter

p [ {a1, p1, u1}. It follows that

f ¼ (2a1u1 � 1) p1:

If y ¼ c2, we have

g ¼ ku12(1� a1) p1,

h ¼ (2a2u2 � 1) p2 � d2,

and if y ¼ c4, it holds

g ¼ (u1(1� k)2(1� a1)þ 1� u1) p1,

h ¼ �d4:

The explicit values of a, b and g appearing in (A 9) are sum-

marized in table 2.

Proof of lemma A.1. Define xp(t) :¼ @px(t; p) and yp(t) :¼
@py(t; p). Because x(0) and y(0) are independent of p, we have

xp(0) ¼ yp(0) ¼ 0, (A 10)

and it follows from symmetry of second partial derivatives

that

dxp

dt
(t) ¼ f 0(p)x(t)þ f(p)xp(t),

dyp

dt
(t) ¼ g0(p)x(t)þ g(p)xp(t)þ hyp(t):

Hence,

d

dt
xp(t)
x(t)

� �
¼ f 0(p)þ f(p)

xp(t)
x(t)

� �
� xp(t)

x0(t)
x(t)2

¼ f 0(p):

The assumption x(0) = 0 leads to (xp/x)(0) ¼ 0 by (A 10) and

solving the above differential equation yields

xp(t) ¼ f 0(p)tx(t):

Furthermore,

d

dt
yp(t)
x(t)

� �
¼ g0(p)þ g(p)f 0(p)tþ (h� f(p))

yp(t)
x(t)

� �
,

and

yp(0)

x(0)
¼ 0,

imply

yp(t)
x(t)
¼ (eat � 1)(abþ g)� agt

a2
,
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with a, b and g as stated in (A 9), because a differential

equation of the form

x0(t) ¼ ax(t)þ bþ gt,
x(0) ¼ 0,
has the solution

x(t) ¼ (eat � 1)(abþ g)� agt
a2

:

B
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