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ABSTRACT
Background. Cholera, an acute enteric infection, is a serious health challenge in both the
underdeveloped and the developing world. It is caused byVibrio cholerae after ingestion
of fecal contaminated food or water. Cholera outbreaks have recently been observed in
regions facing natural calamities (i.e., earthquake in Haiti 2010) or war (i.e., ongoing
civil war in Yemen 2016) where healthcare and sanitary setups have been disrupted as
a consequence. Whole-cell oral cholera vaccines (OCVs) have been in market but their
regimen efficacy has been questioned. A reverse vaccinology (RV) approach has been
applied as a successful anti-microbial measure for many infectious diseases.
Methodology. With the aim of finding new protective antigens for vaccine devel-
opment, the V. cholerae O1 (biovar eltr str. N16961) proteome was computationally
screened in a sequential prioritization approach that focused on determining the anti-
genicity of potential vaccine candidates. Essential, accessible, virulent and immunogenic
proteins were selected as potential candidates. The predicted epitopes were filtered for
effective binding with MHC alleles and epitopes binding with greater MHC alleles were
selected.
Results. In this study, we report lipoprotein NlpD, outer membrane protein OmpU,
accessory colonization factorAcfA, Porin, putative and outermembrane proteinOmpW
as potential candidates qualifying all the set criteria. These predicted epitopes can offer
a potential for development of a reliable peptide or subunit vaccine for V. cholerae.

Subjects Bioinformatics, Drugs and Devices, Immunology, Infectious Diseases
Keywords Vibrio cholerae, Reverse vaccinology, Cholera, Peptide vaccine, Epitope prediction

INTRODUCTION
Vibrio cholerae is a prominent waterborne facultative pathogen which causes cholera
disease which causes extreme dehydration and loss of electrolytes in patients (Pal, 2014).
Strains of V. choleraO1 and O139 can be choleragenic. Further on, O1 serogroup is divided
into classical and El TOR biotypes (Finkelstein, 1996). Cholera is a notifiable endemic
disease in developing and underdeveloped countries (Charles et al., 2017; Chowdhury et
al., 2017; Qin et al., 2017; Noora et al., 2017). V. cholerae infections are a major factor with
estimated annual global mortality around >100,000 (Ali et al., 2012; Reilly, 2015). The
current seventh cholera pandemic is reported to be caused by El Tor biotype strains while
some regional epidemics have also been observed to haveV. cholerae El Ttor biotype strains
as causative agents (Karaolis, Lan & Reeves, 1995; Reidl & Klose, 2002; Levine et al., 1995).
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The toxigenic strains are capable of causing explosive outbreaks and epidemics in regions
with devastated or poor sanitary infrastructure as observed in Haiti in 2010 (Barzilay et
al., 2013; Jackson et al., 2013; O’Connor et al., 2011). Climate change and other factors have
been noted to gain increased significance in outbreaks (Chowdhury et al., 2017; Bertuzzo
& Mari, 2017). Recent outbreaks of cholera are a result of poor sanitation, environmental
pollution, natural and manmade disasters and unavailability of clean drinking water in
affected areas (Nelson et al., 2015; Muhjazi et al., 2017; Kennedy, Harmer & McCoy, 2017;
Hendriksen et al., 2011). The emergence and widescale spread of antibiotic resistance in the
last six decades has been a huge challenge (Marti, Variatza & Balcazar, 2014; Klontz et al.,
2014; Shakerian et al., 2017). Antimicrobial resistance has generally been a hindrance to
the effective therapy of infectious diseases for as long as antibiotics have been used (Mazel,
2006). Despite the fact that during cholera treatment the antibiotics are limited as an
adjunct to re-hydration, antibiotic usage has been observed to shorten the disease duration
by 50% (Roux et al., 2015).V. cholerae can also serve as reservoir for resistance mechanisms
for horizontal transmission, as it is capable enough to procure and spread the resistance
determinants via all forms of genetic transfer strategies (Gupta et al., 2016;Martinez-Urtaza
et al., 2008; Sedas, 2007; Barati et al., 2015). A potent cholera vaccine could be effective in
natural disasters or other humanitarian situations as it can provide immunity when given
preventively.

Concurrent strategies have been aimed at development of oral formulations capable
of imparting mucosal immunity. Few anti-cholera oral formulations were tested in
humans. An early study developed formulations comprising of cholera toxin B-subunit
and inactivated bacterial cells was tested from 1985 to 1989 in Bangladesh (Fournier &
Villeneuve, 1998). A recent clinical trial administered O-specific polysaccharide (OSP) to
human subjects and demonstrated anti-OSP and vibriocidal antibody responses (Islam
et al., 2018). In another study long-term efficacy and protection was assessed for killed
bivalent, whole-cell oral cholera vaccine in Haiti (Franke et al., 2018). This study reported
a decrease in the effectiveness of single dose oral vaccines in comparison to two doses
over the period of 4 years. Currently, various strategies have been employed to develop
live attenuated cholera vaccines. A recently published study reported development
of a genetically engineered V. cholerae O1 strain CVD 103-HgR as a live attenuated
vaccine (Kaper et al., 1994). A recently published Phase 3 clinical trial (NCT02094586) of
live oral cholera vaccine reported a 94% vibriocidal antibody seroconversion rate 6 months
post-vaccination (McCarty et al., 2018). This single dose cholera vaccine was developed
using attenuated recombinant Vibrio cholerae O1 vaccine strain CVD 103-HgR. This
clinical trial recruited over 3,000 adult volunteers with 90% more efficacy in comparison
to placebo group. One serious concern is regarding the safety of the vaccines, and similar
formulations had faced efficacy and performance issues (Charles et al., 2017; Richie et
al., 2000; Koelle et al., 2005). The possibility of horizontal gene transfer and reversion of
live attenuated vaccine forms back to wild types with virulence spectrum and antibiotic
resistance could aggravate the situation (Frey, 2007). Under special conditions, viral live
attenuated vaccines have been reported to result in adverse effects (Moro et al., 2011;
Lauring, Jones & Andino, 2010; Keller-Stanislawski et al., 2014).
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A reverse vaccinology (RV) approach is the vaccine development strategy in the
genomics era. This approach predicts vaccine candidates by screening genome and
proteome, evaluates using algorithms and computational tools for proteins with
best suitable properties as a potential vaccine agent (Rappuoli, 2000). In contrast
to conventional vaccine development strategies, RV strategy provides rapid vaccine
design and reduces the dependency on conventional animal testing based screening
for getting a potentially suitable candidate. A number of vaccines have been developed
for pathogens such as Streptococcus pneumoniae (Wizemann et al., 2001), serogroup B
Neisseria meningitides (MenB) (Pizza et al., 2000), Cryptosporidium hominis (Manque et al.,
2011) ,Mycobacterium tuberculosis (Betts, 2002), and Bacillus anthracis (Ariel et al., 2002).

This study is aimed at identification of extracellular and outer membrane proteins
that can serve as better antigen targets for V. cholerae. We report lipoprotein NlpD, outer
membrane protein OmpU, accessory colonization factor AcfA, Porin, putative and outer
membrane protein OmpW as potential candidates qualifying all the set criteria. These
predicted epitopes can offer a potential for development of a reliable peptide or subunit
vaccine for V. cholerae in calamities hit regions as preemptive preventive protection. This
is the first study to report vaccine target prediction using reverse vaccinology and reductive
screening approach against V. cholerae O1 biovar El Tor.

METHODOLOGY
We adopted our previously devised computational framework (Fig. 1) that includes three
comprehensive steps for prediction of prospective vaccine candidates for V. cholera as
described in detail (Rashid et al., 2017).
1. Pre-Screening of primary data

The steps involved pre-screening of primary data include retrieval of the V. cholerae
O1 (biovar eltr str. N16961) proteome from UniProt (Bairoch & Apweiler, 2000).
Subcellular localization was predicted using the primary sequences of the V. cholerae
proteome PSORTb V3.0 (Yu et al., 2010) and CELLO v2.5 (Yu, Lin & Hwang, 2004).
Database of Essential Genes (DEG) (http://tubic.tju.edu.cn/deg/) version 10.4 provided
the essentiality information of the proteins (Luo et al., 2014). The virulence check was
performed using the virulence factor database (VFdb) for identification of potential
virulence proteins (Chen et al., 2011). These steps were adopted to identify vital
virulence proteins and respective epitopes to be subjected to peptide vaccine discovery.

2. Screening of selected proteins
Screening of selected proteins was performed for their suitability of prospective
immuno-protective potential. The criteria included appropriate molecular weight
(<110 kDa estimated via ExPASy Compute pI / Mw Tool (Gasteiger et al., 2005)),
prediction of antigenic and virulence potentials, protein structural details and human
homologue search. The crystalline structures for these proteins were obtained from
structural database Protein Data Bank (PDB) (Bernstein et al., 1977) or developed using
the SWISS-MODEL server (Schwede et al., 2003) and interactions within the pathogen,
and with host proteins and cluster of orthologous groups COG were studied using
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Figure 1 Reverse vaccinology screening process overview. Reverse vaccinology approach based
computational framework for prediction of vaccine candidates for Vibrio cholerae O1 (biovar eltr str.
N16961) (Richie et al., 2000).

Full-size DOI: 10.7717/peerj.6223/fig-1

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) (Szklarczyk et
al., 2011).

3. Epitope Selection
In third step epitopes were predicted usingmultiple approaches via different algorithms
in order to obtain broad spectrum epitopes. The predicted epitopes were screened to
obtain epitopes capable of efficient binding to higher numbers of MHC alleles (Naz
et al., 2015). Continuous B-Cell Epitopes were predicted using BcePred server (Saha
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& Raghava, 2006). The BCPreds server was employed for prediction of 20-mer B-cell
epitopes (EL-Manzalawy, Dobbs & Honavar, 2008). ABCpred, an artificial neural
network based B-cell epitope prediction server, was also used for predicting B-cell
epitopes (Saha & Raghava, 2006). Default threshold values were used for each server.
Propred and PropredI servers were used to investigate epitope interactions with MHC
I and II alleles (Singh & Raghava, 2003), while antigenicity and IC50 calculations
were performed with the help of MHCPred (Guan et al., 2003). Using proteins’ three
dimensional epitopes were visualized using Discovery studio v4.1 (BIOVIA, 2015).
Finally sequences of selected proteins from other virulent strains were obtained from
members of V. cholerae NCBI Taxonomic group (TAXID: 666). The predicted antigenic
regions were analyzed via BioEdit Sequence Alignment Editor, for sequence divergence
against V. cholerae representative strains and consensus sequences were obtained for
respective vaccine candidate for inter-strain immune-protection against V. cholerae.

RESULTS
Primary data retrieval
We selected V. Cholerae O1 biovar El tor str. N16961 as a reference strain for
our vaccine prediction strategy. Unlike other prokaryotes, V. cholerae contains two
circular chromosomes. It is a unique biotype due to hemolysin production. Using
the virulence factor database (VFDB), proteomic data of virulent strain of V. Cholerae
was obtained. Genomic visualization of curated virulence factors was performed using
the server ‘Island Viewer 4: An integrated interface for computational identification and
visualization of genomic islands (http://www.pathogenomics.sfu.ca/islandviewer/), as
shown in Fig. 2 (Bertelli et al., 2017).

Subcellular localization of screened targets
Subcellular localization is the most critical screening criterion. Antigens exposed at the
surface are more accessible to immune system. We scrutinized proteins exposed at
pathogen’s surface with potential role as antibiotic resistance determinants. Proteomic
sequences were subjected to subcellular localization analysis which is a crucial step in
screening out potent vaccine candidates’ identification. The proteome was screened
based on subcellular location, number of transmembrane helices and minimum adhesion
probability. In total, 47 proteins (Table S1) were predicted as potential vaccine candidates
consisting of 21 outer membrane, 19 extracellular and seven periplasmic proteins as
shown in Fig. 3. These proteins had less than 1 transmembrane helices and an adhesion
probability greater than 0.51, the cut off value to assign a protein as an adhesin. Moreover,
these proteins showed no similarity to human proteins (Sachdeva et al., 2004).

The antigenicity scores were predicted using the VaxiJen v2.0 server to further refine the
selection. This software predicted antigenicity of proteins from FASTA-submitted amino
acid sequences based on their physiochemical properties. This feature is characterized
according to an antigenic score. Our Vaxijen analysis predicted 45 antigenic potential
vaccine candidates out of 47 proteins with antigenicity scores greater than 0.41. An
antigenicity score of over 0.40 indicates protein antigenicity (Doytchinova & Flower, 2007).
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Figure 2 V. Cholerae O1 El Tor Genomic Analysis for virulence and antibiotic resistance genes. Dark
and light purple dots represent the curated virulence factors and antibiotic resistance genes respectively, in
V. cholerae chromosome I (A) and chromosome II (B). The orange and blue bars represent the algorithms
used by server for prediction of genomic islands i.e., SIGI-HMM, IslandPath-DIMOB respectively. The
red bar represents the integrated results for all the methods used. The inner most circle indicates the GC
skew for both chromosomes. The figure was generated using IslandViewer 3 (http://www.pathogenomics.
sfu.ca/islandviewer/).

Full-size DOI: 10.7717/peerj.6223/fig-2

To be more specific, we selected proteins giving the antigenicity score equal to or greater
than 0.7. As a result we obtained five prioritized proteins (details in Table 1).

PPI INTERACTIONS AND COG ANALYSIS
The predicted proteins were studied for their potential biological roles and proteomic
interactions. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)
provides essential information regarding interactions of desired proteins (Szklarczyk et
al., 2010).

Intra-specie protein-protein interactions were calculated for the selected proteins
using STRING database online network analysis tools (Fig. 4). The STRING database
also provided the Cluster of Orthologous Groups (COG) analysis tools. COGs analysis
was conducted on the basis of protein sequence similarity and conserved domains in
comparison to reported proteins in the database.

For COG protein functional categorization, four out of the given five proteins fall into
‘‘outer membrane/membrane’’ group whereas 1 was identified as ATPase-coupled sulfate
with transmembrane transporter activity.

3D structures of prioritized vaccine candidates
Structural information is vital for proteinaceous targets before predicting immunogenic
domains. Availability of crystalline structures for the selected protein was checked in
experimental structural database Protein Data Bank (PDB) (Bernstein et al., 1978). One
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Figure 3 Subcellular Localization of Screened Targets. Screening process yielded total of 47 proteins as
potential vaccine candidates. Subcellular localization yielded after CELLO analysis (EC, extracellular; OM,
outer membrane; P, periplasmic).

Full-size DOI: 10.7717/peerj.6223/fig-3

Table 1 Details of predicted V. cholerae vaccine candidates based on genome sequence analysis.

Protein
accession

Protein name Localization Adhesin
Probability

Trans-
membrane
helices

Antigenicity Pfam
domains

Functional
discription

NP_230184.1 Lipoprotein NlpD Outer membrane 0.654 0 0.7878 PF01476 Membrane protein
NP_230282.1 Outer membrane

protein OmpU
Outer membrane 0.563 0 0.74 PF00267 Outer membrane

protein (porin)
NP_230492.1 Accessory coloniza-

tion factor AcfA
Outer membrane 0.550 0 0.7709 PF13505 ATPase-coupled sul-

fate transmembrane
transporter activity

NP_231488.1 Porin, putative Outer membrane 0.518 0 0.7463 PF13609 Outer membrane
protein (porin

NP_233253.1 Outer membrane
protein W

Outer membrane 0.640 0 0.7774 PF03922 Outer membrane
protein

crystalline structure available for protein NlpD (PDB id 2gu1) was retrieved. For other
selected proteins suitable templates were searched within PDB. Protein structures were
predicted using SwissModel server via homology modelling approach. 3D structures of the
Prioritized protein targets are given in Fig. 5.

Predicted prioritized vaccine targets
Epitope mapping
Peptide vaccines are more convenient and safer than the contemporary vaccines. As it
includes only the immunogenic epitopes rather than full three dimensional structures
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Figure 4 Protein–Protein Interaction Analysis. Prioritized protein targets were subjected to PPI assess-
ment using the STRING database. Interaction suggests involvement of OmpC and OmpW in flagellar de-
velopment (A) and adhesion (B).

Full-size DOI: 10.7717/peerj.6223/fig-4

obtained from pathogens. Immunogenic potential is primarily dependent on Major
Histocompatibility Complex (MHC) binding affinity. Thus predicting the epitopes with
higher binding potential for MHCs is necessary to design peptide vaccines (Naz et al.,
2015). The prioritized proteins were subjected to primary sequence based antigenic and
virulence epitopes prediction. Since there aremultiple algorithms for prediction of antigenic
epitopes, thus multiple servers were used for evaluation of selected vaccine candidates.
Primary sequences of the proteins were subjected to alignment independent antigenic
prediction based on physicochemical properties of proteins. Proteins having score >0.4
were considered antigenic. The resultant antigenic proteins were subjected to further
studies.

Out of the 47 predicted V. cholerae vaccine candidates, proteins with the antigenicity
score greater than 0.7 were filtered through VaxiJen 2.0. Only the epitopes with P value
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Figure 5 3D structures of prioritized proteins. (A) OmpW, (B) NlpD, (C) OmpU, (D) OmpC, (E)
AcfA. Predicted and crystal structures of prioritized proteins. NlpD had predetermined crystal structure in
PDB which was retrieved (PDB id 2gu1). For the rest of the proteins, homology models were predicted us-
ing the Swiss Model server.

Full-size DOI: 10.7717/peerj.6223/fig-5

greater than 0.9 were selected for each protein and antigenicity scores were further
analyzed specific for all epitope sequences. MHCPred was used for antigenicity and IC50

calculation for the selected epitopes (Guan et al., 2003). MHCPred covers a range of
different human MHC allele peptide specificity models. These include Class I (HLA-
A*0101, HLA-A*0201, HLA-A*0202, HLAA*0203, HLA-A*0206, HLA-A*0301, HLA-
A*1101, HLAA*3301, HLA-A*6801, HLA-A*6802 and HLA-B*3501) and Class II (HLA-
DRB1*0101, HLA-DRB1*0401 and HLADRB1* 0701) alleles (Guan et al., 2003). Moreover,
MHC II epitopes were studied in detail using EpiDOCK that predicts binding to the 23
most frequent human MHC class II proteins: 12 HLA-DR, 6 HLA-DQ and 5 HLA-DP
proteins. These alleles cover more than 95% of the human population. EpiDOCK is freely
accessible at: http://epidock.ddg-pharmfac.net/. The epitopes were prioritized based on
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Table 2 Prioritized V. cholerae vaccine candidates based on epitope mapping.

# MHC class Index Epitope Antigenicity

1 MHCI 6 LYSFRLGLLL 1.4424
MHCII 3 GLLLFCSLL 1.5179

2 MHCI 3 YSDNGEDGY 1.6821
MHCI 6 SYISYQFNL 1.8449
MHCII 3 YISYQFNLL 1.5362

3 MHCI 6 ALFSLGLDY 1.6604
MHCII 6 FSFEINYSS 1.5186

4 MHCI 2 YGDGTTLGY 1.8772
MHCI 3 RTRNSHIKK 1.9183

6 MHCII 1 TFMVQYYFG 1.4084

the number of binding alleles to the given epitope sequences. Consequently, 10 epitopes
were prioritized (Table 2).

The prioritized epitopes were aligned with the available strains of V. cholera. Sequences
of the potential targets were obtained from 100 members of V. cholerae NCBI Taxonomic
group (TAXID: 666). The predicted antigenic regions were analyzed via BioEdit Sequence
Alignment Editor, for sequence divergence against V. cholerae representative strains and
consensus sequences were obtained for respective vaccine candidate. Themultiple sequence
alignment for the selected epitopes showed that these peptide sequences are conserved in
V. cholerae, as shown in Fig. 6.

DISCUSSION
In this study, we adopted reverse vaccinology based reductive screening and fished
out five immunogenic proteins harboring 10 peptide epitopes as potential vaccine
candidates in the V. cholerae proteome. Reverse vaccinology is a genome/proteome based
approach for vaccine development that has been proved effective (Giuliani et al., 2006).
Reductive screening is performed based on parameters i.e., protein essentiality, subcellular
localization, host homology and effective immunogenicity for predicting an effective
vaccine candidate. A computer-aided screening process is more convenient, accurate
and fast in comparison with the contemporary vaccine development which depends on
a hit and trial approach. This strategy studies key aspects of the pathogen i.e., genome,
essential metabolism, virulence and protein-protein interactions and incorporates this
information for determining the prospective vaccine candidates prior to any wet lab
experimentations (Naz et al., 2015). One of the key limitation is that this strategy is
primarily focused on prediction of peptide epitopes based on amino acid sequences of
the proteins. Hence, the long known immunogenic potential of nonprotein antigens (i.e.,
Lipopolysaccharides) couldn’t be accounted in this strategy (Lüderitz et al., 1982; McGhee
et al., 1980; Del Barrio et al., 2015). But the addition of such known epitopes as adjuvants
is a good approach for overcoming this limitation (Caucheteux et al., 2017; Noguchi et al.,
2017). Another prominent limitation could be the high mutation rate of the viral surface
proteins (Steinhauer & Holland, 1987; Echave, Spielman &Wilke, 2016). The prospects of
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Figure 6 Multiple protein sequence alignment of protein targets was performed among 100 members of V. cholerae NCBI Taxonomic group
(TAXID: 666). (A), (C), (D), (F), (H) and (I) depict the MHC-I epitopes of the selected vaccine candidate proteins while (B), (E), (G) & (J) denote
MHC-II epitopes. Epitopes were found conservative in all the members of the Taxonomic group. Colors indicate the following: red, residue ED;
yellow, residue G; blue, residue KR; turquoise, residue YFA; magenta, residue H; green, residue LIMV; grey, others. The sign ‘‘–’’(dash) means no
amino acid aligned.

Full-size DOI: 10.7717/peerj.6223/fig-6

reverse vaccinology approach have been discussed in detail in our previous study (Rashid
et al., 2017).

Peptide vaccines theoretically have several advantages over conventional and recently
developed DNA vaccines (Ingolotti et al., 2010). Lesser cost and convenient synthesis with
improved safety and stability are the key features which have been demonstrated in various
studies (Firbas et al., 2006; Jagannath et al., 2009). Conventional vaccines are overburdened
with unnecessary antigens which divert immune response resources thus might result in
a chaos which lacks the required dedicated for eliminating the threat thus impedes the
vaccine efficacy (Czerkinsky & Holmgren, 2015). As in case of cholera, whole cell vaccines
were only able to impart varying protective efficiency (39–60%) in studies conducted in
Bangladesh and Vietnam (Clemens et al., 1990; Thiem et al., 2006). While live attenuated
vaccine was unsuccessful in generating long term protective response (Fournier, 1998).
One interesting inconsistency is the comparative efficacy of cholera vaccines in developed
and developing countries (Czerkinsky & Holmgren, 2009), while a notable recent exception
was observed in South Sudan (Bekolo et al., 2016). Considering these factors, the need for
novel strategy is vital to achieve protection against this pathogen.
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Reported prioritized targets included lipoproteinNlpD, outermembrane proteinOmpU,
accessory colonization factor AcfA, putative porin, and outer membrane protein OmpW.
These predicted proteins are involved in important virulence mechanisms of V. cholerae.
Role of lipoprotein NlpD, has been studied in reference to cell division and intestinal
colonization by the pathogen. Septal peptidoglycan (PG) amidase, AmiB is involved in
separation of daughter cells at the end of cell division process (Yakhnina, McManus &
Bernhardt, 2015). AmiB is regulated by NlpD in V. cholerae (Möll et al., 2014). Both of
these processes are important for pathogen’s survival in host intestine. Another predicted
potential target accessory colonization factor AcfA is of peculiar interest as it has been
subjected to edible vaccine (Sharma et al., 2008). Targeting NlpD and AcfA could provide
passive therapeutic potential as immune inactivation would impede the pathogen’s ability
to colonize and multiply in the small intestine.

Among these vaccine candidates, we obtained two outer membrane proteins (OMPs),
OmpU and OmpW that also serve as antibiotic resistance determinants. In vibrio species
OMPs are studied to play vital roles as porins in iron, phosphate and sugar acquisition
as well as in bacterial attachment to solid surfaces (Aeckersberg et al., 2001). While OmpU
has been reported to be involved in conferring polymyxin B sulfate resistance (Mathur
& Waldor, 2004). We consider OmpU as an important vaccine candidate selected via our
computational framework as it is not only involved in host cell invasion but also confers
antibiotic resistance (Duperthuy et al., 2011). Moreover, it has also been used as an effective
vaccine candidate in other vibrio species such as V. alginolyticus and V. harveyi in Lutjanus
erythropterus and Scophthalmus maximus, respectively (Cai et al., 2013; Wang et al., 2011).
Such studies provide good examples of how a reverse vaccinology strategy can be used for
systematic vaccine design against drug resistant microbial pathogens.

Another important predicted potential vaccine candidate is OmpW. It’s a characteristic
outer membrane protein expressed by V. cholerae and has been used to identify infectious
agent via different PCR based detection techniques. Studies have reported this protein
to be conserved and harbors immunogenic properties (Nandi et al., 2005; Jalajakumari &
Manning, 1990). Considering its abilities,OmpW could be a good candidate for developing
a broad spectrum and effective vaccine.

Interestingly, when we analyzed our screened results with a recent antibody profiling
study of the V. cholerae O1 protein immunome, nine overlapping antigens were
observed (Charles et al., 2017). These antigens were: Organic solvent tolerance protein
(VC0446), outer membrane protein OmpU (VC0633), toxin co-regulated pilin (VC0828),
outer membrane protein OmpV (VC1318), neuraminidase (VC1784), hemolysin-related
protein (VC1888), and flagellar proteins/components (VC2142, VC2143, VC2187). Among
these nine, outer membrane protein OmpU (VC0633) was common in the most effective
antigens reported in the final selection of the both studies. While toxin co-regulated pilin
(VC0828) was among our initial screening list but it is reported as one of the most effective
by Charles et al. (2017). One possible reason of the screening results could be the difference
in the adopted screening strategies. Our strategy was purely computational, with the
calculations all derived using only the peptide sequences of the proteins. A shortcoming to
this is that it could only be applied for peptide antigens, while on the other hand antigens
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other than proteins do have their immuno-protective potential i.e., the O polysaccharide,
LPS, etc. These overlapping proteins in the two investigations provide confidence to our
prediction.

CONCLUSION
With the aim of finding new protective antigens for vaccine development, in this study
we report on lipoprotein NlpD, outer membrane protein OmpU, accessory colonization
factor AcfA, Porin, putative and outer membrane protein OmpW as potential candidates
qualifying for all the set criteria. These predicted epitopes can offer a potential for the
development of a reliable peptide or subunit vaccine for V. cholerae.
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