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Neither pain, nor depression exist as independent phenomena per se, they are highly
subjective inner states, formed by our brain and built on the bases of our experiences,
cognition and emotions. Chronic pain is associated with changes in brain physiology
and anatomy. It has been suggested that the neuronal activity underlying subjective
perception of chronic pain may be divergent from the activity associated with acute pain.
We will discuss the possible common pathophysiological mechanism of chronic pain and
depression with respect to the default mode network of the brain, neuroplasticity and
the effect of antidepressants on these two pathological conditions. The default mode
network of the brain has an important role in the representation of introspective mental
activities and therefore can be considered as a nodal point, common for both chronic pain
and depression. Neuroplasticity which involves molecular, cellular and synaptic processes
modifying connectivity between neurons and neuronal circuits can also be affected by
pathological states such as chronic pain or depression. We suppose that pathogenesis of
depression and chronic pain shares common negative neuroplastic changes in the central
nervous system (CNS). The positive impact of antidepressants would result in a reduction
of these pathological cellular/molecular processes and in the amelioration of symptoms,
but it may also increase survival times and quality of life of patients with chronic cancer
pain.
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INTRODUCTION
Chronic pain is a complex syndrome which affects thinking,
mood and behavior, and it can gradually lead to complete psy-
chological and social isolation of the patient; therefore it can
have a significant impact on everyday human activities, limit-
ing independence and significantly interfering with interpersonal
relationships. Mechanisms underlying chronic pain are different
from those of acute pain. Chronic pain could lead to permanent
changes of brain structures and functions and these changes could
affect also brain processes not directly connected with pain itself
(Baliki et al., 2008).

Depression is a psychiatric disorder with various symptoms
and is often accompanied by unexplained painful somatic symp-
toms. In patients with somatic symptoms, especially in primary
care, depression is frequently overlooked. On the other hand,
psychiatrists do not pay enough attention to somatic or pain
symptoms in patients with depression. Depression can precede
pain or pain can precede depression, forming a linked dyad shar-
ing common mechanisms (Blackburn-Munro and Blackburn-
Munro, 2001; Chou, 2007). As argued by Torta and Munari
(2010), depression may reduce the pain threshold and sensitize

pain perception. Conversely, chronic pain may lead to an altered
emotional state and finally to depression.

The concept of pain has changed dramatically over the last 30
years. As knowledge and understanding of pain have increased,
the concept has gradually morphed from a one-dimensional
concept to a multi-dimensional concept. In 90th Melzack (1999,
2001) postulated the existence of a pain neuromatrix, which
can be thought of as a genetically determined neural network
that is significantly modulated by stress, affective and cognitive
processes (Iannetti and Mouraux, 2010). The pain neuromatrix
is an integration of sensory, interoceptive, affective, and cognitive
components and the resulting experience of pain is always depen-
dent on their interactions (Klossika et al., 2006; Wiech et al., 2008;
Simons et al., 2014). Various studies particularly emphasize the
relationship between pain and emotions (Rhudy, 2009; Kamping
et al., 2013). In addition, pain is affected by endogenous opioids,
and the endocrine, immune and autonomic systems (Blackburn-
Munro and Blackburn-Munro, 2003; Chapman et al., 2008).

This network is constantly under the control of many other
factors including the state of attention, anxiety, and expectation;
previous experience, learning, personality traits, cultural effects,
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etc., play important roles. Therefore, we can rationally assume
that neuroplastic and cognitive processes have critical roles as
links to emotional processes associated with patient suffering.

We will summarize intersections between chronic pain and
depression mechanisms at different levels of complexity, i.e., brain
networks (default mode network), neurotransmitter systems and
neuronal plasticity. We will demonstrate that both chronic pain
and depression can lead to stable changes in brain structure and
function and that these changes are manifested in the patient’s
experience, emotion and cognition. There is high comorbidity
between chronic pain and depression in severe disorders and there
is also a clear link between chronic pain and depression at the level
of experience. Chronic pain can induce depression and depression
can manifest as pain. In this study we suggest that the association
between depression and chronic pain is not just at the level of
experience, there may also be a common neural substrate, which
could be therapeutically manipulated to improve overall quality
of life for patients with both conditions.

DEFAULT MODE NETWORK AS A MECHANISM OF SELF-REFERENCE,
NODAL POINT OF DEPRESSION AND CHRONIC PAIN
Neither pain, nor depression exists as an independent phe-
nomenon per se; they are highly subjective inner states, created by
our brain and formed by our experience, cognition and emotional
arousal. The default mode network is a network of interact-
ing brain regions and subsystems that show consistently greater
activation during “resting” states compared to external, directed
tasks (often referred as “task-induced deactivation”) (Shulman
et al., 1997). The brain regions involved in these self-referential
processes are inversely correlated with the fronto-parietal regions
that are typically associated with cognition (Fox et al., 2005).

The default mode network consists of a set of regions in
the cerebral cortex—medial prefrontal cortex, posterior cingulate
cortex and connected ventral precuneus, medial temporal lobes,
and the superior frontal and parietal cortices. The default mode
network has an important role in the representation of a per-
son’s mental state and “internal mentation”, i.e., the introspective
mental activities spontaneously emanated by the human brain
(Andrews-Hanna, 2012). Such “self-referential thoughts” are nec-
essary to perceive the inner bodily or mental states—including
pain and depression.

Self-referential processes have been repeatedly shown to be
abnormal, and self-focus is increased in people suffering from
depression (Lemogne et al., 2012). Moreover, it has been shown
that increased self-focus in depressed individuals may be a predic-
tor of major depressive episodes and chronic depression (Nolen-
Hoeksema, 2000). Grimm and her colleagues demonstrated that
abnormally increased negative self-attribution, as a hallmark of
increased self-focus in major depressive disorders, might be medi-
ated by abnormal neural activity in subcortical-cortical midline
structures linked to the default mode network (Grimm et al.,
2009, 2011).

There is increasing evidence that the default mode network has
a pivotal role in neuronal activity underlying major depressive
disorders (Greicius et al., 2007; Xueling et al., 2012; Zhu et al.,
2012; Guo et al., 2013; Wenbin et al., 2013) and also in late-life
depression (Alexopoulos et al., 2012; Andreescu et al., 2013) and

therefore it could serve as a potential biomarker of depressive
disorders. Considering the very high relapse rates of patients after
a major depressive episode, Li et al. (2013) hypothesized that
abnormal default mode network connectivity might persist even
after recovery. They have suggested that default mode network
functionally dissociates into two subsystems—connectivity in the
posterior sub-network is normalized after antidepressant treat-
ment, whereas there was persistent abnormal connectivity in the
anterior sub-network.

The above mentioned observations are in accordance with
the findings of Marchetti et al. (2012) who propose specific
imbalances in the default mode system which could represent a
residual neural “depressive scar” that was affected by the severity
of previous depressive episodes; it was also suggested that it could
be used as a predictor of future depressive episodes.

Chronic pain is associated with changes in brain physiology
and anatomy. It has been suggested that neuronal activity under-
lying subjective perception of chronic pain may be divergent
from the activity associated with acute pain. Some studies have
indicated that chronic pain can also affect cortical areas unrelated
to pain (Apkarian, 2008; Cauda et al., 2012; Hashmi et al., 2013).

Prolonged experience with chronic pain represents a form of
emotional learning, shifting from sensory to hedonic neuronal
circuits (Farmer et al., 2012). Chronic pain is often accompanied
by cognitive and behavioral impairment and decreased quality
of life. Increased anxiety, depression and sleep disruption are
manifested as an affective association of chronic pain. Moreover,
clinicians often observe that these additional effects deepen the
patient’s suffering and the effects persist even after the pain is
reduced by therapy and the source of nociceptive activity has
disappeared (Mansour et al., 2013).

Various studies emphasize the complexity of chronic-pain
processes that affect large circuits and stimulate extensive reorga-
nization of cortical function and structure (Apkarian et al., 2009;
Apkarian, 2011).

Some authors propose that the structural impairments that
accompany chronic pain can also influence functions of the
default mode network. Baliki and his colleagues demonstrated
that patients suffering from chronic back pain displayed reduced
deactivation of various default mode network regions during a
simple visual attention task, even though the performance of the
patient group and control were the same (Baliki et al., 2008).
Similar results were obtained in studies by Tagliazucchi et al.
(2010). It is important to point out that these studies demon-
strated that alterations of the default mode system, in chronic-
pain patients, might influence brain mechanisms responsible for
processing information unrelated to pain.

Napadow et al. (2010) demonstrated alternating levels
of intrinsic connectivity within multiple brain networks in
fibromyalgia, which is a central chronic pain syndrome associated
with widespread and spontaneously fluctuating pain. This study
showed greater connectivity in the default mode network and in
the right executive attention network (in contrast to the default
mode network, in which the fronto-parietal executive attention
network is involved in cognitive processing associated with work-
ing memory and attention). It suggests that fibromyalgia pain
might be mediated by alternating activity levels in the central
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nervous system (CNS) (hyperexcitability) more than by periph-
eral pathological sensations.

A study by Loggia et al. (2013) revealed that greater clinical
pain in patients with chronic low back pain at baseline was
associated with greater connectivity between the default mode
network and insula (brain region involved in pain processing)
and decreased connectivity between the default mode system
and the pregenual anterior cingulate cortex (involved in brain
inhibition). Moreover, baseline pain correlates positively with the
level of connectivity between the default mode network and the
right insula; while increased clinical pain, induced by physical
maneuvers, is correlated with changes in this connectivity. These
results suggest that resting default mode connectivity may also
encode the severity of clinical pain.

More and more evidence indicates that chronic pain can, at
some point, become a sensation that is spontaneous and inde-
pendent on any external stimuli. Therefore, the default-mode-
network perspective could offer fresh insights into the study of
chronic pain. Moreover, since the default mode network is deeply
involved in self-referential processes and subjective experience, it
could represent a nodal point that is common for both chronic
pain and depression.

NEUROPLASTICITY
Neuroplasticity involves molecular, cellular and synaptic pro-
cesses that modify connectivity between neurons and neuronal
circuits. They are modulated by behavioral, sensory, cognitive
and emotional experience, and are also influenced by pathological
states and chronic pain or depression. It is important to stress
that transient, but repetitive functional changes induced by pain
or depression can lead to more permanent changes. Accordingly,
long-lasting interference with the normal activity of the default
mode network could initiate plastic changes that could lead to
irreversible structural and functional changes of the default mode
network.

Patients suffering from serious disorders are under chronic
stress, associated with a loss or change in social status, loss of
positive expectations, feelings of discomfort, etc. This emotional
situation induces a spiral of complaints and stresses mediated
by neuronal changes which in turn can lead to alterations in
other brain functions and structure. Stress is a common bio-
logical denominator connecting patient suffering on the one
hand, and emotion, cognition and neuroplastic substrates on the
other hand. Stress profoundly affects synaptic form and function
(Popoli et al., 2011; Sandi, 2011). Stress is also a well-accepted
etiological factor in depression.

Stress induces the release of glucocorticoids (GC) that sig-
nificantly impact hippocampal functions with the potential to
enhance or suppress neuroplastic processes. Stress gives rise, by
means of the limbic system and activation of the reticular forma-
tion, to increased production of corticotropin-releasing hormone
(CRH). A feedback loop from the periphery is maintained by
the inhibitory effects of GC on CRH production. This feedback
involves several types of glucocorticoid receptors, located mostly
inside the hippocampus. Overproduction of CRH leads to over-
production of ACTH and, later on, to overproduction of GC.
Such a situation occurs after a hippocampal lesion or during

chronic stress. Stress also leads to a reduction in brain derived
neurotrophic factor (BDNF)—one of the most predominant neu-
rotrophic factors in the adult brain—in the hippocampus and
increases it in the amygdala (Höschl and Hajek, 2001; Finsterwald
and Alberini, 2013; Hayley and Litteljohn, 2013). While there
is strong evidence linking BDNF to stress and depression, other
neuronal growth factors are also involved, most notably glial cell-
line derived neurotrophic factor (GDNF) and nerve growth factor
(NGF; Hayley and Litteljohn, 2013).

Stress modulation of synaptic plasticity is mediated via acti-
vation of mineralocorticoids and GC receptors and exert direct
effects on neurons and glia cells and also increase glutamate
release in the prefrontal cortex, hippocampus and amygdala
(Sandi, 2011). It has been shown that elevated levels of corticoids
influence learning processes (Bodnoff et al., 1995). Stress events
also disrupt long term potentiation in the hippocampus (Shors
et al., 1997), which is a key structure for declarative memory
(Hölscher, 1999). Pre-clinical and clinical studies have demon-
strated that stress and depression can lead to reductions in the
total volume of the adult hippocampus. These structural changes
may not necessarily be permanent. The degree of volume reduc-
tion can provide information regarding treatment effectiveness or
response to treatment (Arnone et al., 2013; Hayley and Litteljohn,
2013).

Repeated stress also produces alterations in brain plasticity in
animal models; however, the relevance of hippocampal changes
to behavioral changes is still matter of debate. For example,
the granule cells of the dentate gyrus are significantly affected
via a decreased rate of neurogenesis following prolonged stress
(Radley and Morrison, 2005). In contrast, chronic antidepressant
treatment up-regulates hippocampal neurogenesis, and there-
fore could block or reverse the atrophy and damage caused by
stress. Some studies have also demonstrated that neurogenesis is
required for the actions of antidepressants in behavioral models
of depression (Warner-Schmidt and Duman, 2006).

The hippocampus is a target for the effects of GCs and stress,
which in turn, could influence its ability to regulate the HPA
axis. Chronic GC administration at artificially high levels induces
apical dendritic retraction and debranching in rat CA3c pyrami-
dal neurons (Woolley et al., 1990; Watanabe et al., 1992), while
longer exposure to GC results in more substantial hippocampal
damage, such as neuron death, gliosis, and atrophied perikarya in
the principal layers, most notably in the CA3c region (Sapolsky,
1985). Repeated stress exerts effects similar to GCs on dendritic
remodeling in the CA3. One key feature of prolonged stress is the
change in dendritic spine number and morphology of hippocam-
pal formation (medial prefrontal cortex). Such structural synaptic
changes may be compensatory in response to glutamatergic and
calcium-induced toxicity in these neurons during prolonged peri-
ods of stress. Since repeated stress also induces apical dendritic
retraction in the CA3, this could have significant consequences for
the total synaptic population. In contrast, antidepressants oppose
dendrite atrophy and increase apoptosis markers induced by stress
in the hippocampus (Silva et al., 2008).

Corticoids affect various neurotransmission systems. They
potentiate efflux and inhibit re-uptake of glutamate and
increase N-methyl-D-aspartate (NMDA) receptor expression.
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Furthermore, they decrease expression of neurotrophic factors
(Smith et al., 1995) and decrease activity of the GABA-ergic
system. Glutamate influenced activity of NMDA receptors and
the concomitant decrease in GABA-ergic inhibition leads to cal-
cium influx, followed by depolymerization of cytoskeletal pro-
teins, autolysis and eventually neuronal death (Höschl and Hajek,
2001).

With regard to stress induced structural and functional
changes in the hippocampus, in particular reduced hippocampal
volume, recent studies have indicated reductions in neurogenesis
as well as changes in glial density and reductions in the complexity
of dendritic arbors that participate in the volumetric decrease
(Hayley and Litteljohn, 2013). Alterations in neurobiological
properties can result in faulty communication between the hip-
pocampus, amygdala and cortex, which gives rise to disturbed
processes of emotionality (Carballedo et al., 2011). However,
future studies are needed to assess the potential contribution of
volumetric changes in default mode.

The negative effects of stress on hippocampal synaptic plas-
ticity can be reversed by GC antagonists and monoamine antide-
pressants (Holderbach et al., 2007). Chronic stress can also affect
the expression of AMPA and NMDA subunits and various synap-
tic proteins (Silva et al., 2008), while antidepressant treatment
opposes these changes (Martínez-Turrillas et al., 2007; Barbon
et al., 2011). Chronic stress promotes pyramidal dendrite retrac-
tion in the medial prefrontal cortex by the mechanism of NMDA
receptors (Martin and Wellman, 2011). Additionally, tianep-
tine, an selective serotonin reuptake inhibitor (SSRI) drug with
unexplained antidepressive effects, modulates NMDA receptor
function in the hippocampus (Kole et al., 2002). Similarly, some
studies point to the antidepressive effects of NMDA antagonists
(Berman et al., 2000; Zarate et al., 2006; Li et al., 2010). In
addition, monoamine systems that represent typical targets for
antidepressants are also required for plasticity modulation under
stress.

While an obvious logical link between synaptic plasticity and
cognition exists, less well understood is the potential for altered
synaptic plasticity to disrupt emotional memory, which may be
relevant regarding mood disorders. Regardless, the prefrontal
cortex-hippocampus-amygdala circuits are likely dysfunctional in
depression (Marsden, 2013). It has been suggested that this leads
to decreased cognitive control of emotion, resulting in persistent
negative emotional reactivity (Murrough et al., 2011).

Stress-induced neurobiological cascades could represent a
critical common pathway underlying the biological and psy-
chological characteristics of the default mode of patients suf-
fering from serious disorders. The neuroplasticity hypothesis of
depression shows decreased synaptic plasticity in hippocampal
circuits and elevated synaptic plasticity in emotional networks
including the amygdala (Nissen et al., 2010). Moreover, reduced
hippocampal volume may correlate with impairment of cognitive
functions in patients with a major depressive disorder (Frodl
et al., 2006). There is a huge body of evidence demonstrating
the neuropsychological and cognitive deficits associated with
depressive disorders. Such deficits have been found in various
areas including attention, information processing, memory, ver-
bal fluency, executive functions and psychomotor speed (for

review see Austin et al., 2001; Castaneda et al., 2008; Lee et al.,
2012).

Although the clinically beneficial effects of antidepressants are
well known their direct impact on cognitive (intellectual and
psychomotor) functions in less understood. The clinical effects
of antidepressants on cognitive functions, both in healthy vol-
unteers and in patients, were reviewed in papers by Amado-
Boccara et al. (1995) and Gorenstein et al. (2006). In 2008,
Monleon et al. extensively reviewed the effect of antidepressants
on memory in animal models. When assessing the cognitive effect
of antidepressants in subjects suffering from depression, it is, in
theory, necessary to separate the specific effects on cognition from
overall clinical improvement. Another methodological difficulty
may be discrepancies between subjective assessments of one’s
own state and results from neuropsychological testing (Amado-
Boccara et al., 1995).

Monleón et al. (2008) proposed that memory traces should
be understood not only as an individual experiences, but also
as genetic and epigenetic phenomena. From this point of view,
each neural system has its own memory and antidepressants can
affect each of these systems. Antidepressants may promote new
memories (new neuronal patterns) at the same time that they
impair older ones (Monleón et al., 2008).

Strong arguments for the role of antidepressants in promotion
of new “memory” traces, through neurogenesis, suggest the role
of neurotrophic factors in the etiology of depression and its
treatment. Both acute and chronic stress decrease levels of BDNF
expression in the hippocampus and conversely, chronic (but not
acute) administration of most classes of antidepressants increase
BDNF expression in the hippocampus (Nestler et al., 2002).

The pathophysiology of major depressive disorders could also
involve GDNF, which plays a role in the development and func-
tion of hippocampal cells. GDNF is a neurotrophic factor in the
transforming growth factor-b-family (Michel et al., 2008; Wang
et al., 2011).

Increasing numbers of studies have demonstrated the signif-
icant role of neurotrophic factors in the transmission of both
of physiologic and pathologic pain. Neurotrophins (including
BDNF and NGF) can act as a pathogenic pain mediator and
are known to be increased in several painful conditions. When
administered, they lead to pronounced mechanical and thermal
hyperalgesia (Obata and Noguchi, 2006; Siniscalco et al., 2011).
BDNF is part of synaptic plasticity and central sensitization in
a spinal cord. It contributes to the development and contin-
uation of neuropathic pain by activation of NMDA receptors
(NR2B-containing NMDA) in the dorsal horn (Geng et al.,
2010). Melemedjian et al. (2013) emphasized the role of protein
kinases as essential mediators of the maintenance of a centralized
chronic pain state. Molecular mechanisms of chronic pain, as with
neuronal changes in depressive states, parallel memory engram
encoding in the CNS.

However, the above mentioned role of BDNF in depression
and chronic pain is even more complicated by the fact that BDNF
may have antidepressive or pro-depressive functions, depending
on the brain area and circuits (Racagni and Popoli, 2008). Berton
et al. (2006) have shown that infusion of BDNF into the nucleus
accumbens exerts a pro-depressive-like effect in rodent stress
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models and blockade of BDNF function in the nucleus accumbens
exerts antidepressant-like effects.

A more integrated approach to chronic pain and depression
could facilitate a more efficient therapy. For example the animal
model of antidepressant activity supports the hypothesis that
impaired cognition is an element of depression and treatment
with drugs enhancing cognitive performance can help alleviate
depression (Knapp et al., 2002). Therapeutic strategies focused on
modulation of synaptic plasticity and biological pathways com-
mon for stress and pain might prove useful for developing novel
treatments for those suffering from cancer pain and associated
diseases such as depression.

Emotional distress is significantly higher in patients with
chronic pain. Pain and depression, especially associated with
tumors, can lead to serious mental and physical stress in patients
(Rokyta et al., 2009). Pain is conceptualized as chronic stress and
coping strategies play an important role in those experiencing
cancer pain. Poor coping strategies may lead to a worsening
of pain which will lead to an increase in depression. A recent
study, among patients with metastatic breast cancer, found that
both pain and obsessing over pain exacerbated depression (Badr
and Shen, 2014). On the other hand, patients with lung cancer
using a repressive coping style (an effort to inhibit negative
feelings through an overly positive view of life) reported lower
pain intensity and lower levels of depression (Prasertsri et al.,
2011). In the short-term point, this technique may represent a
convenient strategy, but for the long-term, repressive coping is not
an efficient mood-regulation strategy since it can intensify anxiety
dysfunction (Geraerts et al., 2012).

Pain suffering is closely related to psycho-neuro-
immunological changes (Rittner et al., 2008); treatment
with antidepressants has been shown to normalize immune
parameters (Neveu and Castanon, 1999; Rokyta et al., 2009). This
integrated treatment could also help increase the patient’s overall
quality of life, going beyond the specific clinical target.

COMMON NEUROBIOLOGICAL MECHANISMS OF PAIN AND
DEPRESSION
Pro-inflammatory cytokines such as IL-6, IL-1β and TNF-α
may directly modulate neuronal activity in the peripheral and
CNS (Ozaktay et al., 2006). Proinflammatory cytokines modu-
late hippocampal neurogenesis and therefore they can affect the
mood. An increased production of proinflammatory cytokines
has repeatedly been described in depressive patients (Maes et al.,
1997; Connor and Leonard, 1998; Müller, 2013; Bai et al.,
2014). Cytokines such as IL-1β, TNF-α and IFN-γ seem to
contribute to the pathophysiology of depression by stimulating
the hypothalamic-pituitary-adrenocortical axis (Rosenblat et al.,
2014), thus activating monoamine reuptake (Raison et al., 2009),
and decreasing production of serotonin through increased activ-
ity of indoleamine-2,3-dioxygenase (IDO; Müller and Schwarz,
2007).

A meta-analysis performed on patients meeting the DSM
criteria for major depression has shown higher concentrations
of the proinflammatory cytokines TNF-α and IL-6 in depressed
subjects compared to control subjects (Dowlati et al., 2010).

Similar associations between depression and C-reactive protein
(CRP), IL-6, and, to a lesser extent, IL-1 have been found in
patients with cardiac disease or cancer (Howren et al., 2009). A
recent study by Breitbart et al. (2014) demonstrated an association
between depression and IL-6, but not with other cytokines, in
patients with pancreatic cancer. Moreover, IL-6 was not signif-
icantly associated with other measures of psychological distress
(anxiety and hopelessness) or with symptoms of distress (pain,
fatigue, and sleep quality).

Evidence supports the possibility that peripheral inflammatory
responses manifest themselves in the CNS in a process known as
neuro-inflammation. Therefore the treatment of depression with
anti-inflammatory drugs looks like a promising way of targeting
more mechanisms. Two individual studies (Müller et al., 2006;
Nery et al., 2008) and one meta-analysis (Na et al., 2014) have
shown that adjunctive celecoxib combined with antidepressants
produced a rapid-onset antidepressant effect and was more effec-
tive than placebo combined with antidepressants.

In the pathophysiology of pain, cytokines cause hyperalgesia,
reduce the pain threshold, sensitize afferent nociceptive neurons
and increase the frequency of discharges in nociceptive A-delta
and C fibers. All these factors contribute to central sensitization,
which is manifested by secondary hyperalgesia and/or allodynia
(Zhang and An, 2007).

In inflammatory pain, IL-1β increases the cyclooxygenase-
2 (COX-2) dependent production of prostaglandin E2 (PGE2),
calcitonin gene-related peptide (CGRP; Samad et al., 2001; Neeb
et al., 2011) and substance P (Jeanjean et al., 1995), all are
factors that induce hypersensitivity. On the other hand, exper-
imental results demonstrate that the neuropeptides substance
P and CGRP induce nociceptive sensitization by enhancing IL-
1β production in keratinocytes (Shi et al., 2011; Wei et al.,
2012).

Celecoxib was the first COX inhibitor with well-defined COX-
2 specificity (Tindall, 1999). In animal studies it has been shown
that inhibition of spinal COX-2 not only reduces prostaglandin
production but also endocannabinoid breakdown (Telleria-Diaz
et al., 2010) and expression of purinergic P2X3 receptors in the
dorsal root ganglia (Wang et al., 2010). These results provide
evidence that the pain suppressive effects of COX-2 inhibitors may
be mediated either by the endocannabinoid system or by down-
regulation of receptors for ATP or both.

Neurotransmitter systems that are used to control pain overlap
with those which are considered to be the main pathophysi-
ological mechanisms in depressive disorders, i.e., serotonergic,
noradrenergic, and glutamatergic systems.

It has been repeatedly demonstrated, in depressive patients,
that there are decreased levels of serotonin metabolites in the
cerebrospinal fluid, particularly in patients after suicide attempts
(Asberg et al., 1976; Jokinen et al., 2009; Chatzittofis et al., 2013).
Tryptophan depletion (a method of lowering brain serotonin,
used as a model of depressive disorders) not only worsens depres-
sive symptoms (Fields et al., 1991; Booij et al., 2005; van Steen-
bergen et al., 2012) and also can increase the sensation of pain
(Schwarz et al., 2003; Supornsilpchai et al., 2006; Wei et al., 2010).
The system of antinociception operates primarily through sero-
tonin 5-HT1A and 5-HT2 receptors; the stimulation of 5-HT3
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receptors, which are found in the periphery, has pronociceptive
effects (Campbell et al., 2003).

However, conflicting results follow from both experimen-
tal and clinical observations after identical intravenous routes
of application of similar doses of 5-HT3 antagonists. While
tropisetron, studied in a human model of acute pain induced by
intracutaneous electrical stimulation, led to significant analgesic
effects (Bandschapp et al., 2011); ondansetron was ineffective in
suppression of mechanical allodynia and spontaneous ongoing
pain in peripheral neuropathy (Scott et al., 2006; Tuveson et al.,
2011).

The SSRI, fluoxetine, which is widely used in the treatment
of depression, also has anti-inflammatory properties. Experimen-
tal data have shown that fluoxetine inhibits lipopolysaccharide-
induced release of nitric oxide (NO) and PGE2 in murine serum
(Su et al., 2012) and NO and PGE2 production by connective
tissue cells (Yaron et al., 1999).

Although SSRIs are less potent for treatment of chronic pain,
paroxetine, due to its inhibitory effect on P2X4 receptors, was
found to be effective in suppressing tactile allodynia in a neuro-
pathic pain model in rats (Nagata et al., 2009).

Dysfunction of the noradrenergic system is another patho-
physiological characteristic of depression. Noradrenaline levels
are decreased, especially in patients who react positively to treat-
ment with noradrenaline reuptake inhibitors (Booij et al., 2003).
Conversely, depletion of noradrenaline can cause a relapse of the
disease (Delgado and Moreno, 2000; Ruhé et al., 2007). In connec-
tion with pain, the mechanism proposed for the analgesic effect
of antidepressants is the strengthening of descending serotonergic
and noradrenergic systems of antinociception by inhibiting the
re-uptake of serotonin and noradrenalin and increasing their
availability in the spinal cord. Many experimental and clinical
studies with clonidine or medetomidine have demonstrated that
the antinociceptive effects of noradrenaline are mediated by α2–
adrenoceptors (Kawasaki et al., 2003; Grosu and Lavand’homme,
2010; Blaudszun et al., 2012).

The effect of some antidepressants, especially in neuropathic
pain, can also be mediated via the opioidergic system, however,
the opioid system appears to be involved in the mechanism of
action of antidepressants that only have anti-hyperalgesic action
(clomipramine and milnacipran), but not in those with stronger
antinociceptive effects such as duloxetine (Wattiez et al., 2011).
In a recent study by Bohren et al. (2013), a novel mechanism
of antidepressant action was described. They demonstrated that
the peripheral nervous system was essential for the anti-allodynic
effects of nortriptyline in animal models of neuropathic pain, and
acted peripheral β2-adrenoceptors and local inhibition of TNFα

production.
Beside these neurotransmitters, substance P is another

molecule which participates in the modulation of pain. Substance
P is a mediator of C fibers and contributes to central sensiti-
zation, depending on the activity of the noradrenergic system.
If noradrenergic neuronal activity or the levels of noradrenaline
decrease, the increased release of substance P is expressed as
hyperalgesia (Jasmin et al., 2002). Depressed patients also had
elevated levels of substance P and its level correlated with the
severity of clinical symptoms (Bondy et al., 2003).

The dopaminergic system, in terms of pain, has received much
less attention, although stimulants like amphetamine or metham-
phetamine are highly effective analgesics (Yamamotová et al.,
2011; Yamamotová and Šlamberová, 2012). Pain is modulated by
D2 receptors, particularly within the mesolimbic dopaminergic
system and the nucleus accumbens, hence in the “reward system”
of the brain (Franklin, 1998; Altier and Stewart, 1999; Wood,
2006).

Both in chronic pain and depression hyperalgesia can results
from central sensitization as a consequence of plastic changes in
the nervous system. Activation of glutamate NMDA receptors is
an essential step in both initiating and maintaining central sen-
sitization, also called the “wind-up” phenomenon (Latremoliere
and Woolf, 2009). A study by Klauenberg et al. (2008) demon-
strated, for the first time, a considerably enhanced wind-up ratio
in depressive patients that was independent of ongoing pain.
Wind-up is a physiological process in the spinal cord mainly
caused by temporal summation of C-fiber evoked responses that
generate a progressive increase in activity of second-order neu-
rons. Consequently, wind-up is increased in some processes with
enhanced spinal cord excitability. Ketamine, the non-competitive
NMDA receptor antagonist, prevents the wind-up phenomenon
and suppresses not only pain but also depression. It acts rapidly
and is effective for treatment-resistant patients (Dowben et al.,
2013). A recent study showed that a single intravenous dose of
ketamine improved depression in 64% of patients within 24 h of
administration (Murrough et al., 2013). However, evaluation of
antidepressant response showed that not all patients respond to
ketamine treatment and that the duration of the antidepressant
effect varies across studies (Browne and Lucki, 2013; Sos et al.,
2013; Gálvez et al., 2014).

Although the precise mechanisms underlying its antidepres-
sant effects are not fully known, acute administration of ketamine
increases BDNF levels in the rat hippocampus. The increase of
hippocampal BDNF levels induced by ketamine might also be
necessary to produce a rapid onset of antidepressant action in rats
(Hayley and Litteljohn, 2013). It should be noted that ketamine
also induces rapid and potent anti-inflammatory effects that can
be relevant to its antidepressant potential (Hayley and Litteljohn,
2013).

ARE ANTIDEPRESSANTS MORE THAN ADJUVANT
ANALGESICS?
A number of studies have demonstrated frequent co-occurrences
of depression and pain, as well as their additive effects in several
domains of quality of life in oncological patients (Kroenke et al.,
2010). However, the question remains: How do antidepressants
affect chronic pain and what is the mechanism of action? Over
the last few years we have performed two pilot studies concerning
the efficacy of antidepressant treatment in patients with chronic
cancer pain and non-cancer pain (Rokyta et al., 2009). Antide-
pressants were indicated in both groups of patients either for
psychiatric comorbidity (depression) and/or neuropathic pain.
None of the patients had been treated with antidepressants before
entering the study.

The investigation started with 40 patients; 20 non-oncological
patients and 20 oncological patients. The most frequent diagnosis
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FIGURE 1 | Pain intensity (visual analogue scale) at the end of
treatment of patients with chronic nonmalignant and malignant pain
treated with antidepressants (black columns) and patients treated
without antidepressants (white columns). Antidepressants marginally
reduced pain in cancer patients Kruskal-Wallis non-parametric test
(KW-H(1,11) = 2.9, p = 0.08; KW-H: Kruskal-Wallis non-parametric test)
(Adopted from Rokyta et al., 2009).

in the non-oncological group was low back pain and failed
back surgery syndrome. Oncological patients were diagnosed
as follows: breast carcinoma, carcinoma of the prostate gland,
urinary bladder and kidneys, orofacial cavity and larynx, uterus,
gastrointestinal tract and pancreas, lung cancer and leukemia.

Therapy for both groups of patients consisted, most often,
of administration of non-steroidal anti-inflammatory drugs and
tramadol. As necessary, the above mentioned drugs were used in
combination with: opioids, anti-epileptics, antidepressants (flu-
oxetine and tricyclic antidepressants).

Although there was no difference in the intensity of pain
in non-oncological patients with respect to adjuvant therapy
with antidepressants, the surviving oncological patients that used
antidepressants reported lower pain intensity than oncological
patients not taking antidepressants (Figure 1). Despite the small
number of patients, it is interesting that out of 10 patients treated
with antidepressants, survived seven, while out of 10 patients
not treated with antidepressants, only three patients survived.
However, further research with homogeneous diagnostic groups
is needed to establish and confirm the observed relationships.

Another our finding was that chronic pain patients taking
antidepressants had, regardless of diagnosis, higher levels of
gamma globulin compared to patients not treated with antide-
pressants (Rokyta et al., 2009; Figure 2). A similar observation
was described by Van Hunsel et al. (1996) who followed patients
with depression and found, as we did, that depressive patients
have low levels of gamma globulin, which rose significantly, after
antidepressant treatment. The fact that immune and endocrine
systems are closely related in patients with cancer even at the time
when patients were informed about their diagnosis was confirmed
by a negative correlation between cortisol and CD4 lymphocytes
and a positive correlation between cortisol and CD3 lymphocytes.

FIGURE 2 | Gamma globulin levels in patients with chronic
nonmalignant and malignant pain associated with antidepressant
treatment. In both groups, patients treated with antidepressants had
higher levels of gamma globulin: in non-oncological patients only marginally
(KW-H(1,20) = 2.7, p = 0.09), in oncological patients significantly higher
(KW-H(1,18) = 7.0, p = 0.008) (Adopted from Rokyta et al., 2009).

Moreover, patients with a malignant diagnosis had lower cortisol
level than patients with a benign diagnosis (Křikava et al., 2007).

Some research observations indicate that depressed patients
treated with antidepressants undergo a normalization of immune
parameters (Neveu and Castanon, 1999). Normalization of serum
cortisol was shown in patients with severe chronic pain treated
with opioids (Tenant and Hermann, 2002). From these clinical
studies, it is not possible to conclude whether antidepressants
and/or opioids have a direct effect on the immune and endocrine
system or whether their supposed effects resulted from improved
mood.

Opioid peptides are found in many leukocyte subpopulations
including lymphocytes, monocytes, and granulocytes circulating
in the peripheral blood. Neurokinin substance P is one of many
factors that influence migration of opioid-containing leukocytes.
NK1 receptor antagonists seem to act peripherally by directly
inhibiting the recruitment of opioid containing leukocytes to
sites of inflammation (Rittner et al., 2008). Although opioids are
frequently used for the treatment of severe pain in patients with
cancer, chronic morphine treatment can also have serious nega-
tive effects on tumor growth. Morphine stimulates angiogenesis-
dependent tumor growth via stimulation of endothelial NO and
COX-2 production (Gupta et al., 2002). Administration of cele-
coxib together with morphine in murine breast cancer model
not only prevented promotion of angiogenesis, tumor growth,
metastasis and mortality but also led to better analgesia than
with morphine or celecoxib alone (Farooqui et al., 2007). Similar
potential therapeutic effects were observed for lumiracoxib by Fox
et al. (2004) in a model of bone cancer pain in rats, which were
attributed to its anti-hyperalgesic activity.

Other antidepressants have also been studied in animal mod-
els of cancer. For example, Fang et al. (2012) found that in
vivo chronic mirtazapine treatment inhibited tumor growth and

Frontiers in Behavioral Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 99 | 7

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Nekovarova et al. Common mechanisms of pain and depression

prolonged the survival of colon carcinoma-bearing mice. The
IFN-γ levels in tumors of mice treated with mirtazapine were
significantly higher, while TNF-α expression was lower than in
untreated mice.

On the other hand, antidepressant pretreatment with
desipramine or fluoxetine increased metastasis formation in mice
with melanoma, shortened survival, decreased splenocyte anti-
tumor natural killer cell cytotoxicity (in vitro), and IFN-γ pro-
duction (Kubera et al., 2011).

One question arising from our study concerns whether the
higher mortality seen in the tumor pain patients without antide-
pressants was a coincidence or whether it suggested some pro-
tective function associated with antidepressants. Meta-analyses
from human and animal studies have concluded that several
antidepressants have a significant positive association with cancer
protection, while others have shown a negative association; the
effect seems to be dependent on the type of cancer and the type
of antidepressant (Steingart and Cotterchio, 1995; Lussier et al.,
2004; Walker et al., 2011, 2012; Bielecka and Obuchowicz, 2013;
Jahchan et al., 2013).

Knowledge regarding the role of antidepressants in cancer
progression or suppression is essential for choosing the proper
treatment and clinicians who wish to use antidepressants in
cancer treatment need to take into consideration the type of
antidepressant, type of tumor, type of anticancer therapy, as well
as the patient’s age, phase of cancer and others factors (Bielecka
and Obuchowicz, 2013).

It is not possible to unambiguously declare that only one
source of the depressive state in oncological patient has a direct
relation between depression and pain. There are many different
aspects to oncological diseases and their treatment. Depressive
states may be caused not only by pain, but also by decreased
quality of life, worsening of cognitive functions (Baudino et al.,
2012), difficulties accompanying oncological treatment such as
gastrointestinal distress and fatigue, and poor life perspectives.

However, we assume that both depression and pain, even
though they are experienced in highly subjective ways, are deeply
grounded in the neuronal and physiological substrate and there-
fore can, even if only indirectly, interact on this basis. Chronic
pain may alter different systems, including the emotional state
and gradually lead to depression, conversely depression affected
cognition and perception and may lead to pain sensitization
(Torta and Munari, 2010).

CONCLUSION
Our working hypothesis supposes that depression and chronic
pain produce common negative neuroplastic changes in the CNS.
The positive impact of antidepressants would result in a reduction
of these pathological cellular/molecular processes and in the ame-
lioration of symptoms, but it may also increase survival times and
quality of life of patients with chronic cancer pain. The benefits
go beyond prolongation of lifespan because they are also linked to
an improvement in the quality of life of treated patients. These
effects represent the most important aspects of antidepressant
treatment. After careful validation of both experimental and
clinical results, this approach could be ready for clinical practice

in a relatively short time, especially in oncology, algesiology and
psychiatry.
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Perinatal effect of methamphetamine on nociception in adult Wistar rats. Int. J.
Dev. Neurosci. 29, 85–92. doi: 10.1016/j.ijdevneu.2010.08.004
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