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Parkinson’s disease (PD) is associated with several non-motor symptoms that may 
precede the diagnosis and constitute a major source of frailty in this population. The 
digital era in health care has open up new prospects to move forward from the qualitative 
and subjective scoring for PD with the use of new wearable biosensors that enable 
frequent quantitative, reliable, repeatable, and multidimensional measurements to be 
made with minimal discomfort and inconvenience for patients. A cross-sectional study 
was conducted to test a wrist-worn device combined with machine-learning processing 
to detect circadian rhythms of sleep, motor, and autonomic disruption, which can be 
suitable for the objective and non-invasive evaluation of PD patients. Wrist skin tem-
perature, motor acceleration, time in movement, hand position, light exposure, and 
sleep rhythms were continuously measured in 12 PD patients and 12 age-matched 
healthy controls for seven consecutive days using an ambulatory circadian monitoring 
device (ACM). Our study demonstrates that a multichannel ACM device collects reliable 
and complementary information from motor (acceleration and time in movement) and 
common non-motor (sleep and skin temperature rhythms) features frequently disrupted 
in PD. Acceleration during the daytime (as indicative of motor impairment), time in move-
ment during sleep (representative of fragmented sleep) and their ratio (A/T) are the best 
indexes to objectively characterize the most common symptoms of PD, allowing for a 
reliable and easy scoring method to evaluate patients. Chronodisruption score, mea-
sured by the integrative algorithm known as the circadian function index is directly linked 
to a low A/T score. Our work attempts to implement innovative technologies based 
on wearable, multisensor, objective, and easy-to-use devices, to quantify PD circadian 
rhythms in huge populations over extended periods of time, while controlling at the same 
time exposure to exogenous circadian synchronizers.

Keywords: Parkinson’s disease, non-motor symptoms, sleep, wearable, circadian rhythms, wrist temperature, 
machine learning

inTrODUcTiOn

Advances in sleep and circadian monitoring over the last 20  years have been limited in part by 
the lack of availability of objective tools capable of quantifying sleep and circadian function in a 
continuous, simple, and non-invasive manner. The development of wearable multisensor devices and 
mathematical procedures for big data processing to accurately quantify sleep and circadian disrup-
tion (CD) is taking on an important role in personalized medicine by detecting healthy living habits 
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and helping to diagnose and treat several pathologies, including 
Parkinson’s disease (PD) (1).

Sleep–wake rhythm and circadian system status are currently 
analyzed by actimetry, combined with specific algorithms to 
determine the timing and intensity of movements, which are used 
to infer sleep parameters. This procedure can be useful to detect 
circadian sleep disorders, but cannot determine sleep and circa-
dian disorders accurately due to the low specificity of actimetry 
to detect immobile wake states while laying in bed and the high 
influence of external conditions and volition itself (2). In addition 
to actimetry, newer techniques being developed include wrist 
temperature (WT) and light exposure sensors to measure daily 
fluctuations in sleep propensity, environmental synchronization 
and autonomic balance (3–5).

While the core body temperature falls before going to sleep 
and begins to rise in anticipation of waking up, skin temperature 
increases prior to bedtime and drops just after awakening, in 
close association with vasomotor skin tone under autonomic 
control (3–6). In fact, WT combined with actimetry have 
been validated in both healthy subjects and patients with sleep 
pathologies against sleep logs (3) and PSG (7), respectively, 
to determine sleep and CD under normal living conditions. 
Validation studies have also demonstrated a close association 
between evening WT increase and dim light melatonin onset 
(DLMO), suggesting that this rhythm can be a simpler way of 
measuring circadian phase than melatonin quantification (4). 
Furthermore, the WT rhythm has a high endogenous com-
ponent and it is under genetic influence (8, 9), reflects sleep 
propensity (6, 10), and is also important for the dipping pattern 
of blood pressure (11).

Parkinson’s disease is a common neurodegenerative disorder 
characterized by motor symptoms including tremors, rigidity, 
postural instability, and bradykinesia. However, it is accompa-
nied or preceded by non-motor symptoms that can constitute 
a major source of frailty in this population (12). Sleep–wake 
disturbances in PD is one the most frequent and disabling 
non-motor symptoms (13) and can be secondary to several 
factors: reemerging motor symptoms during the night, mood 
disorders, medication, nocturia, parasomnias, and REM sleep 
behavior disorder (RBD); but it can also be due to direct circa-
dian rhythm disruption caused by the neurodegeneration itself. 
The suprachiasmatic nucleus seems to be relatively intact in PD, 
but its neural pathways and the surrounding hypothalamus are 
more affected (14, 15). Furthermore, in early patients with PD, 
there is evidence for alterations in melatonin levels and in the 
expression of molecular clock genes (16). Other signs of circa-
dian impairment in PD are a non-dipping pattern in arterial 
blood pressure and core body temperature rhythm impairment 
(17, 18).

This combination of motor and non-motor symptoms, the 
peculiarity of clinical manifestations for each PD patient, disease 
evolution and treatment effectiveness assessment make person-
alization a must, and multisensor devices based on ambulatory 
circadian monitoring techniques thus constitute a unique tool to 
bring e-health closer to this group.

Ambulatory circadian monitoring (ACM), a procedure 
proposed by Ortiz-Tudela et  al. (3), is supported by wearable 

technology which combines four categories of variables useful 
for tracking complex neurological pathologies such as PD, since:

(1) wrist temperature rhythm is expected to be impaired in PD, 
as there is an abnormal thermoregulation in the distal skin, 
with an impaired vasoconstriction response to adrenergic 
stimulus (19, 20), as well as alterations in normal blood pres-
sure pattern dipping (11).

(2) motor-related variables (integrated acceleration, time in move-
ment and static hand position), indicate both wake states and 
cardinal motor symptoms of PD disease, and are more depend-
ent on the subject’s habits than they are on the circadian clock. 
They exhibit a lower genetic influence than the temperature  
rhythm (8).

(3) hand position variability. This indicates changes in body 
posture when the patient is lying in bed, which could become 
impaired along with the evolution of PD.

(4) exposure to light, the main circadian synchronizer (21), 
exposure can also counteract some circadian and motor 
symptoms in PD (22).

By combining these major and subrogate variables imple-
mented in a ACM device, clinicians and researchers can have 
access to an immediate map of motor, autonomic and sleep cir-
cadian rhythms, which are useful for improving research, clinical 
diagnoses and treatment in patients with PD.

Considering how quality of life is affected in PD, there is an 
urgent need to develop and validate wearable technologies to make 
e-health available to this population of patients, and objectively 
track sleep, motor, autonomic disruption, and lifestyle habits. 
Thus, the aim of this work is to test a wrist-worn device for ACM, 
intended to personalize the evaluation of the multiple symptoms 
that manifest in neurodegenerative diseases, such as PD.

MaTerials anD MeThODs

study Population
A cross-sectional study was undertaken with 24 adult volunteers: 
12 patients with PD, who meet the diagnostic criteria according 
to the UK Brain Bank (PD group) and 12 healthy controls, who 
match the same demographic characteristics (control group). 
PD patients were selected by convenience sampling from among 
those who attended the Movement Disorders Unit of the Hospital 
Universitario Virgen de las Nieves, Granada (HUVN). Controls 
were recruited from among healthy non-complainers who were 
the relatives of students from the University of Murcia. Both groups 
were encouraged to maintain their normal life style during the 
week of study and were monitored under free-living conditions. 
All participants received appropriate information about the study 
and signed an informed consent form before their inclusion. The 
study was approved by the Ethics Committee of the University of 
Murcia and HUVN. All subjects gave written informed consent 
in accordance with the Declaration of Helsinki. One patient was 
longitudinally recorded three times, before, 1  week after, and 
6 months after starting, using levodopa-carbidopa intestinal gel 
(LCIG) therapy, an effective treatment for advanced PD.
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FigUre 1 | Overview of the fifteen variables recorded during a full week by the ACM device on the wrist of a Parkinson’s disease patient, as processed by 
Kronoware 10.0 software (Kronohealth SL). From top to bottom: events; sleep (orange bars); skin temperature (red) in °C; visible, blue, and infrared light (orange, 
blue and red) in luxes; three axis tilt (blue) °/epoch; integrated tilting changes, acceleration and time in movement (dark blue); and partial acceleration of each axis 
(green). Gray bars indicate “time off” from wearing the device while the yellow bar represents the inferred sleep periods. Asterisks indicate variables selected for the 
circadian and sleep characterization of Parkinson’s disease patients.
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All patients were treated with l-dopa and/or dopaminergic 
agonists. Exclusion criteria were: diagnosis of dementia or severe 
psychiatric co-morbidity, fever, or infection in the previous 
2  weeks, current smoking habit or alcohol abuse, diagnosis of 
diabetes mellitus for ≥10  years or undergoing insulin treat-
ment for ≥5  years, clinical polyneuropathy, endocrinopathies 
(thyroidopathies or suprarenal gland diseases), arterial disease 
(Raynaud’s, thoracic outlet syndrome), treatment with medica-
tions for excessive daytime sleepiness (i.e., modafinil), treatment 
with adrenergic agonist/blockers, or a connective tissue disease 
that could affect skin temperature. None of the patients were 
shift workers or engaged in transmeridian travel during the 
previous month. The same exclusion criteria were applied to the 
control group, in addition to meeting criteria for mood disorders, 
anything more than mild symptoms on any depression scale and 
psychopharmacological drugs use.

Trained interviewers assessed the severity of PD according to 
the Hoehn and Yahr stage. The patients’ clinical disability was 
assessed according to the Unified Parkinson’s Disease Rating Scale 
(UPDRS) and subscales. PD patients also completed non-motor 
and sleep assessments using the second version of the Parkinson’s 
Disease Sleep Scale (PDSS-2), and the Parkinson’s Disease Ques-
tionnaire. Subjects in both groups completed the Pittsburgh Sleep 
Quality Index (PSQI) and the Epworth Sleepiness Scale. The 
Levodopa equivalent dose (LED) was determined in PD patients 
using standardized protocols.

ambulatory circadian Monitoring Device
A small, watch-like device for Ambulatory Circadian Monitoring, 
“Kronowise 3.0” (Kronohealth SL, Spain, Figure 1), was placed 
on the less affected hand in PD patients or the non-dominant 
hand in controls, in order to reduce possible masking by motor 
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activity on circadian variables. Wrist skin temperature, triaxial 
motor acceleration, wrist posture, light exposure in three spectral 
bands (visible, blue of 460–490 nm and infrared, >800 nm) and 
an electronic log (event marker) were continuously recorded at 
10 (acceleration), 1 (skin temperature and light exposure), or 
0.033 Hz (1 reading per epoch) for wrist position. The data were 
then processed and saved into 30 s epochs for 1 week. A total of 
23,000,000 of raw data were internally recorded and processed, 
and 230,000 of them saved in a txt file for further analysis.

The Kronowise 3.0 device is provided with:

(1) a temperature sensor, with a precision of  ±  0.1°C at 25°C 
and a resolution of 0.0635°C, housed in a separate chamber 
to avoid thermal interference from the battery and electronic 
components, with a metal plate in contact with the skin.

(2) A triaxial calibrated MEMS-accelerometer with a linear and 
equal sensitivity along the three axes, with a range of ± 2 g and 
a sensitivity of 0.001 g. The y axis of the device was aligned 
with the long axis of the radius; the x-axis corresponds to the 
radial–ulnar axis and the z-axis to the palmar–dorsal axis. 
The default sampling frequency was set at 10 Hz. From the 
accelerometer output, a total of five groups of motor-related 
variables were recorded: (a) tilt of the x, y, and z-axis, as the 
angle between each axis and the horizontal plane, expressed 
in °, which allows posture changes to be determined dur-
ing conditions of immobility (i.e., sleep); (b) the sum of 
the degrees of change between the current and previous 
axis position; (c) the area under the curve, integrating the 
composite acceleration values per epoch; this variable 
indicates movement velocity and strength, but not the dura-
tion or frequency; (d) time in movement, as the cumulative 
time above a very low threshold (0.05 g) in periods of 0.1 s, 
in which a movement on any of three axis was detected;  
(e) the area under the curve for individual x, y, and z accelera-
tion, in order to discriminate among types of motor activity 
(i.e., walking, running, typing, etc.).

(3) Three light sensors, on the front, determine visible, infrared, 
and blue light, with a range of between 0.01 and 43,000 lux, 
16 bits of resolution, an internal auto-setting according to 
the luminance level, and suppression of flicker at 50/60 Hz. 
The infrared sensor was sensible to radiation from 800 to 
1,070 nm, whereas the blue light detector was equipped with 
a Gaussian filter, which eliminates all visible radiation below 
440 and over 500 nm. These wavelengths match the sensitiv-
ity of melanopsin retinal ganglion cells (460–480 nm). The 
infrared/visible light ratio makes it possible to determine the 
light source (i.e., natural, fluorescent, infrared, incandescent, 
or LED light).

Communication with the ACM device was established using 
Kronoware 10.0 software (Kronohealth SL, Spain) via a USB port. 
This software allows visual inspection before analysis to eliminate 
artifacts and the calculation of basic circadian and sleep para-
meters. Four calibrated Kronowise devices were used in this study, 
with minimal differences in recorded variables between them 
(coefficient of variation < 4%). Data were converted into a text file 
to be analyzed by the chronobiological software “Circadianware,” 

implemented on the on-line Kronowizard platform (https://
kronowizard.um.es/, University of Murcia).

From the data provided by the ACM device, we selected the 
following variables (Figure 1):

(a) wrist skin temperature (WT) (as a variable representative of 
autonomic balance at the skin vessel level).

(b) tilt of the x-axis, which oscillates between 0 for maximum 
horizontality, and 90 for maximum verticality.

(c) acceleration of movement.
(d) time in movement, calculated as the time, in periods of 0.1 s, 

in which a movement on any of three axes was detected. This 
information is particularly useful to discriminate between 
sleep and wake states.

(e) visible light exposure, to determine the intensity and timing 
of the main synchronizing input to the circadian system.

Data analysis
To characterize the circadian pattern, a non-parametric analysis 
was performed as previously described (3, 6), including:

– interdaily stability (IS) over different days. This varies between 
0 for Gaussian noise and 1 for perfect stability, where the 
rhythm repeats itself exactly, day after day.

– intradaily variability (IV), which indicates rhythm fragmen-
tation; its values oscillate between 0 (when the variable is 
unfragmented) and 2 (Gaussian noise).

– the mean value and timing of the ten consecutive hours with 
the lowest values (L10V and L10T, respectively) of WT and 
sleep probability, and the mean value and timing of the 10 
consecutive hours with the highest values (M10V and M10T, 
respectively) of acceleration, time in movement and light 
exposure. All these indexes score the extent of activation dur-
ing the day.

– The mean value and timing of the five consecutive hours with 
the lowest values (L5V and L5T, respectively) of acceleration, 
time in movement and light exposure, and the mean value 
and timing of the five consecutive hours with the highest 
values (M5V and M5T, respectively) of WT and sleep proba-
bility. All these indexes score the restfulness of the sleep 
period.

– Relative amplitude (RA) refers to the difference between VM10 
and VL5, divided by the difference between the two extreme 
percentiles, Pc95th M10V- Pc5th L5V for acceleration, time in 
movement and light exposure, with the percentiles extracted 
from a population of 90 healthy adults enrolled and using 
the KW3 device (https://kronowizard.um.es/, University of 
Murcia). The reference values for acceleration were: 40 and 1 
for the 95th and 5th percentiles, respectively; 200 and 2 for time 
in movement; and 3 and 0 for light (log lux). Reference values 
were rounded to the upper and lower integer for the Pc95th 
and Pc5th, respectively. Since skin temperature and sleep prob-
ability exhibit an inverse pattern to that of motor activity and 
light exposure, their RA was referred to the difference between 
M5V and L10V, considering the 95th percentile for M5V and 
the 5th percentile for L10V (M5V-L10V)/(Pc95th M5V-Pc5th 
L10V). In this case, the reference values for skin temperature 
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TaBle 1 | Participant’s characteristics.

characteristics Parkinson’s disease 
(n = 12)

controls 
(n = 12)

Age (years), mean ± SEM
Range

65.83 ± 2.67
54–78

59.41 ± 1.9 
(p = 0.062)

53–72
Sex (F/M) 3/9 3/9
BMI, mean ± SEM

Range
27.26 ± 0.57

24.7–30.8
25.9 ± 0.8 
(p = 0.31)
20–30.45

Disease duration (years), mean ± SEM
Range

12 ± 1.8
3–20

Levodopa equivalent dose (mg), 
mean ± SEM

Range

1,152.5 ± 134.49
400–1,800

Hoehn and Yahr (median) stage 
2/2.5/3

3/3/6

UPDRS total, mean ± SEM
Range

43 ± 4.65
12–68

UPDRS II, mean ± SEM
Range

9.5 ± 1,41
3–17

UPDRS III, mean ± SEM
Range

25.75 ± 3.18
8–45

UPDRS IV, man ± SEM
Range

5.42 ± 1.28
1–13

PDQ-39, mean ± SEM
Range

48 ± 9.1
11–105

PDSS-2, mean ± SEM
Range

19.27 ± 3.28
3–39

ESS, mean ± SEM
Range

12.1 ± 1.37
4–17

7.17 ± 0.61 
(p < 0.001)

3–10
PSQI, mean ± SEM

Range
7.6 ± 1.18

3–14
5.50 ± 0.54 
(p = 0.043)

3–8

F, female; M, male; BMI, body mass index; UPDRS, Unified Parkinson’s Disease 
Rating Scale and subscales; PDQ-39, Parkinson’s Disease Questionnaire; PDSS-2, 
Parkinson’s Disease Sleep Scale 2; ESS, Epworth Sleepiness Scale; PSQI, Pitssburgh 
Sleep Quality Index.
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were 35–30° C and 1 and 0 for sleep probability, at the 95th and 
5th percentiles, respectively.

– The M10V acceleration/L5V time in movement (A/T) ratio.

circadian Function index (cFi)
Circadian function index was calculated to provide general infor-
mation about the robustness of the circadian system status of an 
individual (3). It is computed as the average of IS, IV, and RA, 
but IV values are previously inverted and normalized between 
0 and 1. Thus, a CFI close to 1 indicates a high amplitude, non-
fragmented and stable rhythm.

sleep Detection
To automatically detect sleep and wake periods, the TAP algorithm 
(3) was calculated using the Kronowizard website (https://kro-
nowizard.um.es/, University of Murcia). As described by Ortiz- 
Tudela et al. (3), the TAP algorithm is based on the intra-subject 
normalization of three signals: wrist skin temperature, time of 
movement and variability of the x-axis tilt per epoch. Since the 
skin temperature rhythm is the inverse of that for motor activity 
and position variability, WT was reversed, and thus the maximum 
of the three daytime variables was considered. The arithmetic 
mean of the three normalized variables was then calculated in 
such a way that a 0 value indicated complete rest (sleep), while 
1 corresponded to wakefulness and movement. An epoch was 
scored as sleep when TAP was under a default threshold, previ-
ously validated by PSG (7).

Weekly actograms were generated for all variables studied, as 
well as mean waveforms for every subject and group.

statistical analysis
Data were processed using Microsoft Office Excel 2007. Circadian 
parameters and PD rating and sleep scales were tested for normal 
distribution using the Shapiro–Wilk test. All circadian parameters 
were normally distributed except the ratio A/T. Statistical analyzes 
(repeated measures ANOVA followed by post  hoc Bonferroni 
comparisons for paired samples and correlation analysis using 
the Pearson’s correlation for normally distributed values and 
Spearman for not normally distributed values) were performed 
using SPSS v20.0 (SPSS, Inc. Chicago, IL, USA). Spearman cor-
relations were applied for associations between A/T ratio and 
CFI score. Bonferroni adjustment was used to set alpha to 0.008 
(0.05/6) for multiple comparison correction. Pearson correlations 
were used to evaluate the association between motor acceleration 
during daytime (M10V) and PD rating and sleep quality scales. 
Again, Bonferroni correction was used and alpha set to 0.008. To 
graphically describe data from PD and control subjects, the Box 
and Whisker plot method was employed, with the aid of Orange 
Canvas© software [University of Ljubljana, Slovenia; (23)]. All 
data were expressed as mean ± SEM.

Machine-learning analysis
All subjects included in our study were classified into PD or 
C classes using circadian and sleep parameters and by means 
of machine-learning analysis. This analysis was carried out 
using the Orange Canvas© software [University of Ljubljana, 
Slovenia; (23)].

Attribute selection was guided by the expert criterion of 
including indexes that provide complementary information to 
one another. Therefore, we aimed to select indexes representative 
of motor activity and sleep quality. This selection was performed 
according to the criterion of Information Gain (based on entropy 
reduction) statistics.

The discretization method used in our study was the Minimum 
Description Length (24). This is a top-down technique than 
recursively splits the attribute maximizing information gain, until 
the point where a new split would not add any new information 
to the predictions.

The model was evaluated through 10-fold cross-validation, 
calculating the sensitivity, specificity, accuracy, F1 score and ROC 
curve for PD discrimination.

resUlTs

The characteristics of the patients included in the PD group are 
detailed in Table 1, with ages ranging from 44 to 78 years, and 
no significant differences in age or gender as compared to the 
control group. The mean disease duration in the PD group was 
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FigUre 2 | Wrist temperature, light exposure, motor acceleration, time in movement, and 24 h sleep recordings representative for two subjects monitored in our 
study, one with Parkinson’s disease (PD) (a) and a healthy control (B). Note the high nocturnal sleep fragmentation, diurnal sleep, and low motor acceleration of PD. 
Skin temperature is shown as a red line, visible light in blue, acceleration in green, time in movement in dark red and wrist position (X tilt) in bluish green. Sleep is 
shown in orange bars. Sensor retrival is indicated by a pink bar.
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12 ± 1.8 years (range of 3–20 years). None of the participants were 
previously diagnosed with restless legs syndrome or periodic 
limb movement disorder and only one patient suffered from mild 
obstructive sleep apnea.

The ambulatory circadian monitoring device allowed long-
term non-invasive recording, with minimal discomfort for the 
subject. During the 168 days of recording there were no lost data 
attributable to the device or device removal due to discomfort. 
From the fifteen variables originally recorded by the device, we 
selected five, as already stated, for PD characterization, due to their 
complementarity: skin temperature, acceleration of movement, 
wrist position, and time in movement (motor symptoms) and 
exposure to visible light (environmental synchronization). The 
integration of the information from these five primary variables 
in the modular TAP algorithm allowed us to infer sleep–wake 
states (Figure 2).

As shown in Figure 3, the WT rhythm of healthy controls 
and PD patients shared common characteristics, which repli-
cated the well-known daily rhythm already described in previ-
ous publications (3, 4, 6). In both groups, the WT increases 
just before bedtime, remains high and relatively stable during 
sleep and decreases upon awakening, with low and highly 
variable values during the active phase, and a secondary peak 
in the afternoon, associated with postprandial somnolence. 
On the contrary, exposure to light, acceleration and time in 
movement exhibits an inverse pattern, with lower values as 
sleep deepens.

However, PD patients show significant differences in all vari-
ables (Table 2). They exhibited flattened rhythms as a result of a 
significant reduction in nocturnal temperature (M5V, p = 0.023), 
sleep probability (M5V, p  <  0.001) and diurnal acceleration 
(M10V, p < 0.001), together with an increase in nocturnal time 
in movement (L5V p = 0.006). Actual sleep time (not considering 
sleep latency and wake after sleep onset) was significantly reduced 
in PD (5:45 ± 0:48 h in PD vs. 6:43 ± 0:24 h in C, p = 0.028). In 
fact, sleep was particularly impaired in the second half of the night, 
accompanied by early light exposure in the morning and increased 
motor activity (Figure 3). None of the circadian phase markers 
differences, including the midpoint of sleep probability (M5T), 
sleep temperature (M5T), acceleration (L5T), time in movement 
(L5T), or light exposure (L5T), were statistically significant.

As a measure of chronodisruption, different parameters have 
been calculated, providing information about complementary 
aspects characterizing a robust circadian system (Table 2): regu-
larity (IS), day–night contrast (relative amplitude), fragmentation 
(intradaily variability, IV), and the integrated score CFI. IS was 
lower in PD as compared to controls, both considering the mean 
of IS values for all variables (p  =  0.025) and in particular, for 
sleep probability (p < 0.001). Similarly, day–night contrast was 
also lower in PD, as indicated by the overall RA mean (p = 0.001) 
as well as by RA for acceleration (p < 0.001), time in movement 
(p  =  0.007) and sleep probability (p  =  0.000). Fragmentation 
(IV) was higher and statistically significantly for acceleration 
(p = 0.014) and sleep (p = 0.001) in PD.
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FigUre 3 | Twenty-four-hour mean waveforms of selected circadian variables in Parkinson’s disease patients (red line) and controls (blue line). (a) skin temperature, 
(B) acceleration, (c) movement duration, (D) light exposure, and (e) sleep probability. Values are represented as the mean ± SEM of 12 subjects for each condition 
recorded every 30 s during 7 days.
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Consequently, as a result of the impairment observed in PD 
in most chronodisruption markers, the integrated CFI score was 
significantly lower, both overall (p = 0.005) and for each particular 
variable (acceleration p = 0.002, time in movement p = 0.02, and 
sleep p = 0.001), with the exception of light exposure and WT, as 
no statistically significant differences were detected in these cases.

Thus, ACM provides direct information, allowing discrimina-
tion between PD and healthy subjects. Using the Orange Canvas 
information gain algorithm, the parameters that allow for a better 
differentiation between PD and control subjects in each variable 
category were: (a) WT value during sleep (M5V), a reference to 

autonomic control of skin vasodilatation; (b) daytime accelera-
tion (M10V), since it indicates motor impairment associated with 
bradykinesia; (c) time in movement during sleep (L5V), a marker 
of sleep quality and fragmentation; (d) nocturnal sleep (M5V), 
an index of restfulness; and (e) the M10V acceleration/L5V time 
in movement (A/T) ratio, which indicates day–night contrast in 
diurnal activity vs. quiet sleep (Figure 4).

However, and despite statistically significant differences in 
M5V for temperature between the PD and control subjects, great 
variability was observed among PD patients. While some of them 
exhibited low nocturnal temperatures, others still maintained WT 
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values similar to those of the healthy controls. Much less variabil-
ity was observed in daytime acceleration or in time of movement 
during the night. In fact, the cutoff threshold of 15.8 G/30 s for 
the integrated acceleration and 0.021 s/epoch for time in move-
ment makes it possible to discriminate most PD subjects from the 
control subjects (only 1 and 2 control subjects were misclassified 
as PD, using acceleration and time in movement, respectively) 
(Figure 5). Thus, the M10V acceleration/L5V time in movement 
(A/T) ratio was ultimately chosen as the best score to differentiate 
PD from controls and to characterize both motor impairment 
and sleep disturbance (two of the most common features in PD) 
based on movements during sleep.

The increase in A/T ratio was linked to a statistically significant 
higher CFI, a chronodisruption score (ranging between 0, highly 
chronodisrupted, to 1, a robust circadian system), which integrates 
in a single value the three main markers of a circadian healthy 
state, that it is, regularity, fragmentation and rhythm’s amplitude 
(Figure 6). Thus, CFI of WT (ρ = 0.532, p = 0.008), acceleration 
(ρ = 0.681, p < 0,001), time in movement (ρ = 0.621, p = 0.0012), 
sleep (ρ = 0.888, p < 0.001) and overall CFI (ρ = 0.792, p < 0.001) 
increased as A/T did, while CFI for light exposure (ρ =  0.363, 
p = 0.081) was not statistically correlated with A/T ratio.

Although the A/T ratio was able to discriminate between 
subjects with Parkinson’s and controls, and presented good asso-
ciations with CD markers (CFI), no significant correlations were 
found between A/T and PD rating scales or subscales (UPDRS, 
ρ = 0.157, p = 0.62; UPDRS II. ρ = −0.19, p = 0.55; UPDRS III, 
ρ = 0.41, p = 0.19; UPDRS IV, ρ = −0.34, p = 0.28) and sleep qual-
ity scores (PDSS, ρ = 0.12, p = 0.71; PSQI, ρ = −0.28, p = 0.37). 
However, statistically significant negative relationships were 
found between acceleration during daytime (M10V) and sleep 
quality scales (PDSS-2, ρ = −0.71, p = 0.008; PSQI, ρ = −0.74, 
p = 0.006). After Bonferroni’s correction for multiple compari-
sons, no other significant correlations between M10V and PD 
scales were observed (UPDRS, ρ = −0.59, p = 0.046; UPDRS II, 
ρ = −0.623, p = 0.03; UPDRS III, ρ = −0.32, p = 0.24; UPDRS IV, 
ρ = −0.638, p = 0.025).

In addition, we recorded the same patient three times through-
out the course of the study (Figure 7). A 61-year-old woman with 
advanced PD was monitored before (Figure  7A), 1  week after 
(Figure 7B), and 6 months after starting intrajejunal infusion of 
LCIG (Figure 7C), an advanced therapy to ameliorate her motor 
symptoms.

The patient experienced an improvement in motor symptoms 
and in sleep quality. As it can be observed, LCIG therapy dimin-
ished the extreme chronodisruption (Figure 7A) characterized 
by low skin temperature and fragmented sleep and activity 
rhythms, restoring a more regular, contrasted, and synchronized 
circadian pattern in all recorded variables (Figure 7B). Once the 
sleep period was consolidated after the levodopa treatment, sleep 
time was characterized by an increase in WT, along with a sharp 
and pronounced decrease in light exposure, acceleration, time 
in motion and variability in X tilt (Figure 7C). In addition, the 
position according to the x-axis of the device provides relevant 
information regarding postural changes throughout the night. 
The A/T ratio increased from 0.15 to 0.75 and 1.99, 1 week and 
6 months after the onset of treatment, respectively.
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FigUre 4 | Box plot representation of the distribution of most informative attributes selected according to the information gain procedure (Orange Canvas software) 
from complementary variables of Parkinson’s disease (PD) and healthy controls (C). The mean values are illustrated by the dark blue vertical line. The blue highlighted 
area indicates the complete SD of the mean, while the median is represented by a gray vertical line. The thin blue line indicates the area between the first (25%) and 
the third (75%) quartile, while the thin dotted line represents the entire range of values (from the lowest to the highest value in the data set for the selected 
parameter).
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DiscUssiOn

The findings presented here demonstrate the ability of a multi-
channel ACM device to monitor circadian rhythms and sleep, by 
collecting reliable and complementary information from motor 
(acceleration of movement and time in movement) and common 
non-motor rhythms (sleep and skin temperature) frequently 
disrupted in PD, with minimal discomfort for patients while 
they maintain their usual daily living activities. Acceleration 
during the daytime (indicative of motor impairment), time in 
movement during sleep (representative of sleep fragmentation) 
and their ratio (A/T) are the most frequent alterations we have 
found in PD. Chronodisruption measured by CFI [including IS, 
intradaily variability (IV) and day-night contrast], are directly 
linked to a low A/T score. The clinical scales used to evaluate 

sleep in Parkinson’s patients are also negatively correlated with 
motor acceleration during the day.

The ACM device complies with all the requirements proposed 
by the SBSM Guide to Actigraphy Monitoring for actimeters (25), 
and even goes one step further, overlooking the actigraphic limi-
tations by incorporating new sensors. Thus, ACM integrates new 
non-invasive measures, validated to predict circadian phase (4, 26),  
such as wrist skin temperature (WT), and blue, infrared, and full 
light spectrum. This, combined with the previously validated TAP  
algorithm, provides reliable information on sleep, circadian tim-
ing and chronodisruption.

In fact, WT shows a good correlation with the DLMO (4) and 
in combination with motor activity and body position, they have 
been validated by PSG to detect sleep–wake under normal living 
conditions (7) and in sleep pathologies, such as obstructive sleep 

https://www.frontiersin.org/Neurology/
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FigUre 5 | Decision trees for Parkinson’s disease (PD) and healthy controls (C) classification, using those attributes selected from the best discriminating variables 
and the categorical criteria used for its classification. The number of subjects correctly classified as PD (red box) or C (blue box) in showed inside each box, together 
with the cut-off point is the upper part of the box.
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apnea (27). The ACM device permits up to fifteen variables to 
be recorded for 3  weeks in 30-s epochs. From these variables, 
we selected the five most representative, which have already been 
validated in healthy subjects: skin temperature, acceleration of 
movement, time in movement, light exposure, and variability of 
wrist position. From these variables, a sixth one, sleep probability, 
was inferred using a TAP algorithm, as previously described (3).

Our results show a flattened circadian pattern in PD patients 
as compared to the robust rhythmicity detected in healthy con-
trols. This impairment was observed in most recorded variables 
and could promote a vicious cycle: a disrupted circadian system 
could contribute to the exacerbation of the clinical symptoms 
of PD patients and this, in turn, would induce greater chrono-
disruption (13).

Skin temperature exhibits a well-known circadian pattern 
determined by an underlying circadian rhythm in thermal 
regulation and by homeostatic adjustments to environmental 
and body temperature changes. Since the sympathetic nervous 
system is the main system responsible for the skin vasomotor 
changes mediating skin temperature, the impairment of the 
sympathetic innervation of blood vessels reported in PD (28, 
29) could be reflected in the skin temperature rhythm. In fact, 
our results show that WT decreased in PD during sleep, unlike 
in healthy subjects, whose temperature reaches maximum levels 
during the night. However, a great deal of variability was found, 
since some individuals show very low values in nocturnal and 
in 24-h mean temperature, while others are in the normal range 

(although in the lower part) that could reflect variability in sym-
pathetic innervation impairment. Lower temperature during 
sleep seems to be associated with greater sleep fragmentation, 
low sleep efficiency, shallow sleep (7), and a non-dipping blood 
pressure pattern (11); these are also circadian impairments 
commonly observed in PD patients (30). Sleep disturbances are 
among the most frequent non-motor symptoms in PD, with an 
incidence as high as 90% (13). Non-motor symptoms can antici-
pate the diagnosis of PD by many years (12), thus constituting a 
possible predictive signal.

Besides changes in skin temperature, sleep timing is also 
associated in PD patients with elevated nocturnal motor activity 
time, as has been previously reported (31–33). L5V of time in 
movement, but not L5V for acceleration, is the most discriminant 
isolated parameter to differentiate PD patients from healthy 
subjects. Re-emergent motor symptoms during night, a higher 
incidence in restless legs syndrome, RBD and nocturia could be 
responsible for fragmented sleep and longer time in movement 
in our PD group (13).

By contrast, indexes of diurnal motor activity, such as accelera-
tion integration (M10V), are especially lower in PD patients with 
respect to the controls. It has been published that diurnal motor 
activity is flattened overall in association with disease progres-
sion (34). These results may reflect the existence of a disrupted 
circadian rhythm in motor manifestations.

Considering that in our Parkinson’s patients, acceleration, 
apart from indicating motor symptoms, is most greatly affected 
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FigUre 6 | Correlations between M10V Acceleration/L5V Time in movement (A/T ratio) and the circadian function index (CFI), a marker of chronodisruption,  
for every circadian variable: wrist skin temperature (a); acceleration (B); time in movement (c); sleep (D); light exposure (e); and overall CFI (F). Red squares 
correspond to Parkinson patients while blue squares indicate healthy controls. Spearman’s correlation coefficient rho and its probability value is shown on the  
upper right of every panel. * indicates statistical significance after Bonferroni’s correction.
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during the daytime (with lower values), while time in movement 
(a marker of sleep quality) increases markedly during sleep time, 
the A/T ratio contributes to enhancing the differences and facili-
tates discrimination, constituting an objective score to differenti-
ate PD patients from controls. In fact, reduced nocturnal–diurnal 
contrast in motor activity with disease severity has previously 
been reported (33), and a ratio of night-time to daytime motor 
activity (in acceleration units) has been already proposed to 
distinguish between controls and PD patients (35). However, 
the predictive accuracy of this ratio (91.7%) is lower than that 

of the A/T ratio proposed here (100%). The combination of two 
complementary methods of measuring motor activity during 
rest and active phases constitutes, to our knowledge, a significant 
improvement in scoring the evolution of PD, over a procedure 
based solely on acceleration. Moreover, the use of this score for a 
particular patient, before and after LCIG therapy, shows how the 
disease evolves, in close association with subjective and objective 
improvements in sleep.

Circadian disruption or significant impairment of the ampli tude 
and synchronization between different rhythms and environmental 
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A B C

FigUre 7 | Actograms from ACM recordings of the same patient with advanced Parkinson’s disease, monitorized during 3 weeks: before (a), 1 week (B), and 
6 months (c) after levodopa-carbidopa intestinal gel (LCIG), treatment. Each recorded day is represented sequentially in the same row. Sleep is shown in orange 
bars, motor activity in blue, wrist position (X tilt) in green, skin temperature as a red line, and visible light in yellow at the top of each day. Note the progressive 
improvement of circadian rhythmicity in response to LCIG treatment.
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cues, has been related to a higher incidence and worsening of 
several pathologies, including metabolic syndrome, cognitive and 
affective disorders, cancer, accelerated aging, immunodepression, 
and cardiovascular disease, among others (36). Chronodisruption 
is common in many neurodegenerative diseases, such as Alzheimer 
disease and PD, and may contribute by itself to the biology of 
PD-associated neurodegeneration (17). Our results show that 
all CD indexes are severely affected in PD, including regularity, 
fragmentation, day and night contrast and overall circadian system 
scores, and in a way similar to that observed in the experimental 
model of Parkinsonism in rats (37).

Coinciding with previous results (17, 32), we confirm an 
increased intradaily variability in motor activity in PD that can 
be expanded to other variables, such as sleep, acceleration and 
time in movement, which presented lower regularity, high IV 
(an index of the rhythm’s fragmentation, which is also impaired 
in Alzheimer disease and aging) (38), and amplitude reduction. 

Reduced amplitude can result from circadian system impairment 
on three levels: the circadian pacemaker itself, synchronization 
by input signals or output pathways. Since the suprachiasmatic 
nucleus appears to be relatively conserved in PD, attention should 
be paid to input and output pathways. Impairment of anatomical 
and functional characteristics of the retina have been documented 
in PD, including dopamine deficiency and impairment of visual 
acuity and sensitivity contrast (39). Circadian input could be also 
impaired by inappropriate light-dark exposure, the main circa-
dian zeitgeber; however, we did not find any significant alteration 
in visible light exposure in PD with respect to healthy controls. In 
addition to exposure to a regular light–dark cycle, the robustness 
of the circadian system can be strengthened by consolidated and 
properly timed behavioral processes, such as physical activity 
and sleep through feedback mechanisms. In fact, the regularity 
of life habits facilitates synchronization of the circadian system 
and is, therefore, considered a protective factor against CD (40). 
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In addition, the fragmentation of sleep in PD patients could 
likely be responsible for a negative feedback on amplitude and 
synchronization of rhythms controlled by the central pacemaker 
and peripheral oscillators.

Output signals from the central pacemaker also appear to be 
affected in PD, as has been described for melatonin and cortisol 
secretion (16). Moreover, autonomic skin innervation (41) and 
distal skin temperature responses are also impaired in PD (20).

It is true that the reduced number of patients in this study 
makes it difficult to establish general conclusions about circa-
dian rhythms in PD with non-motor symptoms, such as wrist 
skin temperature and the implication of autonomic vasomotor 
impairment. However, the main objective of our work was not 
the validation of a cutoff criteria to discriminate PD from healthy 
subjects, but to show the viability of a new technology that allows 
an objective and multidimensional approach to evaluating the 
symptoms of this disease, in addition to highlighting the hetero-
geneous character of the symptomatology of PD.

There are others limitations to our study. The patients with 
PD are very heterogenous with respect to their age and the 
severity of their illness, which may explain the high variability 
among patients for some circadian rhythms, such as WT. We 
did not take into account the differences in anti-Parkinsonism 
drug treatments or hypnotic medication, which could influence 
sleep quality in several ways (42, 43). Although only one of our 
participants was previously diagnosed of obstructive sleep apnea, 
and none of them presented restless legs syndrome or periodic 
limbs movement disorder, they were not systematically evaluated 
by PSG, thus we cannot exclude completely this possibility.

Our work demonstrates the viability of new experimental 
technologies based on wearable, multisensor and easy-to-use 
devices that allow a personalized, objective and multidimensional 
approach to evaluating both motor symptoms and circadian 
rhythm impairments in PD, which are also valid for other neuro-
degenerative disorders. Most importantly, these devices make it 

possible to quantify a large number of participants over extended 
periods of time, i.e., while treatment takes effect, thus evaluating 
its effectiveness. Still, large-scale experiments combined with 
sophisticated signal processing and machine-learning algorithms 
will be necessary to elucidate whether chronodisruption is a con-
sequence of PD-specific neurodegeneration, or if it can promote 
the neurodegenerative process of PD.
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