
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7132  | https://doi.org/10.1038/s41598-022-11154-3

www.nature.com/scientificreports

A high‑performance compilation 
strategy for multiplexing quantum 
control architecture
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Quantum computers have already shown significant potential to solve specific problems more 
efficiently than conventional supercomputers. A major challenge towards noisy intermediate-scale 
quantum computing is characterizing and reducing the various control costs. Quantum programming 
describes the process of quantum computation as a sequence, whose elements are selected from a 
finite set of universal quantum gates. Quantum compilation translates quantum programs to ordered 
pulses to the quantum control devices subsequently and quantum compilation optimization provides 
a high-level solution to reduce the control cost efficiently. Here, we propose a high-performance 
compilation strategy for multiplexing quantum control architecture. For representative benchmarks, 
the utilization efficiency of control devices increased by 49.44% on average in our work, with an 
acceptable circuit depth expansion executing on several real superconducting quantum computers of 
IBM.

Benefit from the natural features of quantum superposition and quantum entanglement, quantum computing 
(QC) has significant potential for solving classically intractable computational problems in areas such as machine 
learning1, cryptography2, chemistry3,4 and others. There are various quantum computing physical implementa-
tion systems up to now. Superconducting quantum computing has steady progress in gate and measurement 
fidelity5–8 and IBM’s roadmap for scaling quantum technology9 has been verified solidly so far10 based on this 
technical route. However, the implementation of a practical architecture that can scale to millions of qubits and 
solve large-scale practical problems remains a challenging milestone11. Actually, superconducting quantum 
processors must be placed in a cryogenic environment to be initialized close to their quantum ground state. To 
control its quantum state evolution, each qubit is individually addressed with corresponding microwave signal 
lines connected to room temperature control devices. The control costs and complexity related to the multiple 
coaxial lines per qubit limit the possible scalable size of a superconducting quantum chip, whose upper limit is 
about a few thousand qubits subjected to current techniques11.

Currently, physical operations, such as pulsed excitation, are used to conduct quantum computation in the 
hardware level. These physical operations are normally described by unitary operators that show the state evolu-
tion of qubits. Intuitively, quantum computation can be regarded as circuits of quantum gates with a series of 
ordered sequences of unitary operators12. However, gate-model quantum computers have inherent constraints 
in their architecture including coupling graph, primitive gates supported13–15, etc. Quantum circuits cannot 
be directly executed on these computers. According to the Solovay Kitaev theorem, we can approximate any 
quantum unitary operations as quantum circuits based on a finite set of operators within an arbitrary tolerance. 
However, finding an optimal strategy to build and compute such a sequence remains in suspense. The problem 
is defined as quantum compilation and optimization to rebuild the approximating optimal circuits suitable for 
different platforms. Quantum circuit compilation (QCC) takes a nonconforming quantum circuit as input and 
generates a circuit that can be executed on the target platform according to its constraints, including coupling 
graph, primitive gate set and so on. A quantum compiler is a toolchain between quantum program and pulse 
scheduling, with which programmers do not need to consider the physical constraints of a particular quan-
tum processor. Every quantum compiler has its own trade-off between the number of qubits, the length of the 
sequences, the compilation time and the final execution time.

Generally, the quantum hardware can be modeled in four abstract layers: the quantum data plane where 
the qubits reside, the control and measurement plane, the control processor plane, and the host processor16. 
Challenges at the quantum-classical interface are examined with the goal of architecting a scaled-up quantum 
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computer comprising millions of qubits. The quantum-classical interface, consisting of control and readout sub-
systems, connects platform-specific operation to high-level software tools. These sub-systems include digital logic 
for generating and detecting analog waveforms, signal sources, data converters, amplifiers and so on. Separating 
the distinct sub-systems of the interface that perform readout and control, general arguments are given for why 
distributing the components of these sub-systems over significant distances and across large temperature gradi-
ents presents a major challenge to scaling-up the technology17. Largely addressing these issues, an architecture 
for the interface that leverages cryo-CMOS circuits proximal to the quantum plane is motivated, leveraging 
protocols that enable massively-parallel readout of qubits via frequency multiplexing17,18.

The novelty of this paper is performing a significant control optimization at software level in quantum com-
puting. Our work targets the multiplexing quantum control architecture with M control channels and N qubits, 
where 2 ≤ M ≤ N . Theoretically, all high-level quantum logic gates can be decomposed into the combination 
of basic single qubit operations and two qubits controlled operations. Consequently, the extreme case of our 
quantum control architecture has two centralized control channels, controlling each qubit through a multiplexer. 
The experiment results show that our work can reduce the hardware cost of control system greatly and improve 
its utilization efficiency significantly while introducing limited circuit depth expansion.

Results
High‑efficiency control architecture.  Considering the parallelism and quantum circuit depth, it is bet-
ter to use one control channel to control a qubit respectively. However, the utilization efficiency of the quantum 
control system is limited when running quantum benchmarks. We do experiments on several quantum plat-
forms of IBM with one-to-one control system. Based on the experimental results, we calculate the utilization 
efficiency of control systems during execution. The utilization efficiency is the ratio of the time when control 
channels are not idle to the whole execution time period. The average utilization efficiency of the benchmarks is 
about 60% in our experiments. To further improve the utilization efficiency and reduce the number and costs of 
control channels, we use M control channels to control N qubits, losing a little parallelism accordingly, as shown 
in Fig. 1. Obviously, M ≤ N and the extreme case is M = 2 because of the existence of two-qubits operations.

Dependence analysis.  Some of the control operations are independent such as different single qubit oper-
ations applied to independent qubits. In addition, there exists a number of operations which have dependences 
to each other. Here, we define the dependences in quantum control system as two main kinds, sequence depend-
ence and coherence dependence.

Sequence dependence is defined as the dependence between two control operations with timing sequence. 
These two operations are used on the same single qubit or two qubits with orders of priority. For example, a 
controlled-NOT (CNOT) gate on two qubits qi and qj , denoted as CNOT(qi , qj) , can be executed only when all 
its predecessor gates on qi and qj have been executed already.

Coherence dependence is defined as the dependence between two qubits with controlled operations, such as 
CNOT. These two qubits are tightly coupled and should be controlled in the same time slots.

The two kinds of dependences above are both true dependences and cannot be eliminated at the compiler 
level. Related quantum operations should be executed orderly or simultaneously. Consequently, our high-effi-
ciency quantum control architecture has at least two control channels to deal with the coherence dependence.

Figure 1.   Centralized control and multiple readout system for superconducting quantum computing. There are 
M control channels, N qubits and K readout channels, where 2 ≤ M ≤ N and 1 ≤ K ≤ N.
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High‑performance compilation strategy.  To fully exploit the advantages of the multiplexing control 
architecture, we optimize the quantum circuit at basis gates level. Considering a Toffoli gate, it will be decom-
posed into a sequential circuit consisting of a series of single-qubit and two-qubit operations. Figure 2 gives a 
simple example with two Hadamard gates and a Toffoli gate and Fig. 2a shows the decomposed circuit. Obvi-
ously, traditional one-to-one control method has a higher efficiency when considering circuit depth. However, 
the overall utilization efficiency of the control system is dissatisfactory. The cost of control system plays an 
important role in NISQ era and quantum error correction and should be taken into consideration carefully when 
balancing the budget and overall performance. Figure 2b shows the control process and results.

A scalable quantum device with a multiplexing control architecture could be a solution to save the cost of 
control system. As shown in Fig. 1, there are limited control channels connected to each qubit through a mul-
tiplexer. Due to the limited control channels, some of the gates cannot be executed in parallel as in traditional 
compilation. The quantum circuit should be rescheduled during compilation to guarantee all the gates being 
executed in a right order. Here we propose two scheduling methods for multiplexing quantum control devices. 
The static scheduling method simply gives a control order of gates that could have been executed in parallel in 
traditional one-to-one control system. To further optimize the circuit, a dynamic scheduling method is given 
based on dependency analysis.

Static scheduling. A basic quantum circuit is obtained after transpilation and optimization. Without loss of 
generality, we assume a single-qubit quantum operation is executed in one time slot and a two-qubits quantum 
operation is executed in two time slots. Based on the assumption, we can get a basic quantum circuit with times-
tamps. Taking a quantum control system with two control channels as an example, we use c0 and c1 to indicate 
the control channels and t0, t1, ..., ts to represent the timestamps. For static scheduling, we use the decomposed 
circuit directly to map the control channels without any timing optimization, as shown in Fig. 2c. This method 
is simple and can guarantee the validity of the compiler easily. To further improve the performance, we bring 
about a dynamic scheduling scheme with timing optimization.

Dynamic scheduling. To further improve the utilization efficiency of quantum control channels and reduce the 
circuit depth, we propose a dynamic scheduling algorithm based on dependence analysis. A timing optimization 

Figure 2.   (a) The decomposed result of the original quantum circuit. (b) The scheduling sequence of traditional 
one-to-one control method. (c,d) The optimized results using static scheduling and dynamic scheduling, 
respectively.
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is applied first and the independent quantum operations are reordered to maximize the utilization efficiency of 
control channels. The independent control operations can be reordered dynamically and spatiotemporally. We 
assume the control channels as hardwares of a pipelining and control operation to qubits as instructions. Our 
dynamic scheduling method is similar to the out-of-order launch and sequential execution process in classical 
computing. The result of dynamic scheduling is shown in Fig. 2d. The practically executed circuit depth can be 
further reduced by 4.1% and the utilization efficiency improved by 4.2%.

Experimental results evaluation. To validate the advantages of our scheme, we performed experiments on 
five IBM quantum computers with various benchmarks, including the Bernstein–Vazirani algorithm (BV)19, 
hidden shift algorithm (HS)20,21, quantum Fourier transform (QFT)22 and multi-qubit QC gates such as Toffoli 
and Fredkin23. We use these benchmarks because they constitute an essential part of many large QC applications 
that have been used in prior work on NISQ system evaluation24–28. The details of the benchmark are listed in 
Table 1. According to the experimental results shown in Figs. 3 and 4, we can improve the utilization efficiency 
significantly while only introducing a little circuit depth expansion. In spite of the hardware differences, the 
trends of optimization and extra cost are similar. The utilization efficiencies of traditional quantum control 
systems based on various benchmarks are ranging from around 50–80%. Our static scheduling method can 
help to improve the range from 90 to 100%. Compared with static scheduling, our dynamic scheduling method 
can bring about an extra 4% performance improvement. Our high-performance compilation strategy for mul-
tiplexing control quantum architecture has significant potential to implement quantum algorithms which need 
relatively fewer qubits while deeper circuit depth, such as Grover algorithm. The circuit depth expansion and 

Table 1.   Benchmarks used in this paper.

Benchmarks Qubits Description

BV4 4 Quantum algorithm for determining the mathematical function g quantum oracle function, which is a black box 
operator which gives a dot product of a secret string

HS4 4 Quantum algorithm for the generalized hidden shift problem

Toffoli 3 A control-flip multi-qubit gate

Fredkin 3 A control-swap multi-qubit gate

Peres 3 A quantum circuit function that can compute the Peres gate, which is a basic reversible logic gate used in various 
reversible circuit

OR 3 A quantum circuit function that can compute the OR gate

QFT3 3 The quantum implementation of the discrete Fourier transform with 3 qubits

QFT4 4 The quantum implementation of the discrete Fourier transform with 4 qubits

QFT5 5 The quantum implementation of the discrete Fourier transform with 5 qubits

Figure 3.   Circuit depth expansion based on various IBM quantum computers. The baseline is the circuit depth 
using a traditional one-to-one control system. The orange line with star marker shows the expansion ratio 
using our self-defined static scheduling method and the blue line with circle marker shows the results using our 
dynamic scheduling method inspired by scoreboard algorithm in classical computing.
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utilization efficiency of control channels after scheduling depend on the number of channels and the quantum 
circuits. Before scheduling, the circuit needs to be compiled adapting to the hardware constraints. Due to differ-
ent hardware constraints including coupling graph, the transformed circuit before scheduling varies on differ-
ent platforms, which leads to different results on different devices. On IBM Belem, the utilization efficiency of 
QFT5 increased from 42.02 to 90.87% (increased by 116.25%). The utilization efficiency of the nine benchmarks 
increased by 60.16% on average on IBM Belem. On IBM Bogota, the average utilization efficiency increased by 
42.85%. The values were 44.06%, 55.48% and 44.67% on the other three platforms. In summary, the utilization 
efficiency increased by 49.44% on average. Some of the benchmarks like QFT3 has a good result with high utiliza-
tion efficiency and low circuit depth expansion. Restricted to the dependence among gates, few gates in circuit 
QFT3 can be executed in parallel even in one-to-one control system. When we decrease the number of control 
channels, the parallelism of the circuit will not be affected much. So we can get a low circuit depth expansion 
after scheduling in QFT3. The results show a trade-off between depth expansion and utilization efficiency. In 
general, with the increase of M, both depth expansion and utilization efficiency will decline.

Discussion
In this paper, we proposed a high-performance compilation strategy for multiplexing quantum control architec-
ture. The experimental results showed the efficiency of our strategy. The quantum circuits of complex quantum 
algorithms can be decomposed and transpiled into basic quantum circuits matching target quantum instruction 
sets. For future work, we would focus more on the trade-off between depth expansion and utilization efficiency 
when M changes and study how to choose M to get a satisfactory result. We will also try to apply our strategy 
to quantum algorithms solving practical problems based on larger-scale quantum devices. In addition, we are 
going to pay more attention to new mapping and compilation methods to further improve the performance of 
our scheduling schemes.

Methods
In this section, we introduce our optimization strategies for multiplexing quantum control architecture. We first 
give preprocessing steps in the "Preprocessing" section. The static scheduling and dynamic scheduling methods 
are introduced in the "Static scheduling and dynamic scheduling" section. Then we analyse complexity of our 
methods in the "Complexity analysis" section. We summarize the notations we use in Table 2.

Preprocessing.  Before applying our methods, some preprocessing steps need to be done to generate 
required data including circuit DAG, initialized circuit DAGT and initialized front layer.

Circuit DAG. The sequence dependences of gates can be abstracted by a circuit Directed Acyclic Graph 
(DAG), where the gates are the vertices, and the edges are the execution dependences of gates. A two-qubit gate 
CNOT(qi , qj) can be executed only when all its predecessors on qi and qj have been executed already. A DAG can 
be constructed by traversing the entire quantum circuit with complexity O(g), where g is the number of gates 
in circuit.

Figure 4.   Utilization efficiency of control channels on various IBM quantum computers. The baseline is the 
utilization efficiency using traditional one-to-one control system. The other two show the results using static 
scheduling method and dynamic scheduling method respectively.
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Circuit DAGT​. We define circuit directed acyclic graph with timestamps (DAGT) by assigning each vertex 
of circuit DAG with a timestamp. The timestamp of a gate is the earliest time it can be executed. Gates with the 
same timestamp can be executed at the same time. The gates in circuit are classified in single-qubit gates and 
two-qubit gates. Without loss of generality, here we assume the duration time of single-qubit gate is 1 timeslot 
while two-qubit gate is 2 timeslots.

Front layer. A front layer is a set of gates whose predecessors have all been executed. It can be initialized by 
choosing the vertices in circuit DAGT whose indegree is zero. These vertices represent for the gates that do not 
need to be executed after any other gates in quantum circuit.

Algorithm  1 shows the pseudo code of our algorithm for generating a DAGT for one-to-one control system 
by scanning through the entire DAG. In the beginning, the circuit DAGT is initialized with the circuit DAG by 
assigning each vertex with timestamp 0. Front layer F needs to be initialized, too. In each iteration, the algorithm 
will first check whether all the gates in F are executable (whether the timestamp of gate is equal to the current 
timestamp ts). For each executable gate, we obtain its successor gates and update their timestamps. A successor 
gate’s timestamp is the maximum of the sum of its predecessor’s timestamp and the duration time. If a successor 
gate’s dependencies are all resolved (all its predecessors are removed from F), it can be added to F. The algorithm 
terminates when all gates are executed.

Static scheduling and dynamic scheduling.  In the  "Preprocessing" section, the timestamps of gates 
in circuit DAGT are computed considering the sequence dependence constraint and different duration time of 
gates. However, on the platform with multiplexing control architecture, there are also control constraints. As 

Table 2.   Definition of notations.

Notation Definition

M Number of control channels

N Number of physical qubits

n Number of logical qubits in quantum circuit

g Number of gates in quantum circuit

q{0,1,...,n} Logical qubits in quantum circuit

DAG The execution constraints of gates in quantum circuit, defined in the "Preprocessing" section

DAGT​ Circuit DAG with timestamp, defined in the "Preprocessing" section

F Front layer, defined in the "Preprocessing" section
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shown in Fig. 1, there are limited control channels connected to each qubit through a multiplexer with which 
qubits can be controlled through time division multiplexing. Due to the limited control channels, some of the 
gates cannot be executed in parallel. The quantum circuit should be rescheduled to guarantee all the gates being 
executed in a right order.

Algorithm 4 shows the pseudocode of a static scheduling method to generate a circuit DAGT for multiplexing 
control architecture. Algorithm 4 first initializes DAGT, F and successors. The variable ts is the current timestamp. 
To represent the information about control channels, we use channels_unoccupied to represent the number of 
idle channels and a channelList to record the remaining time to be occupied of each channel. A gate is executable 
only when it is in F and there are enough idle channels left. In the iteration, the algorithm will check whether 
all the gates in F are executable. If a gate is executable, it will find idle channels for it and record the remaining 
occupied time of the channel. Then the algorithm will obtain successors of this gate in DAGT and add them to 
successors. If there are not enough idle channels, it will increase timestamp and update the remaining occupied 
time of channels. When all the gates in F are executed, the algorithm will assign F with successors and start itera-
tion again until there are no successors. Algorithms 2 and 3 give the pseudocode of allocating and updating 
control channels.

Although Algorithm 4 gives a scheduling method for multiplexing control architecture, there still remains 
room to reduce the circuit depth and improve the utilization efficiency of control system. In Algorithm  4, only 
when all gates in F have been executed completely can the successors be added to F. However, some of the suc-
cessors whose dependences are all resolved can be executed once there are enough idle control channels. In this 
way, the utilization efficiency of control system can be improved. The circuit depth may also be reduced than static 
scheduling. Thus, we propose a dynamic scheduling method based on the static scheduling. Algorithm 5 shows 
the pseudocode. Different from static scheduling, Algorithm 5 will add new gates to F dynamically if possible.
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Complexity analysis.  In Algorithm 1, the circuit DAGT can be generated by traveling the circuit DAG. 
The complexity of Algorithm 1 is O(g + e) where g is the number of gates and e is the number of edges of circuit 
DAG.

Algorithm 4 can be divided into four steps: find executable gates in F and allocate channels, assign timestamps 
for executable gates and increase timestamps by one, remove gates that finish executing and add its successors 
whose dependencies are all resolved, update channels. Each gate in the circuit will be executed once in the 
algorithm. Both Allocating channels (Algorithm 2) and Updating channels (Algorithm 3) have a complexity 
of O(M). The worst case is that only one gate can be executed in each iteration. In this case, the complexity of 
Algorithm 4 is O(g ×M + e) , which has more relations with circuit size and channel numbers. M is much less 
than the number of qubits in multiplexing control quantum architecture. Algorithm 5 has the same complexity 
as Algorithm 4, which is acceptable in compilation.
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