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Toxoplasma gondii (T. gondii) can cause zoonotic toxoplasmosis worldwide. Neutrophil

extracellular traps (NETs) have been known as a novel effector mechanism against

T. gondii infection in the innate system of humans, cats, and sheep. Dogs are the

intermediate host of T. gondii, in which the use of NETs against T. gondii infection

remains unclear. Thus, this study aims to examine the effects of T. gondii on NETs

release in dogs, and to further investigate the mechanism involved in the process.

T. gondii-triggered NETs were analyzed by scanning electron microscopy (SEM) and

fluorescence confocal microscopy, and the mechanism of T. gondii-triggered NETs

release was determined by using inhibitors and a fluorometric reader. The results showed

that T. gondii tachyzoites significantly triggered NETs-like structures, which consisted

of DNA decorated with neutrophil elastase (NE) and myeloperoxidase (MPO). Further

investigations revealed that reactive oxygen species (ROS)-, NADPH oxidase-, Rac 1-

or p38 mitogen-activated protein kinase (MAPK)-signaling pathways were relevant to T.

gondii tachyzoites-triggered NETs release. Moreover, zymosan-triggered NETs release

was strikingly degraded by T. gondii tachyzoites treatment, indicating that T. gondii may

escape from the NETs-based capture strategy. Taken together, promoting NETs release

is suggested to limit motility and evade infection of T. gondii in dogs.

Keywords: Toxoplasma gondii, neutrophils extracellular traps, dogs, Rac1, ROS

INTRODUCTION

Toxoplasma gondii is considered as one of the most prevalent zoonotic parasites worldwide (Tenter
et al., 2000; Dubey and Jones, 2008; Dubey and Dubey, 2010; Lopes et al., 2014; Pan et al., 2017).
It may cause asymptomatic infection or severe symptomatic infection including developmental
defects, early embryonic death, stillbirth, or abortion to T. gondii-infected pregnancies (Dubey
and Jones, 2008; Dubey and Dubey, 2010; Pan et al., 2017). Dogs are the intermediate hosts, and
multiple studies have demonstrated the prevalence of T. gondii in dogs in a variety of countries or
areas worldwide (Jiang et al., 2015; Zhang et al., 2015; Dubey et al., 2016; Rengifo-Herrera et al.,
2017; Zarra-Nezhad et al., 2017). Although these serological surveys and diagnosis analysis of dogs
infected T. gondii have been reported, the interactions between the host dog and the parasite T.
gondii remain not fully understood.

Neutrophil extracellular traps (NETs) are reported as a novel effector mechanism of
polymorphonuclear neutrophils (PMNs) in the host immune system against infection. Since NETs
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FIGURE 1 | SEM analysis of T. gondii tachyzoites-triggered dog NETs release. (A) PMNs. (B) T. gondii tachyzoites. (C–E) Thinner NETs-like structures triggered by T.

gondii tachyzoites. (F–I) thicker NETs-like structures triggered by T. gondii tachyzoites. Red arrows showed NETs-like structures triggered by T. gondii tachyzoites.

were first discovered to entrap and kill extracellular bacteria
(Brinkmann et al., 2004), this novel effector mechanism has
also been reported to be involved in immune system response
against several pathogens, such as viruses (Wardini et al., 2010;
Saitoh et al., 2012), fungi (Jin et al., 2016; Urban and Nett,
2018), or parasites (Munoz-Caro et al., 2015a; Wei et al., 2016).
It also has been shown that NETs against T. gondii infection
exist in a variety of species including humans (Abi Abdallah
et al., 2012), sheep (Yildiz et al., 2017), mice (Abi Abdallah
et al., 2012), cattle (Yildiz et al., 2017), cats (Lacerda et al.,
2019), harbor seals (Reichel et al., 2015), and dolphins (Imlau
et al., 2020). NETs release can damage or kill T. gondii, but
whether the NETs-based effector mechanism during T. gondii
infection also works in the innate immune system of dogs
remains unknown.

Various studies have demonstrated that the mechanism of
NETs release is associated with multiple molecular or signaling
pathways, such as NADPH oxidase, Rac, or p38 MAPK signaling

pathways (Lim et al., 2011; Munoz-Caro et al., 2015a; Wei
et al., 2016, 2018a; Gavillet et al., 2018). Furthermore, T. gondii
triggered-NETs release in harbor seals is also a NADPH oxidase-,
NE- andMPO-, store-operated calcium entry (SOCE)-dependent
process (Reichel et al., 2015). The key molecular and signaling
pathways involved in T. gondii-triggered NETs release in dogs
still needs further investigation. In this study, we examined for
the first time if NETs release in dogs during T. gondii infection,
and also investigated the potential mechanism undergoing
these processes.

Abbreviations: NET, neutrophils extracellular trap; SEM, scanning electron

microscopy; PMN, polymorphonuclear neutrophil; NE, neutrophil elastase; MPO,

myeloperoxidase; ROS, reactive oxygen species; MAPK, mitogen-activated protein

kinase; LDH, lactate dehydrogenase; SOCE, store-operated calcium entry; DPI,

Diphenyleneiodonium chloride.
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FIGURE 2 | Fluorescence confocal microscopy analysis of T. gondii tachyzoites-triggered NETs consisting of NE and MPO with DNA. PMNs were incubated with viable

T. gondii tachyzoites at a ratio of 1:1 for 90min. The images were observed and collected by fluorescence confocal microscopy. (A,D) NE (Green). (G,J) MPO (Green).

(B,E,H,K) DNA (Red). (C) Merge of (A,B). (F) Merge of (D,E). (I) Merge of (G,H). (L) Merge of (J,K). White arrow showed NETs triggered by T. gondii tachyzoites.

MATERIALS AND METHODS

Parasites
Toxoplasma gondii tachyzoites of RH strain were inoculated and
cultured in Vero cells at 37◦C and 5% CO2, T. gondii tachyzoites
were harvested by passing through a 20mL syringe and a 27-
gauge needle three times and was purified by filtrum (5µm).
Finally, these tachyzoites were centrifuged at 3,000 r/min for
10min and washed two times.

Experimental Animals
Blood was collected from three healthy adult dogs, and the PMNs
were isolated in the available dog PMN isolation kit R© (TianJin
HaoYang Biological Manufacture CO., China) as previously
described (Wei et al., 2016, 2018b).

Ethics Statement
Animal experiments were approved by the Ethics Committee on
the Care and Use of Laboratory Animals of Foshan University
and in accordance with the current Animal Protection Laws
of China.

Scanning Electron Microscopy (SEM)
Analysis
T. gondii tachyzoite-triggered NETs release were examined by
SEM as previously described (Wei et al., 2016). In brief, PMNs
were incubated with viable T. gondii tachyzoites at the ratio
of 1:1 for 90min. After the specimens were fixed with 4.0%
glutaraldehyde, and post-fixed with 1.0% osmium tetroxide
(Merck), they were observed under scanning electronmicroscope
(Hitachi S-3400N, Japan).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 September 2020 | Volume 10 | Article 429

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Wei et al. T. gondii Triggers NETs in Dogs

FIGURE 3 | (A) T. gondii-triggered NETs in a dose-dependent manner. PMNs were incubated with viable T. gondii tachyzoites (ratio 1:1, 1:3, or 1:6) for 90min.

Zymosan was used as positive control. Data were expressed as mean ± SD (n = 3). (B) Dynamic analysis of T. gondii-triggered NETs release. PMNs were incubated

with viable T. gondii tachyzoites (ratio 1:1) for 10, 30, 60, 90, or 120min. The NETs release triggered by T. gondii was quantified with Pico Green and the fluorometric

reader. Data were expressed as mean ± SD (n = 5). P < 0.05 were considered significant (*P < 0.05, **P < 0.01, ***P < 0.001 and “ns,” not significant).

FIGURE 4 | (A) T. gondii-triggered NETs release degraded by DNase I. PMNs were pretreated with DNase I (90U) or DNase I (180U) for 15min, and then incubated

with viable T. gondii tachyzoites (ratio 1:1) for 90min. NETs release triggered by T. gondii was quantified with Pico Green and the fluorometric reader. Data were

expressed as mean ± SD (n = 3). (B) Increased ROS levels in T. gondii tachyzoites-triggered NETs release. PMNs were incubated with viable T. gondii tachyzoites

(ratio 1:1 or 1:2) for 90min. NETs release triggered by T. gondii was tested by the fluorometric reader. Data were expressed as mean ± SD (n = 3). P < 0.05 were

considered significant (**P < 0.01and ***P < 0.001).

Fluorescence Confocal Microscopy
Analysis
The components of T. gondii tachyzoite-triggered NETs were
detected with fluorescence confocal microscopy analysis as
described elsewhere (Wei et al., 2016, 2018b). Briefly, the newly
isolated PMNs were incubated with T. gondii tachyzoites at the
ratio of 1:1 for 90min. After being fixed with paraformaldehyde,
the specimens were permeabilized with Triton X-100 and
blocked with goat serum/PBS. Finally, the specimens were

incubated with the specific antibodies against proteins in

T. gondii tachyzoites-triggered NETs structures. In parallel

experiments, PMNs were co-treated with zymosan (1 mg/mL)

and T. gondii tachyzoites for 120min. The NETs specific

antibodies included the anti-histone antibody (LS-C353149;

Life Span BioSciences, Inc) and the anti-myeloperoxidase
(MPO) antibody (Orb16003; Biorbyt). DNA in T. gondii
tachyzoites-triggered NETs structures were stained with 5µM
Sytox Orange (Invitrogen), and the images were observed

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 September 2020 | Volume 10 | Article 429

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Wei et al. T. gondii Triggers NETs in Dogs

FIGURE 5 | (A) T. gondii-triggered NETs release inhibited by DPI or SB202190. PMNs were pre-treated with the NADPH oxidase inhibitor DPI or the p38 MAPK

signaling pathway inhibitor SB202190 for 15min, and then incubated with viable T. gondii tachyzoites (ratio 1:1) for 90min. NETs release triggered by T. gondii was

quantified with Pico Green and the fluorometric reader. Data were expressed as mean ± SD (n = 3). (B) T. gondii-triggered NETs release inhibited by NSC23766.

PMNs were pre-treated with the Rac1 activation inhibitor NSC23766 or the NLRP3 inhibitor MCC950 for 15min, and then incubated with viable T. gondii tachyzoites

(ratio 1:1) for 90min. NETs release triggered by T. gondii was quantified with Pico Green and the fluorometric reader. Data were expressed as mean ± SD (n = 5). P <

0.05 were considered significant. (C). No changes of LDH levels in T. gondii tachyzoites-triggered NETs release. PMNs were incubated with T. gondii tachyzoites (ratio

1:1, 1:2, or 1:4) for 90min, and LDH activities in supernatant were tested by the LDH kits. The lysis reagent was provided by the kit which was used as positive

control. Data were expressed as mean ± SD (n = 5). P < 0.05 were considered significant (**P < 0.01, ***P < 0.001, and ns, means not significant).

and analyzed with a scanning confocal microscope (Olympus
FluoView FV1000).

Quantitation of T. gondii-Triggered NETs
PMNs were incubated with viable T. gondii tachyzoites (ratio
1:1, 1:3, or 1:6) for 90min. To determine if T. gondii-triggered
NETs were time-dependent, PMNs were incubated with viable
T. gondii tachyzoites (ratio 1:1) for 10, 30, 60, 90, or 120min. In
inhibition tests, cells were pre-treated with 10µMof the NADPH
oxidase inhibitor Diphenyleneiodonium chloride (DPI, Sigma-
Aldrich), 10µM of the p38 MAPK (Sigma-Aldrich) signaling
pathway inhibitor SB202190, 100µM of the Rac1 activation
inhibitor NSC23766, or 8.0 nM of the NLRP3 inhibitor MCC950
for 15min. DNase I (90U) was also pre-treated with cells for
15min. Zymosan (1mg/mL) was used as positive control. Finally,
the release of T. gondii-triggered NETs was quantified with Pico
Green R© (Invitrogen) and the fluorometric reader Infiniti M200 R©

(Tecan, Austria).

Reactive Oxygen Species (ROS) Levels
Analysis
To determine ROS levels in the process of T. gondii-triggered
NETs release, PMNs were incubated with viable T. gondii
tachyzoites (ratio 1:1 or 1:2) for 90min. T. gondii tachyzoites-
induced ROS levels in the process of NETs release were tested by
using 2, 7 dichlorofluorescein diacetate (Sigma-Aldrich) and the
fluorometric reader Infiniti M200 R© (Tecan, Austria).

LDH Levels Analysis
To further differentiate T. gondii tachyzoites-triggered NETosis
from necrosis, LDH levels were tested. PMNs were incubated

with viable T. gondii tachyzoites (ratio 1:1, 1:2, or 1:4) for
90min. T. gondii tachyzoites-induced LDH levels in the process
of NETs release were tested by the LDH Cytotoxicity Assay kit R©

(Beyotime Biotechnology, China).

Statistical Analysis
Data were expressed as the means ± standard deviation
(SD). One-way analysis of variance (ANOVA) with
Tukey’s multiple comparison tests was performed by using
the GraphPad 5.0 software to analyze the differences
among groups. The level of P ≤ 0.05 was considered
as significant.

RESULTS

T. gondii Tachyzoites Triggered Dog NETs
Release
T. gondii tachyzoites significantly triggered NETs-like structures
(Figure 1), and it was found that T. gondii tachyzoites were
captured by thicker (Figures 1F–I) or thinner (Figures 1C–E)
NETs-like structures.

NE and MPO Co-located With DNA in T.

gondii Tachyzoites-Triggered NETs Release
To confirm, if T. gondii tachyzoites-triggered NETs have
similar characteristics to the typical NETs-structures, the
constituent proteins in T. gondii tachyzoites-triggered
NETs-like network structures were analyzed. These results
showed that T. gondii tachyzoites significantly triggered
NETs-like structures, and these structures consisted of DNA
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FIGURE 6 | Zymosan-induced NETs (DNA decorated with NE) were degraded by T. gondii tachyzoites. PMNs were incubated with viable T. gondii tachyzoites (ratio

1:1) or zymosan (1 mg/mL) for 120min. The images were observed and collected by fluorescence confocal microscopy. (A,D,G,J) NE (Green). (B,E,H,K) DNA (Red).

(C) Merge of (A,B). (F) Merge of (D,E). (I) Merge of (G,H). (L) Merge of (J,K). White arrow showed NETs triggered by T. gondii tachyzoites.

(Figures 2E,K) decorated with NE (Figure 2D) and MPO
(Figure 2J).

Quantitation of NETs Release Triggered by
T. gondii Tachyzoites
As shown in Figure 3A, T. gondii tachyzoites significantly
triggered NETs release compared to control groups, and the
release of NETs was in a dose-dependent manner (P < 0.01, n
= 3). Further experiments revealed that T. gondii tachyzoites-
triggered NETs release within 60min which was in a time-
independent manner (P = 0.002, n = 5), and it was of great
interest that the increasing of NETs release significantly decreased
at the time point of 90min (P = 0.034, n = 5) and 120min
(P = 0.925, n = 5; Figure 3B). It was also shown that DNase
I significantly decreased T. gondii tachyzoites-triggered NETs
release (P < 0.01, n = 3; Figure 4A), which further confirmed
the peculiarity of DNA in these T. gondii tachyzoites-triggered
NETs structures.

Increased ROS Levels in T. gondii

Tachyzoites-Triggered NETs Release
It is reported that NETs formation has been associated with
ROS production, thus we analyzed ROS levels in the process
of T. gondii tachyzoites-triggered NETs release. The results
showed that T. gondii tachyzoites significantly increased the
levels of ROS compared to control groups (P < 0.001, n =

3; Figure 4B). Furthermore, zymosan also significantly induced
ROS production in PMNs (P= 0.009, n= 3), but lower than that
of T. gondii tachyzoites (Figure 4B).

T. gondii Tachyzoites-Triggered NETs
Release Decreased by NADPH Oxidase-,
Rac-, and p38 MAPK Signaling
Pathways-Inhibitor Treatments
Inhibition experiments revealed that the NADPH oxidase
inhibitor DPI (P < 0.001), the p38 MAPK signaling pathway
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FIGURE 7 | Zymosan-induced NETs (DNA decorated with MPO) were degraded by T. gondii tachyzoites. PMNs were incubated with viable T. gondii tachyzoites (ratio

1:1) or zymosan (1 mg/mL) for 120min. The images were observed and collected by fluorescence confocal microscopy. (A,D,G,J) MPO (Green). (B,E,H,K) DNA

(Red). (C) Merge of (A,B). (F) Merge of (D,E). (I) Merge of (G,H). (L) Merge of (J,K). White arrow showed NETs triggered by T. gondii tachyzoites.

inhibitor SB202190 (P < 0.01), and the Rac1 activation inhibitor
NSC23766 (P < 0.001, n = 5) significantly decreased the
release of T. gondii tachyzoites-triggered NETs in varying degrees
(Figures 5A,B), while the NLRP3 inhibitor MCC950 slightly
decreased NETs release but was not significant (P = 0.999, n =

5; Figure 5B).

No Changes of LDH Levels in T. gondii

Tachyzoites-Triggered NETs Release
LDH is a typical indicator of cell necrosis. To further investigate
if cell necrosis also exists in the process of T. gondii tachyzoites-
triggered NETs release, LDH levels in culture supernatant were
examined. As shown in Figure 5C, there was no significant
changes in LDH levels were detected in the process of T. gondii
tachyzoites-triggered NETs release (P > 0.05, n = 3), but LDH
levels were significantly increased by the lysis (provided by LDH
kits; P < 0.001, n= 3).

T. gondii Tachyzoites Escaped From NETs
Release
PMNs were co-treated with zymosan and T. gondii tachyzoites
to clarify if T. gondii could escape from NETs. As shown in
Figures 6, 7, NETs release triggered by T. gondii tachyzoites was
slightly observed at the time point of 120min, while zymosan
significantly triggered NETs compared to negative controls.
However, the release of zymosan-triggered NETs was strikingly
degraded by T. gondii tachyzoites treatment (Figures 6L, 7L).
These NETs structures triggered by T. gondii tachyzoites
consisted of NE (Figures 6D,G,J) and MPO (Figures 7D,G,J)
with DNA (Figures 6E,H,K, 7E,H,K).

DISCUSSION

In the present study, NETs release triggered by T. gondii
tachyzoites has been demonstrated in dogs for the first time,
just like that in humans, sheep, or harbor seals (Abi Abdallah
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et al., 2012; Reichel et al., 2015; Yildiz et al., 2017). It was clear
that T. gondii tachyzoites were captured by NETs-like structures
(Figure 1), and these structures consisted of DNA decorated
with NE and MPO (Figure 2), which confirmed that similar and
typical features of NETs-like structures were observed in other
parasites such as: Neospora caninum (Wei et al., 2016), Eimeria
bovis (Munoz-Caro et al., 2015a), Cryptosporidium parvum
(Munoz-Caro et al., 2015b), and Eimeria arloingi (Silva et al.,
2014). Quantitation analysis demonstrated T. gondii tachyzoites
triggered NETs release was in a dose-dependent manner. These
results have been suggested that one part of T. gondii tachyzoites
would be captured and then killed by NETs in dogs. A further
quantitative experiment also revealed that T. gondii tachyzoites-
triggered NETs release was in a time-independent manner, and
it was of great interest that the increase in NETs release was
significantly decreased at the time point of 120min. In addition,
the release of NETs triggered T. gondii tachyzoites was also
degraded by DNase I (Figure 4A). All these results suggest that
another part of T. gondii tachyzoites could also evade capture by
these NETs after 90 min.

Given that ROS, NADPH oxidase, Rac, or p38 signaling
pathways are involved in the mechanism of several pathogen-
induced NETs releases (Lim et al., 2011; Munoz-Caro et al.,
2015a,b; Wei et al., 2016, 2018a; Gavillet et al., 2018), and
NLRP3 inflammasomes can be activated during T. gondii
infection (Gorfu et al., 2014; Quan et al., 2018), we investigated
if these molecular or signaling pathways also participate in
T. gondii tachyzoites-triggered NETs formation. It was found
that inhibitors of the NADPH oxidase, Rac 1, or p38 MAPK
signaling pathways but not the inhibitor of NLRP3 significantly
inhibited NETs release (Figures 5A,B), which suggested that
NADPH oxidase, Rac 1, and p38 MAPK signaling pathways
were relevant to T. gondii tachyzoites-triggered NETs. Further
results showed that T. gondii tachyzoites significantly increased
ROS levels but not LDH levels in the process of NETs release,
proving that ROS was also related to T. gondii tachyzoites-
triggered NETs. Zymosan used as the positive stimuli could
also significantly induce ROS production in NETs release as
shown in previous research (Wei et al., 2016, 2018a,b), but
lower than that of T. gondii tachyzoites. We deduced that there
are possibly two main reasons for the results. The first one
is that the type of stimuli are different for inducing NETs
release. NETs release is a ROS -dependent or -independent
process, these two ways may both exist in NETs release.
The other reason is that the amount of the same stimuli
significantly affects ROS production in the process of NETs
release. Taken together, the mechanism of T. gondii tachyzoites-
triggered NETs release was a ROS-, NADPH oxidase-, Rac
1-, or p38 MAPK- signaling pathway dependent process.
In this aspect, no significant species-difference of T. gondii
tachyzoites-triggered NETs were found between harbor seals
and dogs.

On the basis of the quantitative results that NETs release
triggered by T. gondii tachyzoites was markedly decreased at the
time point of 120min, we speculated that T. gondii tachyzoites

could degrade NETs structures and escape from the NETs-based
capture strategy. To provide further evidence, PMNs were co-
treated with zymosan and T. gondii tachyzoites for fluorescence
confocal microscopy analysis. Interestingly, zymosan-triggered
NETs release was strikingly degraded by T. gondii tachyzoites
treatment that confirmed our suspicions. In other words, there
must be one or more DNase-like enzyme existing in T. gondii
to degrade NETs structures. However, predicting and identifying
these DNase-like enzymes in T. gondii still needs further
research, which will help understand the biological functions
and mechanisms of T. gondii escape from the NETs-based
capture strategy.

In conclusion, the NETs-based effector mechanism worked in
dogs during T. gondii infection, and the regulatory mechanism
undergoing T. gondii-triggered NETs release was associated
with ROS-, NADPH oxidase-, Rac 1-, or p38 MAPK- signaling
pathways. Moreover, it was found that T. gondii escaped from
the NETs-based capture strategy, but the escape mechanism still
needs careful study.
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