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Abstract
Genomic selection has been adopted nationally and internationally in different livestock and plant species. However, 
understanding whether genomic selection has been effective or not is an essential question for both industry and 
academia. Once genomic evaluation started being used, estimation of breeding values with pedigree best linear unbiased 
prediction (BLUP) became biased because this method does not consider selection using genomic information. Hence, 
the effective starting point of genomic selection can be detected in two possible ways including the divergence of genetic 
trends and Realized Mendelian sampling (RMS) trends obtained with BLUP and single-step genomic BLUP (ssGBLUP). This 
study aimed to find the start date of genomic selection for a set of economically important traits in three livestock species 
by comparing trends obtained using BLUP and ssGBLUP. Three datasets were used for this purpose: 1) a pig dataset with 
117k genotypes and 1.3M animals in pedigree, 2) an Angus cattle dataset consisted of ~842k genotypes and 11.5M animals 
in pedigree, and 3) a purebred broiler chicken dataset included ~154k genotypes and 1.3M birds in pedigree were used. The 
genetic trends for pigs diverged for the genotyped animals born in 2014 for average daily gain (ADG) and backfat (BF). In 
beef cattle, the trends started diverging in 2009 for weaning weight (WW) and in 2016 for postweaning gain (PWG), with 
little divergence for birth weight (BTW). In broiler chickens, the genetic trends estimated by ssGBLUP and BLUP diverged at 
breeding cycle 6 for two out of the three production traits. The RMS trends for the genotyped pigs diverged for animals born 
in 2014, more for ADG than for BF. In beef cattle, the RMS trends started diverging in 2009 for WW and in 2016 for PWG, with 
a trivial trend for BTW. In broiler chickens, the RMS trends from ssGBLUP and BLUP diverged strongly for two production 
traits at breeding cycle 6, with a slight divergence for another trait. Divergence of the genetic trends from ssGBLUP and 
BLUP indicates the onset of the genomic selection. The presence of trends for RMS indicates selective genotyping, with or 
without the genomic selection. The onset of genomic selection and genotyping strategies agrees with industry practices 
across the three species. In summary, the effective start of genomic selection can be detected by the divergence between 
genetic and RMS trends from BLUP and ssGBLUP.
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Introduction 
Genomic selection has been widely recognized as a successful 
tool for genetic improvement, as evident by the extensive 
genotyping in various livestock and plant species (Misztal 
et  al., 2020; VanRaden, 2020). The genomic selection allows to 
preselect young animals and also parents with higher accuracy 
than with best linear unbiased prediction (BLUP; Patry and 
Ducrocq, 2011a; Tyrisevä et  al., 2018b). However, the actual 
gains with genomic selection depend on a number of factors, 
aside from the variance components. These include the choice 
of animals for genotyping, prediction accuracy of genomic 
methods, and fraction of genotyped animals used for breed 
improvement. Genotyping is not effective if only parents with 
a large progeny number are genotyped because their BLUP 
evaluations are already accurate. A genomic selection scheme 
using simple single-trait models, possibly with few phenotypes, 
may be less accurate than BLUP selection with more complete 
data and models (Muir, 2007). Finally, if genotyping is used only 
for marketing, e.g., young bull sales to commercial farms, such 
genotyping has no effect on the genetic improvement of the 
breeding population.

With a large investment in genomic selection, it is of interest 
to find out the onset of the genomic selection and whether it 
is successful over the long run. There are several possible ways 
to find out the starting date of genomic selection. One way is 
by analyzing differences in genetic trends by BLUP and single-
step genomic BLUP (ssGBLUP). Under genomic selection, BLUP 
cannot account for the fact that animals are being selected 
based on genomic information before having their phenotypes 
recorded (i.e., genomic preselection) and is, therefore, biased 
(Patry and Ducrocq, 2009; Patry and Ducrocq, 2011b). On the 
contrary, ssGBLUP accounts for all sources of information jointly 
and is expected to be less affected by preselection bias (Legarra 
et al., 2009, 2014; VanRaden and Wright, 2013). Superior genetic 
trends by ssGBLUP compared with BLUP have been reported in 
several cases. Masuda et al. (2018) presented trends for milk yield 
in Holsteins by BLUP and ssGBLUP. While the trend by ssGBLUP 
increased at the expected beginning of the genomic selection, 
the trend by BLUP leveled off. Koivula et al. (2018) reported that 
including the genotypes of culled bull calves in the ssGBLUP 
analysis leads to higher genetic trends for milk production traits 
of Nordic Red Dairy Cattle compared with the situation where 
genomic information of the culled bull calves is ignored.

Another way to investigate the onset of genomic selection 
is by analyzing genetic and phenotypic trends, expecting 
accelerating trends under genomic selection (Misztal et  al., 
2020). However, both trends are affected by changes in 
selection practices and incur some lag time. Lag time depends 
on the generation interval, feeding, and management 
program. Additionally, changes in genetic parameters over 
time may cause fluctuations in the genetic trends (Hidalgo 
et al., 2020). The third way is by analyzing realized Mendelian 
sampling (RMS) trends derived by genomic and traditional 
evaluations (Tyrisevä et  al., 2018a, 2018b). Genetic selection 
works by selecting animals with superior Mendelian sampling. 
The selection is based on phenotypes and progeny records 
in BLUP, and additionally on genomic information with 
genomic methods (Lourenco et al., 2020). When some animals 
are selected for superior Mendelian sampling, the average 
Mendelian sampling for all the animals is still zero, but for 
the selected animals it is different than zero. Therefore, RMS 
for genotyped animals is likely to be different than zero with 
selective genotyping based on performance for both BLUP 
and ssGBLUP. Additionally, RMS is likely to be zero for both 
methods when genotyping involves all young animals or is 
random. However, the magnitude of RMS by ssGBLUP will be 
greater because of the higher accuracy of genomic estimated 
breeding value (GEBV). Not only the accuracy is greater, but 
also the average GEBV is usually higher than the average 
EBV, which translates into superior genetic trends. This study 
aimed to find the onset of genomic selection by comparing the 
genetic and Mendelian sampling trends derived by ssGBLUP 
vs. BLUP in pigs, Angus cattle, and broiler chickens.

Materials and Methods

Pig data

The pig data consisted of 934,148 records for average daily gain 
(ADG) and 856,546 for backfat (BF) collected until 2019, and 
1,310,240 animals in pedigree, of which 116,943 were genotyped 
for 43,910 single-nucleotide polymorphism (SNP) markers after 
quality control. The quality control of genotypes was performed 
as in Lourenco et al. (2016). This dataset was provided by Genus 
PIC (Hendersonville, TN). The descriptive statistics of studied 
traits are presented in Table 1.

American Angus data

Phenotypes for three traits including birth weight (BTW; 
N  =  9,003,125), weaning weight (WW; N  =  9,506,570), and 
postweaning gain (PWG; N  =  4,671,702) of Angus beef cattle 
were provided by the American Angus Association (St. Joseph, 
MO). The pedigree consisted of 11,573,108 animals, of which 
842,199 were genotyped and a common set of 39,766 SNP 
markers were available after imputation. The quality control 
of genotypes was conducted as in Lourenco et al. (2015b). The 
descriptive statistics of studied traits in American Angus are 
presented in Table 2.

Abbreviations

ADG average daily gain
APY algorithm for proven and young
BF backfat
BLUP best linear unbiased prediction
BTW birth weight
EBV estimated breeding value(s)
GEBV genomic estimated breeding value(s)
GI genomic information
PA parent average
PC progeny contribution
PWG postweaning gain
RMS realized Mendelian sampling
SNP single-nucleotide polymorphism
ssGBLUP single-step genomic best linear 

unbiased prediction
WW weaning weight
YD yield deviation

Table 1. Descriptive statistics of pig data 

Trait
No. of 

records Mean SD
No. of 

genotypes 
No. of animals 

in pedigree 

ADG1, g 934,148 696.86 97.45 116,943 1,310,240
BF, mm 856,546 9.39 2.78 116,943 1,310,240

1ADG, average daily gain; BF, backfat.
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Broiler chicken data

The broiler chicken data were provided by Cobb-Vantress Inc. 
(Siloam Springs, AR). The dataset included phenotypic records 
from a purebred broiler chicken line across 32 breeding cycles 
for three production traits referred to as T1, T2, and T3. Each 
eight breeding cycles comprise one generation. The number of 
records for T1, T2, and T3 was 1,072,854, 228,992, and 265,891, 
respectively. The genotype file after quality control consisted 
of 154,318 birds genotyped for 54,713 SNP markers, and the 
pedigree consisted of 1,252,619 birds. The SNP data underwent 
the same quality control process as described in Lourenco et al. 
(2015a).

Statistical models

The statistical model for pig traits was as in Steyn et  al. 
(2020), for beef traits was as in Garcia et  al. (2020), and for 
broiler chicken traits was as in Lourenco et al. (2015a). The (co)
variance components used in all analyses were provided by PIC, 
Angus Genetics Inc., and Cobb-Vantress. These (co)variance 
components were the most recent estimates derived using 
pedigree BLUP. The pedigree relationship matrix (A) was used 
in BLUP and the realized relationship matrix (H) was used in 
ssGBLUP. The structure of H-1 is explained in Aguilar et al. (2010). 
Both BLUP and ssGBLUP were run in a multiple-trait animal 
model framework.

Genomic analysis and software

Because of the large number of genotyped animals, the 
algorithm for proven and young (APY) was used to create 
the inverse of G (G−1

APY) as proposed by Misztal et  al. (2014a) 
and Fragomeni et  al. (2015). In APY, the matrix of genomic 
relationships among genotyped animals is partitioned based on 
core and noncore animals. The number of core individuals was 
selected based on the number of eigenvalues explaining 98% of 
the variance of G (Pocrnic et al., 2016) using PREGSF90 (Misztal 
et al., 2014b). The number of core individuals for pigs, beef cattle, 
and broiler chickens was estimated as 11,094, 13,000, and 5,030, 
respectively. Core animals were randomly sampled from the 
genotyped population.

Solutions for BLUP and ssGBLUP were obtained by using 
the preconditioned conjugate gradient algorithm with 
iteration on data as implemented in the BLUP90IOD2 (Tsuruta 
et al., 2001). The convergence criterion was set to 10−12 for all 
evaluations.

Criteria to investigate the starting point of genomic 
selection

Genetic trends
The point of divergence in genetic trends obtained by ssGBLUP 
and BLUP was used as a way to identify the onset of genomic 
selection. To explain how the difference between predictions 

from ssGBLUP and BLUP can indicate the start of genomic 
selection, consider the decomposition of the (G)EBV of individual 
i as in Aguilar et  al. (2010), VanRaden and Wright (2013), and 
Lourenco et al. (2015a): 

EBV = wc
1PA

c +wc
2YD

c +wc
3PC

c (1)

and

GEBV = wg
1PA

g +wg
2YD

g +wg
3PC

g +w4GI (2)

Then, the difference between GEBV and EBV is:

GEBV − EBV =
(
wg

1PA
g +wg

2YD
g +wg

3PC
g +w4GI

)

− (wc
1PA

c +wc
2YD

c +wc
3PC

c) =
(
wg

1PA
g −wc

1PA
c)

+
(
wg

2YD
g −wc

2YD
c)+ (

wg
3PC

g −wc
3PC

c)+w4GI
 (3)

where PA is the parent average, YD is yield deviation 
(phenotypes adjusted for the fixed effects), PC is the progeny 
contribution, and GI is the genomic information which is equal 
to GP − PP, in which GP is the genomic prediction derived using 
G and PP is the pedigree prediction derived using A22; the 
superscripts c and g denote components related to conventional 
BLUP and ssGBLUP, respectively, and w1 tow4 are weights that 
sum to 1.

When inbreeding is ignored in A and both parents are known, 
then, with superscripts omitted, w1 = 2/den, w2 = (nrec/α)/den,  
w3 = 0.5nprog/den, and w4 = (gii − aii22)/den, in which α is the 
variance ratio (residual variance over additive genetic variance), 
nprog is the progeny size, nrec is the number of records, gii and aii are 
the diagonal element of G−1 and A−1

22  for animal i, respectively, 
and den is the sum of the numerators of w1 to w4.

The components of (G)EBV equations for individual i are as 
follows:

PAi =
((G)EBVs(i) + (G)EBVd(i))

2
;

GIi =

Ñ
−
∑
j,j�=i

(gij/gii − aij/aii)GEBVj

é
;

YDi = (yi −
∑
j

xijb̂);

PCi =
∑
k

(2 (G)EBVk − (G)EBVm) /nprog;

Where (G)EBVs(i) and (G)EBVd(i) are (genomic) breeding values 
of sire and dam of individual i, yi is the ith record of animal i, b̂ 
is the solutions for the level of fixed effects related to record i, xij 
is the element of a design matrix relating b̂ to yi, and k refers to 
progeny and m indicates mate of animal i.

The components GP and PP are ignored under BLUP, which 
results in biased EBV if animals are selected based on genomic 
information. The bias arises not only from the lack of GP and PP, 
but also from a combination of elements including the fact that 
PA, PC, and YD are not adjusted based on genomic information. 
For instance, if parents are non-genotyped, the difference 
between the predictions from BLUP and ssGBLUP originates from 

Table 2. Descriptive statistics of Angus data

Trait
No. of 

records Mean SD
No. of 

genotypes 
No. of animals 

in pedigree 

BTW1, lb 9,003,125 80.57 9.87 842,199 11,573,108
WW, lb 9,506,570 593.72 99.52 842,199 11,573,108
PWG, lb 4,671,702 362.50 147.93 842,199 11,573,108

1BTW, birth weight; WW, weaning weight; PWG, postweaning gain.
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the contributions due to PC and GI of genotyped animals. For 
young animals without own and progeny records, the difference 
between EBV and GEBV comes from GI and PA enhanced by 
genomic information of parents, the latter to a smaller extent. 
However, as own and progeny records are added to the data, 
the amount of weight given especially to PC increases, and the 
weight of GI decreases.

When EBV or GEBV are used for the selection of parents, 

GEBVs have higher accuracy (rga,â). This will generate a 

difference in the amount of genetic gain (∆G) in the next 

generation. Therefore, it can be shown as ∆Gg = irga,âσa and 

∆Gc = irca,âσa, and finally ∆Gg ≥ ∆Gc, in which i > 0 is the 
selection intensity and σa is the additive genetic SD. Hence, 
under genomic selection, mean GEBV is higher than mean 
EBV because greater accuracy of GEBV allows the selection 
of superior animals based on GP. Subsequently, a divergence 
in (G)EBV trends indicates the beginning of the genomic 
selection.

To obtain the genetic trend under traditional BLUP and ssGBLUP, 
the (G)EBVs were averaged by birth year for genotyped bulls in the 
beef cattle population, for genotyped parents in the pig population, 
and for genotyped birds in the chicken populations. Only animals 
with phenotypes were used for deriving the genetic trends. Genetic 
trends were obtained using a simple linear regression of (G)EBV 
for each trait on year of birth. For both BLUP and ssGBLUP, the 
genetic base was set to where more than one thousand genotyped 
individuals were available per year/generation. This corresponded 
to breeding cycle 1 in broiler chickens, and birth year 2012 in pigs, 
and year 2007 in beef cattle. The mean GEBV from ssGBLUP was set 
to the same base as EBV from BLUP.

Realized Mendelian sampling
The RMS for the genotyped individual i was estimated as:

RMSi = (G)EBVi − PAi (4)

Under some idealized evolutionary processes (e.g., random 
mating, absence of selection, and large population size), the 
components of (G)EBV are expected to be zero within each 
generation:

E [PA] = E [YD] = E [PC] = E [GP] = E [PP] = 0

and consequently, E[RMS] = 0. When all or a random subset 
of young animals are used as parents of the next generation, 
the average RMS is close to 0. Although in a population under 
selection the equalities may not hold, the RMS is still expected 
to be zero.

For simplicity, assume that parents and earlier generations 
are not genotyped. Let index s denotes ungenotyped animals 
selected for genotyping based on phenotype or BLUP (the first 
stage of selection), then E[YDs] = δ, where δ = isra,âsσa, in which 
is is the selection intensity at the first stage of selection, ra,âs is 
the accuracy of evaluation based on phenotype or BLUP, and σa 
is the additive genetic SD. Assuming young animals with neither 
progeny nor genotype:

E [(G)EBVs] = E [w1PAs +w2YDs] = w1PAs +w2δ; withE (RMS) = w2δ
 (5)

Therefore, if animals are preselected based on phenotype or 
BLUP, RMS from either BLUP or ssGBLUP is nonzero. Its value 

depends not only on the selection differential but also on the 
coefficient w2, which is a function of variance ratio and the 
number of own records.

Now assume that in the second stage of selection, the 
animals preselected based on phenotypes or BLUP are 
genotyped and reevaluated (index sg). On average, an animal 
with superior phenotype may also have a superior genomic 

prediction, E[GPsg]  =  τ, where τ = isg
»
r2a,âsg − r2a,âs σa, with isg 

selection intensity in the second stage of selection and r2a,âsg is the 
reliability of selection based on the genomic reevaluation. Then:

E[GEBVsg] = E[w1PA+w2YD+w4GI] =

w1PA+w2δ +w4τ , E[RMS] = w2δ +w4τ
 (6)

With many genotyped animals, the coefficient w4 can be 
close to 1, with accuracy of GEBVsg greater than the one of EBVs

. Accordingly, RMS will be greater under genomic selection. The 
selective genotyping based on superior phenotypes (YD) can 
be replaced by superior progeny difference (PC) indicating that 
both have a similar effect on EBV, GEBV, and RMS.

The above derivations suggest that the RMS is close to zero 
when all animals are genotyped or when genotyping is at 
random. With selective genotyping, RMS is nonzero and is greater 
with ssGBLUP than with BLUP. Because selective genotyping 
is the practice in livestock populations, the divergence in RMS 
trends obtained based on EBV and GEBV can also indicate the 
starting point of the genomic selection. The same animals used 
for obtaining the genetic trends were also engaged in attaining 
the RMS trends.

Results

Pig production traits

Figure 1 shows the genetic trends for ADG and BF in genotyped 
pigs. The annual changes in average breeding values, in genetic 
SD units, from 2012 to 2019 for ADG and BF were 0.27 and 0.04 
for ssGBLUP and 0.18 and 0.02 for BLUP, respectively. The trends 
from ssGBLUP and BLUP diverged after 2013. In the last year of 
data (2019), the differences between average breeding values 
from ssGBLUP and BLUP were 0.67 SD for ADG and 0.17 SD 
for BF.

The genetic trend for ADG increased over time with a slight 
increase in BF observed in recent years. The change in the 
genetic trend for BF was possibly due to the correlated response 
with body weight traits, as well as changes in breeding practices 
and in the selection objective in recent years.

The RMS (Figure 2) for ADG increased from around 0.04 in 
2012, reached a peak of 0.10 in 2016, then declined. For ADG, the 
positive RMS and considerable difference from zero from 2013 
to 2016 could be due to the use of genotypes from elite culled or 
active boars before 2016 that were retrieved from stored tissue 
samples. BF is measured after the animals are genotyped; hence, 
the smaller RMS for BF could be due to a correlated response 
to ADG.

Beef production traits

The genetic trends achieved by BLUP and ssGBLUP for BTW, 
WW, and PWG in genotyped Angus bulls are shown in Figure 3.  
The annual changes in (G)EBV for genotyped animals, in 
genetic SD units, from 2006 to 2018 for BTW, WW, and PWG 
were −0.01, 0.11, and 0.08 for ssGBLUP and −0.01, 0.09, and 
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0.09 for BLUP, respectively. In the last year of data (2018), the 
differences between average breeding values from ssGBLUP 
and BLUP were 0.01, 0.23, and 0.06 SD for the three traits, 
respectively.

For BTW, the difference between the genetic trends for 
ssGBLUP and BLUP was negligible, but for WW and PWG, the 
genetic trends diverged considerably from 2016 afterward. 
For WW and PWG, the annual genetic gain after 2016 from 
ssGBLUP was 0.06 and 0.02 SD greater than BLUP, respectively. 
As it can be seen in Figure 3, there is a genetic improvement 
for all traits. However, the genetic trend of BTW is downward 
relative to WW and PWG. Low BTW is desirable to avoid calving 
problems. On the other hand, BTW is positively correlated 
with WW and PWG; therefore, a stronger pressure is needed 
to keep BTW low while increasing WW and PWG. Based on 
the divergence, genomic selection is less important for BTW 
because this trait has already been recorded at the time of 
genotyping. Therefore, selection for BTW is based on PA and 
phenotype deviation. Differently, there was a clear impact of 
genomic selection for WW from 2009—with an accelerated 
trend in 2017, and the genomic selection on PWG is slightly 
visible from 2017.

The RMS (Figure 4) looks very different for the three traits. 
For BTW, the trend is small and negative, at around −0.02, with 
small changes at the end. It suggests that the heaviest calves 

were not genotyped; calves are selected for lower BTW to reduce 
calving difficulty. For WW, RMS is large and increasing over 
time from 0.12 to 0.29. Such a trend suggests that the primary 
genotyping is after weaning and based on WW. For PWG, RMS is 
smaller, although rising to 0.17. As the differences between EBV 
and GEBV were small for PWG, the values of RMS for PWG could 
be just a correlated response to WW as the genetic correlation 
between WW and PWG is high (rg = 0.48).

Broiler chicken traits

Genetic trends were favorable for all traits with faster 
improvement in recent years. Figure 5 shows the difference 
between genetic trends obtained using ssGBLUP and BLUP in 
genetic SD units for T1, T2, and T3 in genotyped birds. Divergence 
for the genetic trends by ssGBLUP and BLUP occurred in breeding 
cycle 6 for T2 and T3. For T1, some divergence was visible from 
breeding cycle 2 to 16 in favor of BLUP and then from breeding 
cycle 20 afterward in favor of ssGBLUP, although the divergence 
was reduced later. It seems that for T1, slight divergence in 
favor of BLUP up to breeding cycle 19 was spurious, and this 
divergence could represent the higher PA of animals selected 
for genotyping.

The RMS trends (Figure 6) show relatively large values for T1 
(up to 0.14) and small values for the other traits (0.04 or less). 
Animals were selected for T1 by BLUP, and then superior animals 

Figure 1. Genetic trends obtained using single-step genomic best linear unbiased prediction (ssGBLUP) and pedigree BLUP for average daily gain (ADG) and backfat (BF) 

in the genotyped pigs by year of birth. Genetic trends are presented in additive genetic SD scale and the genetic base is adjusted to 2012. 
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were genotyped. Therefore, RMS for T1 is high. Small RMS for 
the other two traits measured later suggests only a correlated 
response from T1 because all animals measured for these traits 
were already genotyped.

Discussion

History of adoption of genomic selection

In this study, we used data provided by PIC, American Angus 
Association, and Cobb-Vantress. Although each of them took 
different approaches regarding genotyping and implementing 
genomic selection, all changed to ssGBLUP after some time 
which corresponds to breeding cycle 6 in broiler chickens, year 
2014 in pigs, and year 2017 in beef cattle.

PIC started using ssGBLUP for genomic evaluations in 
this population in late 2013, so the first results of genomic 
selection were visible in 2014. Before that, selection was based 
on BLUP (William Herring, PIC, Hendersonville, TN, personal 
communication).

Angus Genetics Inc. incorporated genomic information on 
15 markers in 2009 using a correlated trait approach (Kachman, 
2008). The panel was updated to 384 markers in 2010 and moved 
to the 50k SNP chip after that. Angus Genetics Inc. used Multi-
step GBLUP for genomic evaluation from 2013 to 2016. Finally, 
ssGBLUP was implemented for Angus cattle evaluations in 2017 

(Kelli Retallick, Angus Genetics Inc., St. Joseph, MO, personal 
communication).

Genetic trends

We assessed the genetic trends of several traits in pigs, beef 
cattle, and broiler chickens to investigate the effectiveness of 
genomic selection. Assuming those differences in genetic basis 
between BLUP and ssGBLUP are correctly accounted for by the 
method described in Vitezica et al. (2011), the effectiveness of 
genomic selection can be evaluated indirectly by measuring the 
differences between genetic trends from BLUP and ssGBLUP. 
If the genetic trend by ssGBLUP is accelerating in a favorable 
direction and the genetic trend by BLUP is decelerating, genomic 
selection is likely practiced for the particular trait. If the genetic 
trends by both methods converge to the same point, the selection 
based on genotypes is not stronger than the selection based on 
PA and phenotypes. The genetic trends can also be influenced by 
the genetic correlations among traits, especially with sequential 
selection, where a trend for an earlier measured trait influences 
a trait measured later. Based on the divergence point of genetic 
trends from BLUP and ssGBLUP in our study, the starting point 
of genomic selection in pigs is 2014, in Angus cattle is 2013, and 
in broiler chickens is breeding cycle 6.  These starting points 
agree with the history of implementation of genomic selection 
in those populations.

Figure 2. Realized Mendelian sampling (RMS) trends estimated by single-step genomic best linear unbiased prediction (ssGBLUP) and pedigree BLUP for average daily 

gain (ADG) and backfat (BF) in the genotyped pigs. Mendelian sampling trends are presented in additive genetic SD scale. The solid black line represents the zero-base 

line and the dotted green vertical line shows the start date of genomic selection.
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If the genetic evaluations are based on ssGBLUP or GBLUP (H or 
G matrix), the estimates of genetic trends using BLUP (A matrix) 
are biased provided that a large portion of selected candidates 
are genotyped. As the correlation between the elements of 
G and A22 increases, the genetic trends by the two methods 
will converge. However, some factors such as preselection of 
selection candidates (Jibrila et  al., 2020), incomplete pedigree 
information, and also the existence of young animals without 
own and progeny records but with genotypic information 
(Shabalina et al., 2017) make this difference larger.

The main purpose in investigating genetic trends is to verify 
whether selection is effective and whether there is an agreement 
with phenotypic trends. A  disagreement suggests changes in 
the environment, ineffective selection, or biased genetic trends. 
When there is a disagreement between BLUP and phenotypic 
trends, but an agreement between the latter and ssGBLUP 
trends, there is strong evidence for biased BLUP trends. Masuda 
et  al. (2018) showed genetic trends for milk yield traits based 
on BLUP were biased downwards for U.S. Holstein bulls and 
cows. Especially for bulls, the bias in EBV was because of failure 
in accounting for genomic preselection and underestimated 
PC because daughters were also genotyped and, therefore, 
preselected before having their phenotypes recorded. In the 
same study, the authors showed a good agreement between 

phenotypic and ssGBLUP trends, meaning the latter can account 
for preselection and is not biased under genomic selection.

When the BLUP trends become biased due to genomic 
preselection, any measure derived from it such as deregressed 
proofs should not be used anymore. It should be noted that 
genomic preselection, selection on correlated traits (Sorensen 
and Kennedy, 1984), poorly defined unknown-parent groups 
(Misztal et  al., 2013), preferential treatment of selection 
candidates (Dehnavi et  al., 2018), and nonrandom mating 
(Tsuruta et al., 2021) can generate bias in BLUP. 

Realized Mendelian sampling

The value and trends for RMS illustrate selective genotyping, 
where the decision to genotype is based on phenotypes or 
BLUP evaluations. RMS was large for ADG in pigs, for WW 
in Angus, and for T1 in broiler chickens, where genotyping 
followed phenotyping. For pigs, the RMS trend indicates that 
an increasing number of piglets are being genotyped, reducing 
selective genotyping. As genotyping becomes less expensive 
while the cost of phenotyping keeps constant, genotyping more 
young animals becomes economically justified. For WW in beef 
cattle, the majority of calves are genotyped after weaning, and 
selection at this stage is mostly based on phenotype. However, 
genetic trends can diverge before the time of genotyping 

Figure 3. Genetic trends obtained using single-step genomic best linear unbiased prediction (ssGBLUP) and pedigree BLUP for birth weight (BTW), weaning weight 

(WW), and postweaning gain (PWG) in the genotyped Angus bulls by year of birth. Genetic trends are presented in additive genetic SD scale and the genetic base is 

adjusted to 2007.
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if superior animals are genotyped retroactively. For broiler 
chickens, RMS for later traits such as T2 and T3 was close to zero, 
indicating no new preselected genotyping based on these traits. 

Although we investigated RMS and genetic trends to identify 
the starting point of genomic selection, those two approaches 
are closely related. As genomic selection works by selecting 
animals with superior Mendelian sampling, there is a sharp 

increase in breeding values estimated under genomic methods. 
This increase in breeding values is evident for selected animals 
and also their progeny (Tyrisevä et  al., 2018a), where animals 
with a large number of genotyped progeny are more likely 
to have greater Mendelian sampling (Masuda et  al., 2018). 
Consequently, because of larger Mendelian sampling, there is an 
impact in genetic trends when animals are selected based on 

Figure 4. Realized Mendelian sampling (RMS) trends estimated by single-step genomic best linear unbiased prediction (ssGBLUP) and pedigree BLUP for birth weight 

(BTW), weaning weight (WW), and postweaning gain (PWG) in the genotyped Angus bulls. Mendelian sampling trends are presented in additive genetic SD scale. The 

solid black line represents the zero-base line and the dotted green vertical line shows the start date of genomic selection.
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genomic information, especially if the selection happens before 
phenotypes are recorded.

Usually, the difference between genetic and RMS trends 
from ssGBLUP and BLUP is more obvious in species under 
more intense selection with shorter generation interval, as 
in broilers and pigs compared with beef cattle. Moreover, 
the effect of genomic selection will be more pronounced in 

species with higher use of reproduction technologies such 
as artificial insemination and embryo transfer, such as dairy 
cattle. On the other hand, fitness-related, hard to measure, 
or late traits will benefit more from the implementation of 
genomic selection, so we expect that the difference between 
genetic and RMS trends from BLUP and ssGBLUP will be more 
evident in these cases.

Figure 5. The difference between genetic trends obtained using single-step genomic best linear unbiased prediction (ssGBLUP) and pedigree BLUP in genetic SD units 

for three production traits referred to T1, T2, and T3 in a purebred broiler chicken line across 32 breeding cycles.
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Conclusions
To detect the effective starting point of genomic selection, 
two possible ways including the divergence point of genetic 
trends and RMS trends obtained by ssGBLUP and BLUP using 
official datasets from pigs, beef cattle, and broiler chickens 
were used. The effective starting point of genomic selection in 
pigs, Angus cattle, and broiler chickens was determined as year 
2014, 2013, and breeding cycle 6, respectively. The difference 
between genetic and RMS trends from ssGBLUP and BLUP is 
more evident in populations under more intense selection, as 
in pigs and broilers compared with beef cattle. In general, the 
effective starting point of genomic selection can be detected by 
the divergence between genetic and RMS trends from BLUP and 
ssGBLUP, although RMS trends are present for traits recorded 
before genotyping and later used for genotyping decisions. The 
results and procedures presented here can help to evaluate 
the efficiency of the implementation of genomic selection in 
breeding programs.
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