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Abstract. The aim of the present study was to investigate 
the changes in lung histomorphology and oxidative stress, 
as well as the expression of interleukin (IL)‑17C and other 
inflammatory factors during acute mountain sickness (AMS) 
in male Sprague‑Dawley rats and to explore the underlying 
mechanism. Rats were randomly divided into a control group 
(0 h) and three hypoxia stress groups, exposed to low‑pressure 
oxygen storage at a simulated altitude of 6,000 m for 24, 48 
and 72 h, respectively. Morphological changes in lung tissue 
were observed by hematoxylin and eosin staining under 
light microscopy and transmission electron microscopy. The 
expression of inflammatory factors IL‑17C, nuclear factor‑κB 
(NF‑κB), IL‑1β, IL‑6 and tumor necrosis factor‑α (TNF‑α) in 
lung tissue was assessed by RNA sequencing and verified by 
reverse transcription‑quantitative PCR (RT‑qPCR) and western 
blotting (WB). Superoxide dismutase (SOD) and glutathione 
peroxidase (GSH‑Px) enzyme activity and malondialdehyde 
(MDA) expression were also measured. Experimental groups 
were compared to the control group following 24, 48 and 72 h 
of hypoxic stress. Lung tissue suffered from different degrees 
of injury, and the damage was the most severe after 48 h of 
hypoxic stress. RNA sequencing data from the lung tissue of 
rats from each group suggested that the expression of IL‑17C, 
NF‑κB, IL‑1β, IL‑6, and TNF‑α increased significantly 
after hypoxic stress. RT‑qPCR and WB demonstrated that 
the expression of IL‑17C and NF‑κB increased significantly 
after hypoxia lasting 48 and 72 h. IL‑1β expression increased 
significantly after hypoxia stress lasting 24 and 48 h, and the 
expressions of TNF‑α and IL‑6 increased significantly after 

hypoxia stress lasting 24, 48 and 72 h (P<0.01). The enzyme 
activity of SOD and GSH‑Px decreased significantly after 
lasting 24, 48 and 72 h of hypoxia (P<0.01), and MDA increased 
significantly after hypoxic stress lasting 48 and 72 h (P<0.01). 
In conclusion, under hypoxic stress, rats quickly initiate oxida‑
tive stress and immune responses. However, with prolonged 
hypoxic stress time, excessive oxidative stress can further 
stimulate the immune system in vivo, and release a large quan‑
tity of inflammatory factors accumulating in the body. This, in 
turn, may lead to the occurrence of inflammatory storms and 
further damage the lung tissue resulting in AMS.

Introduction

Acute mountain sickness (AMS) is a potentially lethal condi‑
tion caused by acute hypoxia after ascending to altitudes higher 
than 2,500 m in a short time. It is common in high-altitude 
travelers, and may lead to life‑threatening high‑altitude 
conditions such as high‑altitude cerebral edema (HACE) or 
high‑altitude pulmonary edema (HAPE) (1,2).

Previous studies suggested that hypoxia stress can induce 
an oxidative stress reaction, which leads to increases in endog‑
enous reactive oxygen species (ROS), and oxidative stress 
damage, resulting in body damage (3‑5). ROS are very active 
and unstable, and indirectly reflect the level of oxidative stress, 
as well as the degree of injury through the enzyme activity of 
superoxide dismutase (SOD), glutathione peroxidase (GSH‑Px) 
and the expression of malondialdehyde (MDA) (6,7).

Previous studies demonstrated that oxidative stress can 
induce the production of inflammatory factors (8). The pres‑
ence of inflammatory cells, immunoglobulins and complement 
components in the broncho‑alveolar lavage fluid of patients 
with HAPE suggests that inflammatory immune responses can 
lead to increased permeability of the pulmonary blood barrier 
and are involved in the occurrence of HAPE (9). In addition, key 
factors such as nuclear factor‑κB (NF‑κB), interleukin (IL)‑1β, 
IL‑6, and tumor necrosis factor‑α (TNF‑α) serve an important 
role in the development of exacerbated immune responses, 
among which IL‑1β is an important pro‑inflammatory 
factor (10‑13). Activation of the above factors can stimulate the 
proliferation of vascular smooth muscle cells, which can lead 
to pulmonary hypertension (14‑16). During oxidative stress, 
vascular endothelial cells can release adhesion factors and 
monocytes, causing lymphocytes to aggregate into endothelial 
cells through these two inflammatory factors (17). TNF‑α can 
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activate neutrophils, release a large number of oxygen‑free 
radicals and proteases, resulting in tissue damage (18). NF‑κB 
is a transcription regulator. Activation of NF‑κB promotes the 
transcription of cytokines and the activation of inflammatory 
transmitter gene transcription (19,20). IL‑17C is a member of 
the IL‑17 family. Previous studies demonstrated that activated 
T cells do not synthesize IL‑17C  (21), and that epithelial 
cells from various tissues and organs are the main source of 
IL‑17C (22). IL‑17C can promote the secretion of IL‑1β, IL‑6, 
and TNF‑α, activate the NF‑κB pathway  (23), and induce 
inflammation and immune regulation (24‑26). As research 
has progressed, microorganisms have been shown to promote 
the expression of IL‑17C in epithelial cells in inflammatory 
environments (27), yet the role of IL‑17C and AMS has not 
been established.

In the present study, it was hypothesized that oxidative 
stress and inflammatory reactions induced by hypoxia could 
serve an important role in the onset and development of AMS. 
To verify this hypothesis and further explore the underlying 
regulatory mechanism, an AMS rat model was used to study 
the role and the mechanism of oxidative stress response and 
inflammatory factors, such as IL‑17C, in the occurrence and 
development of AMS.

Materials and methods

Establishment of the animal model of AMS. A total of 48 male 
Sprague‑Dawley rats weighing 180‑220 g and aged 12 weeks 
were purchased from the Laboratory Animal Center of The 
Medical Department of Xi'an Jiaotong University [SCXK 
(Shaanxi) 2018‑001], and kept in a specific pathogen‑free at 
20˚C environment. Rats were provided with water and food 
ad libitum under a 12‑h light/dark cycle. Rats were randomly 
divided into a control group (980 hPa) and simulated acute 
hypoxic stress groups (475 hPa) for 24, 48 and 72 h (n=12 in 
each group). The animals in the simulated hypoxia group were 
placed in a hypobaric oxygen chamber at a simulated altitude of 
6,000 m for the aforementioned periods of time. The altitude 
in the chamber increased at a uniform speed of 10 m/sec. The 
rats were given free access to standard rodent food and water. 
Then, 30 mg/kg pentobarbital sodium was injected intraperi‑
toneally to anesthetize the rats. When the breathing of the rat 
became slow and smooth and muscles were loose, the tissue of 
both lungs was removed if no traction reflex was observed, and 
the rat was then decapitated (28). The morphological changes 
in the right upper lobe lung tissue were detected using hema‑
toxylin and eosin (H&E) staining under light microscopy and 
transmission electron microscopy. The remaining lung tissues 
were immediately stored in three cryopreservation tubes and 
then subjected to transcriptome sequencing and oxidative 
stress response evaluation (measurement of SOD levels). The 
levels of MDA, GSH‑Px and inflammatory factors (IL‑1β, IL‑6, 
IL‑17C, NF‑κB, and TNF‑α) were also assessed. The measures 
for handling animals involved in the sampling process were 
implemented in accordance with the National Regulations on 
the Administration of Laboratory Animals (GB14923‑2010; 
https://www.cmu.edu.cn/sydwb/info/1835/1388.htm). The 
animal experiment scheme was assessed and approved by 
the Ethics Committee of School of Medicine of Qinghai 
University.

Histomorphological examination of lung tissue. Tissue was 
harvested from the right upper lobe of the lung, then fixed 
in 4% paraformaldehyde for 4 weeks at 4˚C, embedded in 
paraffin, and sectioned to 5‑µm thickness. Lung sections were 
concurrently stained with H&E (~95 min) for histopathological 
examination. Images were captured using a light microscope 
(magnification, x400).

After dissection, the remaining fresh lung tissues were 
immersion‑fixed in 2.5% glutaraldehyde for 24 h at 4˚C. The 
samples were post‑fixed in 1% osmium tetroxide for 1.5 h 
at 4˚C, dehydrated through a series of graded ethanol solu‑
tions and 1:1 EPON‑812 epoxy resin, and then embedded in 
EPON‑812 epoxy resin. 5 nm semi‑thin sections were stained 
with toluidine blue for 10 min, blocks trimmed, and ultrathin 
sections stained with lead citrate and uranyl acetate at room 
temperature. Specimens were examined using a transmission 
electron microscope (magnification, x10,000 or 20,000).

RNA sequencing and differential gene screening. Briefly, the 
total RNA of lung tissue was prepared with an RNA TRIzol® 
reagent (Thermo Fisher Scientific, Inc.) in accordance with 
the manufacturer's instructions and agarose gel electropho‑
resis of extracted RNA performed to ensure sample RNA 
integrity and inexistence of DNA contamination. Finally, the 
differentially expressed genes were analyzed by functional 
annotation and enrichment analysis using clusterProfiler 
software (http://www.bioconductor.org/packages/release/
bioc/html/clusterProfiler.html) for Gene Ontology functional 
enrichment analysis of the differential gene sets and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (29) pathway 
enrichment analysis and then the differentially related genes 
associated with AMS in the IL‑17 signaling pathway screened.

Reverse transcription‑quantitative PCR (RT‑qPCR). A total of 
0.1 g lung tissue was ground in liquid nitrogen and then 1 ml 
TRIzol® (Thermo Fisher Scientific, Inc.) added to extract the 
total RNA. The cDNA was obtained using a PrimeScript RT 
reagent kit with gDNA Eraser (Takara Bio, Inc.). RT‑qPCR 
was performed using a TB Green Premix Ex Taq Ⅱ (Takara 
Bio, Inc.) with a PIKORed 96 RT‑PCR detection system 
(Thermo Fisher Scientific, Inc.). All operations were performed 
in accordance with the manufacturer's protocols. Relative gene 
expression levels of IL‑1, IL‑6, IL‑17C, NF‑κB, and TNF‑α 
were determined using the comparative 2‑ΔΔCq method using 
β‑actin as endogenous control (30). The thermocycling condi‑
tions were: denaturation temperature 94˚C for 30 sec, annealing 
temperature 56˚C for 35 sec and extension temperature 72˚C for 
30 sec (36 cycles). The primer sequences in this study are shown 
in Table Ⅰ. Each experiment was repeated more than three times 
per tissue to ensure consistency of the experimental results.

Western blot analysis. The protein expressions of IL‑1, IL‑6, 
IL‑17C, NF‑κB, and TNF‑α in lung tissues were detected by 
WB. The lung tissue was homogenized in RIPA containing 
protease and phosphatase inhibitors (Beyotime Institute of 
Biotechnology) and lysed on ice for 10 min. The lysate was 
centrifuged at 12,000 x g at 4˚C for 10 min to collect the 
supernatant. The total protein concentration was detected 
using the BCA protein quantification kit (Beyotime Institute of 
Biotechnology). Subsequently, protein sample was separated 
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on 7% SDS‑PAGE gel with 40 µg protein loaded per lane and 
transferred onto PVDF membranes (Sigma‑Aldrich; Merck 
KGaA). PVDF membrane was placed in 5% skimmed milk 
diluted with TBST (0.1% Tween) Buffer, incubation box and 
agitated for 2 h. The PVDF membrane was washed three 
times with TBST for 5 min each. The above operations were 
all performed at room temperature. The primary antibodies 
anti‑β‑actin (1:100,000; cat. no. AC026; Abclonal), anti‑IL‑1 
(1:1,000; cat.  no.  ab234437; Abcam), anti‑IL‑6 (1:1,000; 
cat. no. ab9324; Abcam), anti‑IL‑17C (1:1,000; cat. no. bs26112; 
BIOSS), anti‑NF‑κB, (1:1,000; cat. no. ab32536; Abcam), and 
anti‑TNF‑α (1:1,000; cat. no.  ab55275; Abcam) were used 
to detect the relative protein expression in samples and the 
secondary antibody was Goat Anti‑Rabbit IgG H&L (1:5,000; 
cat. no. ab6721; Abcam). Images were acquired using Tanon 
GIS chassis control software v2.0 (Shanghai, China).

Detection of relevant indicators of oxidative stress. The levels 
of GSH‑Px, SOD and MDA in lung tissue were determined 
using ELISA kits purchased from Shanghai Enzyme Union 

Biotechnology Co. Ltd. (cat. nos. ml059387‑C, ml097316‑C 
and ml077384‑C). Standard curve pore and detection pore 
were established. Optical density was measured at 450 nm 
wavelength using a microplate reader. GSH‑Px, SOD and 
MDA levels were calculated using a standard curve.

Statistical analysis. All data were analyzed using SPSS 22.0 
(IBM Corp.) statistical analysis software, and shown as 
mean ± standard deviation (SD). One‑way analysis of vari‑
ance (ANOVA) was used with the Tukey HSD post hoc test. 
Two‑tailed Student's t‑test were applied to analyze the signifi‑
cant differences between the groups. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Morphological changes in rat lung tissue at different time 
points following hypoxic stress. Lung tissue of the 24 h group 
(Fig. 1B) showed thickening of the alveolar septum and inflam‑
matory cell infiltration not visible in the control group (Fig. 1A). 

Figure 1. Histomorphological changes in the lungs of Sprague‑Dawley rats of different groups. Light microscopy images for the (A) 0 h group, (B) 24 h group, 
(C) 48 h group and (D) 72 h group. Scale bar, 10 µm. Electron microscope for the (E) 0 h group, scale bar, 1 µm, (F) 24 h group, scale bar, 500 nm, (G) 48 h 
group, scale bar, 1 µm) and (H) 72 h group, scale bar, 500 nm. Pathological changes are indicated by arrows.

Table I. Primer sequences for IL‑17C, NF‑κB, IL‑1β, IL‑6 and TNF‑α.

Analyte	 Forward primer sequence, 5'‑3'	R everse primer sequence, 5'‑3'

IL‑1β	AAACA GATGAAGTGCTCCTTCCAGG	 TGGAGAACACCACTTGTTGCTCCA
IL‑17C	 GCCTATTTGCCCACCTACAA	AAA TTCAGACGGCAAACGAC
IL‑6	 TGTGTGAAAGCAGCAAAG	A GTCTCCTCATTGAATCCA
TNF‑α	C GATGAACCACGCCAGTCGCC	 GGATGAACACGCCAGTCGCC
NF‑κB	C GACGTATTGCTGTGCCTTC	 TTGAGATCTGCCCAGGTGGTA
β‑actin	 GAGACCTTCAACACCCAGCC	 GCGGGGCATCGGAACCGCTCA

IL, interleukin; TNF‑α, tumor necrosis factor‑α; NF‑κB, nuclear factor‑κB.
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Figure 2. The Kyoto Encyclopedia of Genes and Genomes function classification of differentially expressed genes in the 48 h group, vs. the 0 h group. IL‑17 
signaling pathway is underlined in red.

Figure 3. Expression of IL‑17C, NF‑κB, IL‑1β, IL‑6, and TNF‑α in lung tissues of Sprague Dawley rats in different groups; *P<0.01 and **P<0.01, vs. the 0 h group.
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The alveolar structure of the 48‑h group was severely damaged 
(Fig. 1C), with a large number of inflammatory cells and red 
blood cells diffused in the field of vision. Lung tissue injury 
was still apparent in the 72‑h group (Fig. 1D). However, alveolar 
structure showed none of the damage visible in the 48‑h group, 
suggesting recovery from hypoxic stress at the 72‑h time point.

Electron microscopy demonstrated that the thickness of 
the basement membrane of the capillary increased, compared 
with the control group (Fig.  1E) to different extents. The 
control group was also used as a marker to measure the patho‑
logical damage of each group of rats. In the lung tissue of the 
24 h group, the thickness of the capillary basement membrane 
increased to varying degrees. Alveolar septum capillary thick‑
ness also increased, and microvilli shedding was observed 
(Fig. 1F). In the 48 h group, alveolar wall capillary endothe‑
lial cell edema became more apparent (Fig. 1G). In the 72 h 
group, basal membrane partial shedding and blood‑air barrier 
obviously thinning are still evident (Fig. 1H).

Transcriptome sequencing results. RNA sequencing analysis 
of lung tissues from rats in each group identified 1,728 differ‑
entially expressed genes in the 24 h, and 2,148 differentially 
expressed genes were found in the 48 h group, and there were 
8,201 genes of 72 h group differentially expressed relative to the 
control group. The differentially expressed genes were obtained 
by KEGG (Fig. 2). The present study focused on the IL‑17 
signaling pathway. The main differentially expressed genes in 
this pathway were IL‑17C, NF‑κB, IL‑1β, IL‑6, and TNF‑α.

Expression of IL‑1β, IL‑6, IL‑17C, NF‑κB, and TNF‑α in rats 
subjected to 24, 48 or 72 h of hypoxic stress. The expression 
of IL‑17C was significantly upregulated in the 24, 48 and 72 h 
groups, compared with the control group. NF‑κB expression 
was a significantly upregulated after 48 and 72 h of hypoxia. 
The expression of IL‑1β, TNF‑α and IL‑6 was also significantly 
upregulated at all time points (Fig. 3).

Levels of GSH‑Px, SOD and MDA in rats under hypoxic 
stress in different groups. The activity of SOD and GSH‑Px 
decreased significantly after 24, 48 and 72  h of hypoxia 
(P<0.01), while the expression of MDA increased significantly 
after 48 and 72 h of hypoxic stress (P<0.01; Table II).

Discussion

After rapid exposure to a hypoxic environment, a series of 
reactions as oxidative stress response occur to adapt to the 

hypoxic environment and even damage the lung tissue. The 
main manifestations include diffuse swelling and hyperemia of 
both lungs, considerable leakage of protein‑rich liquid into the 
alveolar cavity, thickening of the alveolar cavity (31), increasing 
the activity of macrophages and infiltration of inflammatory 
cells (32). Luo et al (33) and Guo et al (34) demonstrated that 
lung tissue injury was most serious after exposure to a simu‑
lated altitude of 5,000 m and 48 h of hypoxia. Li et al (35) also 
suggested that lung tissue injury was the most serious after 
exposure to a simulated altitude of 6,000 m and hypoxic stress 
lasting 72 h. In the present study, Sprague‑Dawley rats were 
exposed to a simulated altitude of 6,000 m and hypoxia stress 
lasting 24, 48 or 72 h. Morphological examination of the lung 
tissues in each group suggested that the alveolar structure of 
rats in hypoxic stress groups was damaged to varying degrees. 
Lung tissue was damaged most severely after hypoxic stress 
lasting 48 h.

The production of ROS and the elimination of antioxi‑
dants create a stable dynamic balance. When the organism is 
subjected to hypoxic stress, oxygen‑free radicals accumulate in 
cells and damage lipids, proteins and DNA, thus causing lung 
tissue damage (36‑38). The present study suggested that the 
activities of SOD and GSH‑Px decreased and the expression 
of MDA increased as hypoxic stress was prolonged; that is, 
oxidative damage occurred in lung tissue under hypoxic stress.

Oxidative damage can directly stimulate macrophages 
to release IL‑1β. As a pro‑inflammatory factor, IL‑1β can 
initiate immune response and recruit centralized granulocytes, 
macrophages and other inflammatory cells, which in turn can 
to infiltrate tissues and release IL‑6 and TNF‑α (39). The 
results of the present study demonstrated that IL‑1β levels were 
highest after 24 h of hypoxic stress, while IL‑6 and TNF‑α 
expression was highest after 48 h of hypoxic stress. GSH‑Px 
and SOD activity were the lowest after 48 h of hypoxia stress, 
and MDA was highly expressed, suggesting that inflam‑
mation and the exudation of tissue fluid in lung tissue were 
further aggravated. The injury to alveolar epithelial cells and 
pulmonary interstitial edema was most pronounced at 48 h. 
Previous studies demonstrated that IL‑17C was not produced 
by activated T cells (22); rather, it is secreted by the epithelial 
cells of various tissues (40). In the present study, it was hypoth‑
esized that, given the aforementioned three factors, pulmonary 
epithelial cells could also participate in the immune response. 
The presence of large quantities of IL‑17C activates the NF‑κB 
pathway and participates in the onset and development of AMS. 
According to the experimental results of the present study, 
IL‑17C stimulation could increase the expression of NF‑κB 

Table II. Experimental results of oxidative stress in rats of each group.

Group	 n	 GSH‑Px (mg/l)	 SOD (Um/l)	 MDA (nmol/ml)

  0 h	 6	 4.18±0.16	 2.62±0.11	 0.91±0.04
24 h	 6	 3.63±0.12a	 2.31±0.15a	 0.91±0.02
48 h	 6	 3.47±0.25a	 2.25±0.18a	 0.95±0.04a

72 h	 6	 3.93±0.36a	 2.36±0.16a	 0.95±0.04a

aP<0.01 GSH‑Px, glutathione peroxidase; SOD, superoxide dismutase; MDA, malondialdehyde.
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in the AMS rat model. The combined stimulation of IL‑17C 
and NF‑κB also increased the expression of IL‑17C, NF‑κB, 
TNF‑α, IL‑1β, and IL‑6 in alveolar epithelial cells, which also 
reflects the positive feedback regulation of IL‑17C on the acute 
inflammatory response of pulmonary epithelial cells.

The innovation of the current study was the combination 
of hypoxia‑induced oxidative stress and excessive inflamma‑
tion to study the damage to the body. Under hypoxic stress, 
rats quickly initiate the oxidative stress response and immune 
response, but it is worth noting that, with the prolongation 
of hypoxic stress time, excessive oxidative stress can further 
stimulate the immune system, and release a large number of 
inflammatory factors, which accumulate in the body, and even 
lead to the occurrence of inflammatory storms.

According to the literature, IL‑17C can also regulate the 
expression of IL‑1β, TNF‑α, and IL‑6. However, the expres‑
sion of these three factors was downregulated in the 72‑h 
group. The specific molecular mechanism needs further study, 
and it may be related to the immune regulatory function of 
1,25‑dihydroxyvitamin D3 (41), studied earlier by our group.
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