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Abstract
The collective Protein:Protein Interactions (PPI) of a cell are thought to represent a system with
emergent network properties that integrate signals from a multiplicity of inputs into coordinated
responses. It is hypothesized that the PPI network supplies both specificity for many distinct
signals that utilize common intermediate pathways, and also robustness by allowing specific
signals to be communicated by alternate routes. Progress with genetic networks points to these
concepts, but the extent to which PPI networks possess these properties has not been empirically
tested, due to lack of quantitative data needed for such assessments. Here, a hypothetical
physiologic PPI network is used to illustrate how signaling robustness and specificity could be
manifest under conditions of (i) deletion mutation, or (ii) changes in signaling due to variation in
environmental conditions or stimuli. It is proposed that advances in technology enabling empirical
analysis of PPI network principles will have the potential to significantly impact basic
understanding of signaling mechanisms, and contribute to the generation of novel applications in
drug screening and pharmacology.

Signal Specificity Through Protein:Protein Interaction (PPI) Networks
A basic aspect of cell physiology involves the ability to generate specific responses to
specific stimuli via signal transduction. The principle that receptor:ligand interactions
recognize and initiate these specific signals is well established. However, it is much less
clear how the immediate next step in the process, participation of intracellular intermediates,
communicates the specificity of the original interaction to produce the ‘correct’ cellular
response. In principle, this could be achieved via receptor-customized intracellular
intermediates that would specialize in transmitting signals exclusively for specific pathways
(Figure 1i). Notch1 exemplifies this type of signaling: upon binding and activation by an
extracellular ligand, Notch1 undergoes cleavage and liberation of the Intracellular Domain
(ICN), which translocates to the nucleus and effects transcriptional activation [1]. However,
most intracellular signal transduction is carried out by intermediates that are common to
multiple biochemical pathways (Figure 1ii) [2]. For example, activation of ERK and p38
MAPK and associated pathways occurs in response to many different receptors [3,4]. For a
cell functioning in vivo and in situ, a multitude of simultaneous cellular signals must be
integrated into seamless, unified, non-contradictory responses. This generates the conceptual
problem of how common intermediates can be utilized to communicate different specific
signals, without mistaking information between different pathways that may or may not be
concurrently active.
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It has been hypothesized that the solution to this problem may largely reside in the protein-
protein interaction (PPI) network [5], which is thought to incorporate all of the genetically
encoded biochemistry in a cell [6]. In this network model of signal specificity, PPI constitute
a biochemical ‘language’, in which proteins are members of an ‘alphabet’ that in joining
together form ‘words’ instructing the cell to perform functions. Because many different PPI
from different biochemical pathways occur simultaneously, cellular decisions are thought to
rely on network principles that would integrate the qualitative and quantitative PPI-mediated
signals, and translate them into specific responses.

PPI Network Robustness and the Central-Lethality Rule
To understand how the PPI network might organize and direct many different signals, we
must first consider the mechanisms by which it is predicted to transmit individual signals. A
network can display emergent, synergistic properties that do not entirely account for by the
individual contributions of its members. According to network theory, the PPI network is
expected to display robustness, which describes a network’s stability in the face of changes
to its members (individual proteins) or their functions [7,8]. Figure 2 displays two
hypothetical PPI networks (Figure 2i and 2ii, top panels), each composed of 15 interactions
(‘edges’) between 14 members (‘nodes’ A-N), including 4 receptors (initiators of signaling
pathways, denoted as ‘peripheral nodes’ A-D), 1 protein with many interaction partners
(‘hub’, K), and 1 goal partner (M), whose interaction induces a function. Except for three
differences among the 15 interactions (edges), the two networks are otherwise identical.
Hypothetically, if the gene for the hub protein, K, were deleted (Figure 2, bottom panels),
this would eliminate the network’s ability to reach the goal (M) from any receptor in Figure
2i, but not Figure 2ii. Thus, the network in Figure 2ii is the most robust under this specific
condition.

Experiments, mostly in the yeast Saccharomyces cerevisiae, have demonstrated that genetic
deletion of protein hubs results in lethality more often than deletion of non-hub proteins, and
this has become known as the central-lethality rule [9]. This may be partly explained in
probabilistic terms. Because hubs participate in many more PPI than do average proteins,
hubs might display an increased tendency to be involved in specific essential PPI that are
required for cellular life [10]. However, it is thought that the network activity of hubs also
contributes to their preferential essentiality. Hubs play a critical role in mediating
communication within and between signaling pathways, as sub-centers of the many
connections that together determine a network’s topology/connectivity. Therefore, deletion
of a hub is thought to create a severe hole in the network that often cannot be bypassed by
compensatory pathways [11,12]. The idea that the network activity of the genes encoding
PPI hubs tends to be essential for cellular life is consistent with the hypothesis that there is a
significant network component to PPI function.

Redundant vs. Distributed Mechanisms of Network Robustness
Null mutation of any one of approximately 80% of yeast genes in S. cerevisiae was shown to
bear no consequence for viability or growth rate in multiple different environments [13–15].
It is not thought that 80% of the yeast genome makes no contribution to the viability or
growth rate; rather that the robustness of the genetic network allows compensatory
mechanisms to sustain essential signals when one of the majorities of genes is lost.
Subsequent studies showed that only a small fraction of this compensation were due to
genetic redundancy, where a closely related family member performs the activity of the
missing gene. Surprisingly, most of the compensation was due to distributed robustness,
where unrelated genes diminish the phenotypic consequences of the network alteration
[16,17]. Further work showed that a vast collection of chemical and environmental stress
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conditions could be identified in which nearly all genes were required for optimal growth in
at least one condition, illustrating that the minimal genetic complement required for life was
not equal to that which provided optimal/maximal function in a potentially variable
environment [18]. Thus, in the yeast genome, genes display functional specificity, but the
plasticity in the network allows some genes (or collections of genes) to compensate function
when other network members are mutated [19,20].

Interestingly, in mice, the percent of knockout mutations in protein-encoding genes
compatible with mouse viability has been estimated to be very close to that of yeast, ~80%
[21]. Although not quantified, common experience dictates that many genetic knockouts
display no phenotype, sometimes despite other experimental evidence that these genes
perform specific functions [19,22]. Because of these and other examples and analyses,
mutational robustness are considered a network property inherent to genomes [8]. In this
regard, an outstanding issue of great interest emerges, whose resolution is severely limited
by current technical and analytical capabilities: to what extent does genetic network
robustness function directly through PPI network robustness, vs. through other genetic,
epigenetic, and/or genomic mechanisms?

Toward Physiologic PPI Network Analysis of Robustness and Signal
Specificity

The current battery of protein interaction methodologies is designed to report and archive
binary PPI data, wherein the presence or absence of interaction between two specific
proteins is noted [23]. Well-known strategies with which to approach PPI experiments
include Glutathione S-Transferase (GST)-fusion protein pull-down (PD) [24], co-
Immunoprecipitation (IP) with subsequent Western blotting [25] or mass spectrometry-
based identification of binding partners [26,27], Blue Native-Polyacrylamide Gel
Electrophoresis (BN-PAGE) [28], Fluorescence Resonance Energy Transfer (FRET) [29],
and yeast two-hybrid [30]. The binary data thus generated can be retrieved from databases
and assembled into PPI network maps, large and smallest of various scales, but similar in
concept to Figure 2. However, PPI network analysis lags behind genetic network analysis
platforms because of the lack of quantitative data obtainable under physiologic conditions.
Therefore, current state-of-the-art PPI maps constructed from archived data display possible
PPI, in the same way a highway map shows roads, but not traffic/activity. Significant
advances are needed to generate the technological and analytical ability to quantify large
collections of PPI and reveal the extent to which they actually occur under specific
physiological conditions in primary cells [31]. Figure 3 illustrates what such data might look
like on a small scale, if the technology existed to generate it, for the same hypothetical PPI
network shown previously. The possible PPI representing current data capabilities is shown
in grey, overlaid with physiologic quantification data in blue that indicates the PPI level
under a specific condition. First, physiologic conditions can control which proteins (nodes)
are present due to differential gene expression and other post-transcriptional mechanisms of
protein abundance. In Figure 3, this is evident because of all the proteins that could
potentially participate in PPI (grey with no blue overlay), only a subset is present under this
hypothetical physiological condition (blue overlay). Second, PPI is subject to a plethora of
regulatory processes in vivo: competition between multiple ligands, sequestration,
compartmentalization, glycosylation, allosterism, binding site alteration (phosphorylation,
de-phosphorylation, ubiquitination), and others. Therefore, it is easily imagined that in one
physiological condition a PPI might be engaged (Figure 3, top panel), while under different
conditions that PPI may not occur (Figure 3, bottom panel, showing lack of the PPI, E:F).

Here, it will be illustrated how measuring the changes in the quantity of an interaction
between protein pairs could reveal physiologic PPI signatures of network robustness and
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signal specificity. Under one hypothetical physiologic condition (Figure 3, top), both B and
D pathways lead to recruitment of F, and therefore the quantity of signal from F to the goal
M is high. However under the second hypothetical physiologic condition (Figure 3, bottom)
where BCE forms a constitutive complex that inhibits formation of E:F, only receptor D
continues to signal to M. The signal from F to M might be reduced due to the lack of input
from the B pathway (not shown); but alternatively, loss of E:F might liberate more F to
interact between G and K, enhancing the total signal strength through D to compensate for
the lack of signaling through B. Thus, summarizing both Figures 2 and 3, the receptors A-D
share signaling specificity for M through a PPI network involving shared intermediates.
Network robustness depends on the distribution of connectivity [32] (Figure 2), and the
plasticity of signaling strength determined through multiple pathways (Figure 3). The degree
to which the proteins (nodes) involved originate from related vs. unrelated genes would
determine the role of redundant vs. distributed mechanisms of robustness.

Extending the Reach of Technology to Profile Physiologic PPI Networks in
Health and Disease

The summation of all possible PPI and other molecular interactions is collectively termed
the ‘interactome’ [33]. As a field of study, Interactomics represents a frontier in which
progress is currently limited by both assay and analytical tools, to a degree beyond that
which applies to Genomics or Proteomics [34]. Whereas these latter fields focus mostly on
the identity and expression level of molecular species, the output information of these
sciences is the input information for Interactomics. A complete Interactomic profile, which
does not yet exist, would measure all possible combinations of interactions between
molecules as reported by other ‘omics’ methods, and add exponential matrix-level
interaction complexity that would be considerably more data-intensive than either Genomics
or Proteomics parent sciences. In practice, such a level of interaction profiling is not
realistically imminent. However, to progress in this direction, there is great interest in the
generation of assay and analytical tools that improve the accessibility of molecular
interactions to experimentation, diagnosis, pharmacology, and medicine [33,34].

A central rationale for the pursuit of improved Interactomic technologies is that PPI
engagement/activity is likely distinct in healthy vs. diseased states, since PPI relay the
signals that may be associated with these opposite outcomes. To better understand these
signals, the field needs technologies with better capabilities to observe large swaths of PPI
networks, ideally from samples as small as those routinely obtained in the clinic. Two of the
most promising technological avenues in this regard involve Mass Spectrometry (MS) and
microsphere-based PPI analysis. Recent studies using MS produced the first quantitative
estimate of a proteomic signature for a human cell line, by coupling empirical protein
quantification strategies with computational and statistical modeling [35]. Applying this
level of protein quantification to protein interaction quantities will not be trivial, and will
represent a significant advance toward physiologic network PPI analysis. Meanwhile, other
recent experiments have begun to approach PPI measurement using high-sensitivity ELISA-
style methodology via singleplex or multiplex microspheres [36–40]. The strength of this
latter approach lies in its compatibility with small-volume samples from primary tissue
sources including patient samples, as well as high-throughput multi-well formatting and
potential applicability to drug screening. Further development of both MS and multiplex
microsphere-based strategies is likely to prove the unique strengths of both approaches to be
complementary. If MS could be used to identify the most comprehensive Interactomic PPI
set possible, then that could inform the composition of smaller-scale multiplex microsphere-
based micro-assays whose current maximum is limited to ~500 primary analytes. Those MS-
informed high-sensitivity multiplex PPI assays could be used to target specific signaling
pathways, to visualize relevant subsets of PPI networks in patient samples, or to design drug
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screening strategies that evaluate effects on large collections of PPI instead of single protein
activities.

Concluding Remarks
Considering the PPI that mediates signal transduction from a network biology perspective
provides a model for how cellular biochemistry may control signal robustness and
specificity. Progress in understanding gene networks supplies a template for the concepts
hypothesized to emerge from physiologic PPI networks, including potentially significant
roles in signal transduction for redundant vs. distributed mechanisms of robustness. The
achievement of new advances in technology to enable physiologic network PPI analysis may
not only lead to increased understanding of signalling mechanisms, but also provides
network PPI profile for clinical medicine, and new experimental platforms for drug
discovery and pharmacology.
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Figure 1. Two distinct mechanisms to achieve signal specificity
(i) Two unique cellular signals (x,y) are transmitted via their own unique receptors (R) and
intermediates (I), to effect distinct cellular functions (F). (ii) Signals x and y are transmitted
through unique receptors, but they use common intermediates to effect unique functions.
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Figure 2. Two hypothetical physiologic PPI networks display distinct robustness upon deletion of
a hub
Two examples (i–ii) of node-edge diagrams for a hypothetical physiologic PPI network.
(Top panels) Networks (i) and (ii) are identical except for 3 differences among the 15
interactions (edges) possessed by each. (Bottom panels) The consequence to each network
upon genetic deletion of the gene encoding the protein for hub, K.
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Figure 3. Robustness and signal specificity revealed when quantitative PPI information
contributes to PPI network analysis
(Top panel) Binary PPI data provides the network of all known possible interactions for this
hypothetical PPI network, previously shown in Figure 2i (gray). Empirical, quantitative
physiologic PPI information is overlaid (blue). (Bottom panel) One possible consequence to
the network upon prevention or removal of the specific PPI, E:F.
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