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Abstract
Hypothermia is a severe, unpleasant side effect during general anesthesia. Thus, tempera-

ture surveillance is a prerequisite in general anesthesia settings during experimental surger-

ies. The gold standard to measure the core body temperature (Tcore) is placement of a

Swan-Ganz catheter in the pulmonary artery, which is a highly invasive procedure. There-

fore, Tcore is commonly examined in the urine bladder and rectum. However, these proce-

dures are known for their inaccuracy and delayed record of temperatures. Zero-heat-flux

(ZHF) thermometry is an alternative, non-invasive method quantifying Tcore in human

patients by applying a thermosensoric patch to the lateral forehead. Since the porcine cra-

nial anatomy is different to the human’s, the optimal location of the patch remains unclear to

date. The aim was to compare three different patch locations of ZHF thermometry in a por-

cine hypothermia model. Hypothermia (33.0°C Tcore) was conducted in 11 anesthetized

female pigs (26-30kg). Tcore was measured continuously by an invasive Swan-Ganz cathe-

ter in the pulmonary artery (Tpulm). A ZHF thermometry device was mounted on three differ-

ent defined locations. The smallest average difference between Tpulm and TZHF during

stable temperatures was 0.21 ± 0.16°C at location A, where the patch was placed directly

behind the eye. Also during rapidly changing temperatures location A showed the smallest

bias with 0.48 ± 0.29°C. Location A provided the most reliable data for Tcore. Therefore, the

ZHF thermometry patch should be placed directly behind the left temporal corner of the eye

to provide a non-invasive method for accurate measurement of Tcore in pigs.

Introduction
Pigs are commonly used as experimental animal models to mirror human conditions [1–5].
Therefore, they often undergo general anesthesia and are prone to develop a hypothermic sta-
tus, known as perioperative hypothermia [3, 6–10]. Anesthesia-induced impairment of
thermoregulatory control, redistribution of core body heat to the periphery and reduction of
metabolic energy production are considered to be responsible for perioperative hypothermia
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[11–14]. Various consequences such as coagulopathy [7, 15–17], imbalances in the electrolyte
metabolism, increased hematocrit, tubular necrosis, shivering [18–21] as well as higher inci-
dence of wound infections and healing have been described [7, 22–24]. To avoid the impact of
perioperative hypothermia on experimental data, accurate measurement of core body tempera-
ture (Tcore) is a prerequisite during general anesthesia [7, 11, 25–29]. The gold standard to
record Tcore is to measure the blood temperature in the pulmonary artery (Tpulm) using a
Swan-Ganz catheter [6, 28, 30–32]. However, placement of a Swan-Ganz catheter is highly
invasive and thus not always suitable in porcine experimental settings.

Peripheral measurement sites, such as the temperatures in urinary bladder and rectum, are
commonly used to continuously monitor Tcore. Albeit, peripheral temperature measurement
sites show a time delay compared to pulmonary artery temperature during rapidly changing
temperatures resulting in a misinterpretation of Tcore [33–36].

In human medicine a non-invasive method to accurately evaluate core body temperature is
the Zero-heat-flux (ZHF) technology, first described in 1973 [37]. An insulator patch applied
to the lateral forehead and covered by an electric heater is used to stop surface convection, cre-
ating an isothermic tunnel from the core body to the skin surface. As soon as heater- and skin-
temperatures are equal, the subdermal temperature can be measured approximately 1 to 2 cm
below the skin surface. In well-perfused parts of the body, tissue temperature below the skin
surface approximates core body temperature [7, 26, 29, 37, 38].

To date, ZHF technology has not been evaluated in pigs. As the porcine cranial anatomy dif-
fers from the human structures, the appropriate patch location on the porcine head is
unknown. The aim of the present study was to compare three different ZHF patch locations on
the porcine forehead to evaluate whether ZHF technology is feasible in pigs. Therefore, the
ZHF device was tested during an experimentally induced porcine model of mild therapeutic
hypothermia. It was hypothesized that in pigs the ZHF device, placed on a defined location at
the forehead, serves as a reliable non-invasive method to evaluate Tcore corresponding to pul-
monary artery temperature.

Material and Methods

Animals
11 female crossbred growing pigs (Landrace x Pietrain) weighing 29.1 ± 1.4 kg underwent a
hypothermia protocol under general anesthesia. All experimental procedures were ethically
approved by the governmental authority responsible for animal welfare in the state of North
Rhine-Westphalia (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfa-
len, Germany). All procedures were in accordance with the German Laws for Animal Protec-
tion. Animal care and use was performed by qualified staff members, supervised by a
veterinarian, and all facilities and transportation procedures comply with current legal require-
ments. Pigs were purchased from a local breeding farm (Kalkar, Germany). Animals were
allowed to acclimatize for at least 10 days before interventions started. The pigs were group
housed in straw bedded 9.3 m2 boxes (groups of 2 to 5 animals) in the Centre for Experimental
Medicine at the University Hospital of Cologne. They were fed a standard diet (900 g/animal/
day, Universal Mast, RWZ, Cologne, Germany) and had free access to water. To satisfy explor-
ing behavior, enrichment was provided and hay was offered daily. Photoperiods were 12:12
hours light:dark and ambient temperature was maintained at 20±1°C. At the end of the inter-
vention pigs were euthanized using an overdose of pentobarbital-sodium (80mg/kg; Eutha-
dorm, CP Pharma, Burgdorf, Germany) injected intravenously during deep anesthesia.
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Anesthesia and analgesia
Pigs were fasted for 12 hours prior to the start of the interventions while water was always
accessible. Before induction of anesthesia, the animals were separated from the group, with
remaining visual contact. The pigs received an intramuscular injection of azaparone (2 mg/kg
body weight; Stresnil, Janssen, Neuss, Germany), ketamine (20 mg/kg body weight; Ketavet
100, Pfizer, Berlin, Germany) and atropine (0.02 mg/kg body weight, Atropin, Braun, Melsun-
gen, Germany) for premedication. During transport to the intervention room, oxygen was
administered via face mask. Pigs were bedded in a supine position. By use of a 20 gauge cathe-
ter (Vasovet, Braun Melsungen, Melsungen, Germany) in the lateral auricular vein, a bolus of
propofol (Propofol 2% MCT, Fresenius, Bad Homburg, Germany) was administered prior to
endotracheal intubation using an endotracheal tube (6–6.5 ID mm, Teleflex Medical, Kernen,
Germany). Ventilation was performed using a volume-controlled ventilator setting (Fabius GS,
Dräger, Lübeck, Germany) of 8 ml per kilogram bodyweight tidal volume to obtain normocap-
nia with a PaCO2 of 35 mmHg to 45 mmHg, a FIO2 = 0.25 and a positive end-expiratory pres-
sure of 5 mmHg. Total intravenous anesthesia (TIVA) using a combination of propofol (5–7
mg/kg/h i.v.), midazolam (1.2 mg/kg/h i.v.; Midazolam, Rotexmedica, Trittau, Germany) and
fentanyl (12–15 μg/kg/h i.v.; Fentanyl, Rotexmedica, Trittau, Germany) was applied to main-
tain anesthesia. Fluid management was performed using 37°C preheated Ringer’s solution
(Ringerlösung Fresenius, Fresenius Kabi, Bad Homburg, Germany) 7 to 10 ml/kg per hour,
dependent on the circulatory situation. A standard lead II electrocardiogram was used to moni-
tor cardiac rhythm (Philips Medizinsysteme, Böblingen, Germany).

Preparation, catheters and temperature measurement
When the state of surgical tolerance was reached, a 14 gauge saline-filled catheter (Arrow Inter-
national, Reading, USA) was inserted into the right Vena femoralis for TIVA and fluid admin-
istration. The right Arteria femoralis was catheterized (Arterial leadercath, Vygon, Ecouen,
France) to record arterial blood pressure using a transducer that was aligned at the level of the
right atrium (Philips M1097A, Philips Medizinsysteme, Böblingen, Germany). A Swan-Ganz
catheter (5 French, Arrow International, Reading, USA) was inserted via the right internal jug-
ular vein into the pulmonary artery in order to measure pulmonary artery temperature. A
urine catheter (12 Ch, Balloon Catheter, Teleflex Medical, Kernen, Germany) was placed in the
bladder via median laparotomy. Spontaneous cooling of the pigs before starting the experiment
was prevented by covering the animals with heating-blankets (Bairhugger, 3M, Neuss, Ger-
many). A 3M SpotOn patch (3MTM SpotOnTM, 3M, Neuss, Germany) was stuck to the shaved
skin on three different, defined localizations (Fig 1): A: directly behind the left temporal corner
of the eye (4 pigs), B: obliquely above the eye on the forehead, this position is equivalent to
human application of 3M SpotOn (3 pigs), C: central on the forehead (4 pigs).

Thereafter the Zero-heat-flux temperature (TZHF) device was connected to the patches to
record temperature. A cooling system (Variotherm 555, Hirtz & coKG, Cologne, Germany)
was applied intraoesophageally. Mild therapeutic hypothermia (33°C) was conducted by an
automatic feedback cooling system. The cooling device continuously registered Tpulm and auto-
matically adjusted the cooling-temperature to the pre-settings of the study protocol.

Experimental Design
Pigs were cooled from Tpulm = 37.7 ± 0.6°C to 33°C as fast as possible (= cooling phase). There-
after, Tpulm was kept at 33°C (= maintaining phase) for 1 hour. During this process TZHF and
Tpulm were recorded every 5 minutes to determine the precision of the ZHF device in measur-
ing core body temperature compared to Tpulm. Altogether the study included 363 paired
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temperature measurements of TZHF and Tpulm that were used for statistical analysis. n = 130
paired measurements were recorded at ZHF location A in four pigs, thereof n = 78 paired mea-
surements during the cooling phase and n = 52 during the maintaining phase. At ZHF location
B altogether n = 98 paired measurements were recorded in three pigs, thereof n = 59 during the
cooling phase and n = 39 during the maintaining phase. At ZHF location C in total n = 135
paired measurements were recorded in four pigs, thereof n = 83 were measured during the
cooling phase and n = 52 during the maintaining phase. The differences in the number of
paired measurements per animal in the cooling phase resulted from the different durations of
this specific phase.

Statistics
Statistical analysis was performed using the Bland-Altman plot [39, 40] to calculate the bias
and 95% limit of agreement (GraphPad Prism Version 6.0, GraphPad Software, La Jolla, Cali-
fornia). Each dot in the Bland Altman plot represents the results of one temperature pair of
Tpulm and TZHF in one animal at time t. The paired Student’s t-tests were performed with Stata
(Stata 13.1, DatacorpLP, College Station, USA). Values are expressed as mean ± SD. P values
less than 0.05 were set as significant. Starting point of the maintaining phase was defined as the
time when the difference between two following TZHF values was zero. The bias of TZHF com-
pared to Tpulm in the cooling phase was statistically decomposed into two factors: a level effect
caused by the intrinsic ZHF device bias and a time effect that caused the delay of TZHF during
the rapidly changing temperatures in the cooling phase.

Results
Mean cooling rate was 2.8 ± 0.46°C/h. Goal temperature of Tpulm = 33°C was attained after
100 ± 17 minutes. An overview of the temperature patterns are given in Fig 2.

Fig 1. Example of different ZHF patch locations on the head of a euthanized pig. The patch is located at
position B (obliquely above the eye), circles indicate placement at location A (directly behind the temporal
corner of the eye) and C (centered on the forehead).

doi:10.1371/journal.pone.0150759.g001
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Tpulm differs significantly from TZHF at all three locations during cooling and maintaining
phase (p<0.001). Results of Bland Altman plots for cooling and maintaining phase are shown
in Fig 3 and Table 1.

As the bias during the cooling phase was significantly higher compared to the maintaining
phase at all three locations (A, B, C) (Table 1), the bias was statistically split into two effects: a
level effect, caused by the ZHF device that exists in both phases, and a time effect, present only
during rapidly changing temperatures in the cooling phase. Level effect: both temperature
measuring methods revealed constant temperatures during the maintaining phase (Fig 2).
Therefore, the bias during the maintaining phase was equalized as the intrinsic level effect of
the ZHF device. Results are shown in Table 1. Time effect: TZHF values of the cooling phase
were adjusted for the level effect (= TZHF-adj) to quantify the time effect on the bias in the cool-
ing phase. Data are shown in Table 1. The delay-duration of TZHF compared to Tpulm was cal-
culated by comparing Tpulm temperatures (at timepoint t0) with Tzhf-adj temperatures, which
were both recorded at time points 5 (t0+5), 10 (t0+10) and 15 (t0+15) minutes after t0 (Table 2).

TZHF-A showed a time delay between 5 and 10 minutes compared to Tpulm. At location B
the time delay was exactly 10 minutes because TZHF-adj-B at t0+10 did not significantly differ
from Tpulm at t0 (p>0.05). TZHF-adj-C at t0+10 is significantly lower than Tpulm at t0 (p<0.05)
indicating a time delay between 5 and 10 minutes.

Discussion
In the present study it could be demonstrated for the first time that Zero-heat-flux technology
for temperature measurement is applicable in pigs. Three different locations to place thermo-
sensoric patches for the non-invasive Zero-heat-flux temperature measurement were com-
pared, using pulmonary artery temperature for comparison.

Accurate management of core body temperature in surgical settings under general anesthe-
sia is indispensable in humans as well as in pigs in order to prevent perioperative hypothermia.
Furthermore, in experimental settings, where normothermia is desirable, identification of a
rapidly changing Tcore is necessary in order to prevent perioperative hypothermia or malignant
hyperthermia. Hence, reliable methods for temperature surveillance are a prerequisite for dif-
ferent surgical interrogations in the pig [3, 25, 28, 36, 41].

Common, non-invasive methods to measure core body temperature in pigs during anesthe-
sia are placement of a thermosensoric rectal probe or a urinary bladder catheter for tempera-
ture measurement. Those peripheral sites do not reliably display fast changes of the core body
temperature in humans and pigs. Literature revealed that both, urinary and rectal temperature,
showed bias values>0.5°C compared to Tcore. Additionally, urinary bladder temperature may
be misinterpreted due to decreased urine production [25, 26, 30, 32–34, 36]. Musk et al. (2015)
compared porcine rectal to oesophageal temperatures during small surgery procedures. They
showed a bias of 0.69°C, with 95% limits of agreement of -1.18 to 2.57°C taken from Bland-Alt-
man analysis. The high bias and the wide range of the limits of agreement imply that rectal
temperature is unsuitable for measuring core body temperature [34].

The ZHF device in human application accomplished a bias of -0.23°C with 95% limits of
agreement of -1.05 and +0.59°C, compared to pulmonary artery temperature [29]. In accor-
dance to the results of Eshraghi et al. (2014), in the present study the porcine application of the

Fig 2. Pattern of mean temperatures during cooling (black) andmaintaining phase (grey) at ZHF
locations A (4 pigs), B (3 pigs) and C (4 pigs). Data points represent the mean temperature (TZHF or Tpulm)
of the respective group for each time point (every 5 minutes). Number of paired measurements at ZHF
location A: n = 130, at ZHF location B: n = 98, at ZHF location C: n = 135. Tpulm = blood temperature in the
pulmonary artery; TZHF = temperature measured by the ZHF device.

doi:10.1371/journal.pone.0150759.g002

Zero-Heat-Flux Thermometry in Pigs

PLOS ONE | DOI:10.1371/journal.pone.0150759 March 3, 2016 6 / 11



Fig 3. Bland Altman plots comparing Tpulm and TZHF for ZHF location A (4 pigs), B (3 pigs) and C (4 pigs) during cooling andmaintaining phase.
Tpulm = blood temperature in the pulmonary artery, TZHF = temperature measured by the ZHF device.

doi:10.1371/journal.pone.0150759.g003
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ZHF device at location A showed a bias of 0.21 ± 0.16°C in the maintaining phase. Both loca-
tions, B and C, revealed a significantly higher bias than location A (Table 1). Nevertheless, con-
sidering a maximal accepted difference between two comparable temperature measuring
methods of 0.5°C [11, 29, 42] all ZHF locations show a clinically acceptable bias in the main-
taining phase (Table 1). In summary, the ZHF device at location A is applicable for a reliable
measurement of constant Tcore in pigs. During the cooling phase the bias was significantly
higher than in the maintaining phase at all three locations (A, B, C) (p<0.001, Table 1). Thus,
an influence of fast changing temperatures on the reliability of TZHF was supposed. Similar
phenomena have already been described before [1, 33, 36]. In a study of Krizanac et al. (2010)
temperatures measured by tracheal temperature probes were compared to the pulmonary
artery temperature. Fast cooling resulted in a significantly higher bias than slow cooling, impli-
cating a delay of tracheal compared to pulmonary artery temperature during rapidly changing
temperatures [1]. During the cooling phase, the time effect was quantified (Table 1) and the
delay of TZHF compared to Tpulm was evaluated as 5 to 10 minutes for location A and C and
exactly 10 minutes for location B. Bias during cooling at location A was 0.48 ± 0.29°C. Though
a time delay of 5 to 10 minutes was present during forced cooling, the deviation of TZHF com-
pared to Tpulm was in compliance with the clinically acceptable bias range of<0.5°C [11, 29,
42]. Both, location B and C, included significantly higher bias values for the cooling phase than
location A (Table 1), and were therefore assessed as not convenient locations to monitor a pre-
cise temperature course compared to location A.

The setting of mild therapeutic hypothermia was chosen to examine the reliable functional-
ity of the ZHF device during rapidly decreasing and constant temperatures. After the cooling

Table 1. Bias of TZHF and Tpulm for each ZHF location (A, B, C) in cooling phase, maintaining phase and the time effect.

Table 1 cooling phase maintaining phase (≙ level effect) time effect during cooling phase (= bias of cooling phase–level effect)

bias-A 0.48 ± 0.29 0.21 ± 0.16§ 0.27 ± 0.28

bias-B 0.75 ± 0.33*** 0.36 ± 0.12***/§ 0.39 ± 0.33*

bias-C 0.80 ± 0.27*** 0.41 ± 0.16***/§ 0.39 ± 0.27***

Bias = mean difference between TZHF and Tpulm. Data are shown as mean difference ± SD (°C)

*** = significantly different to bias-A (p<0.001)

* = significantly different to bias-A (p<0.05)

§ = significantly different to the bias in the corresponding cooling phase (p<0.001)

doi:10.1371/journal.pone.0150759.t001

Table 2. Time delay of TZHF compared to Tpulm during the cooling phase.

Tpulm at t0 & TZHF-adj at t0+5 Tpulm at t0 & TZHF-adj at t0+10 Tpulm at t0 & TZHF-adj at t0+15

bias-A 0.08±0.23** -0.11±0.18§ -0.30±0.17§

bias-B 0.17±0.29*** -0.05±0.27 -0.26±0.26§

bias-C 0.16±0.26*** -0.07±0.27# -0.28±0.30§

Bias was calculated comparing Tpulm at t0 and TZHF-adj at 5, 10 and 15 minutes after t0 (t0+5, t0+10, t0+15)

for ZHF location A, B and C. Data are shown as mean difference ± SD (°C), bias = mean difference

between Tzhf-adj and Tpulm

** = TZHF-adj is significantly higher than Tpulm (p<0.01)

*** = TZHF-adj is significantly higher than Tpulm (p<0.001)
§ = TZHF-adj is significantly lower than Tpulm (p<0.001)
# = TZHF-adj is significantly lower than Tpulm (p<0.05)

doi:10.1371/journal.pone.0150759.t002
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phase, temperature was constantly maintained at 33°C, which is far below the physiological
core body temperature of pigs during general anesthesia. At 33°C the ZHF device reliably dis-
played core body temperature. Therefore, it was extrapolated that the device is able to display a
precise temperature monitoring also in constant physiological ranges, which has to be proven
in further studies.

To conclude, the ZHF device placed at location A, directly behind the lateral eye angle, pro-
vides the most accurate display of core body temperature in pigs. Thus, under clinical aspects,
the device is judged as applicable as a non-invasive method for porcine Tcore measurement in
experimental settings under general anesthesia.
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