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Abstract

Working memory (WM), short term maintenance of information for goal directed behavior, is 

essential to human cognition. Identifying the neural mechanisms supporting WM is a focal point 

of neuroscientific research. One prominent theory hypothesizes that WM content is carried in 

“activity-silent” brain states involving short-term synaptic changes. Information carried in such 

brain states could be decodable from content-specific changes in responses to unrelated “impulse 

stimuli”. Here, we used single-pulse transcranial magnetic stimulation (spTMS) as the impulse 

stimulus and then decoded content maintained in WM from EEG using multivariate pattern 

analysis (MVPA) with robust non-parametric permutation testing. The decoding accuracy of WM 

content significantly enhanced after spTMS was delivered to the posterior superior temporal cortex 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author. Department of Radiology, Massachusetts General Hospital, CNY 149, 13th St. A.A. Martinos Center for 
Biomedical Imaging, Charlestown, MA, 02129, USA. iuluc@mgh.harvard.edu. 

Declaration of competing interest
Aapo Nummenmaa and Lucia Navarro de Lara named inventors in patents and patent applications related to TMS.
Tommi Raij and Mohammad Daneshzand are named inventors in patent applications related to TMS.

CRediT authorship contribution statement
Işıl Uluç: Writing – original draft, Visualization, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. 
Mohammad Daneshzand: Writing – review & editing, Visualization, Methodology, Investigation, Formal analysis. Mainak Jas: 
Writing – review & editing, Software, Formal analysis. Parker Kotlarz: Writing – review & editing, Project administration, Formal 
analysis. Kaisu Lankinen: Writing – review & editing, Investigation. Jennifer L. Fiedler: Writing – review & editing, Project 
administration, Investigation, Formal analysis. Fahimeh Mamashli: Writing – review & editing, Conceptualization. Netri Pajankar: 
Writing – review & editing, Formal analysis. Tori Turpin: Writing – review & editing, Project administration, Investigation. 
Lucia Navarro de Lara: Writing – review & editing, Resources, Methodology, Data curation. Padmavathi Sundaram: Writing 
– review & editing, Methodology, Data curation, Conceptualization. Tommi Raij: Writing – review & editing, Methodology, 
Formal analysis. Aapo Nummenmaa: Writing – review & editing, Resources, Methodology, Investigation, Funding acquisition, 
Conceptualization. Jyrki Ahveninen: Writing – review & editing, Visualization, Supervision, Resources, Methodology, Investigation, 
Funding acquisition, Formal analysis, Conceptualization.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.brs.2025.02.020.

Open practices statement
The deidentified data and code to reproduce the main findings will be made available on https://dataverse.harvard.edu/dataverse/
isiluluc/.

HHS Public Access
Author manuscript
Brain Stimul. Author manuscript; available in PMC 2025 May 23.

Published in final edited form as:
Brain Stimul. 2025 ; 18(3): 649–658. doi:10.1016/j.brs.2025.02.020.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.brs.2025.02.020
https://dataverse.harvard.edu/dataverse/isiluluc/
https://dataverse.harvard.edu/dataverse/isiluluc/


during WM maintenance. Our results show that WM maintenance involves brain states, which are 

activity silent relative to other intrinsic processes visible in the EEG signal.
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Working memory; Auditory working memory; Transcranial magnetic stimulation; TMS-EEG; 
MVPA

1. Introduction

Working memory (WM), the brain system that enables maintenance and processing of 

recent information, plays an essential role in daily life. The mechanisms and brain areas 

underlying WM maintenance have thus been prominent topics for neuroscience research. 

However, research into its neuronal mechanisms has resulted in seemingly contradictory 

results that have led to a long-standing controversy. The prevailing hypothesis suggests 

that information is maintained through persistent firing in the prefrontal cortex (PFC). 

Conversely, an alternative theory posits that persistent activity is not necessary for WM 

maintenance and rather maintenance can be dynamical in an ‘activity-silent’ format via 

functional connectivity and/or synaptic weights. [1–3]. Much of this research has been 

conducted in the visual modality only, leaving some of the most ecologically relevant 

aspects of WM in other sensory modalities relatively underexplored. One such aspect is 

auditory WM, which enables temporary storage and manipulation of sounds and verbal 

information, such as spoken language or music.

Initially, WM maintenance was linked to persistent activity of prefrontal neurons that 

respond to the incoming stimulus and remain activated even after the stimuli have vanished 

[4–6]. However, subsequent human neuroimaging studies suggested that the content of 

visual WM could only be decoded from signal-change patterns in sensory and posterior 

brain areas where persistent activity is not present during WM maintenance [7–9] (however, 

see also [10–13]). Studies in non-human primates (NHP) have not shown persistent WM 

related neuronal activity during the maintenance period in sensory areas [14,15]. The 

identification of content-specific persistent firing patterns at the sensory level has proven 

challenging in NHP studies of auditory WM as well [16–18]. At the same time, human 

studies have managed to decode auditory WM content from fMRI signals [12,19–21] as well 

as intracranial EEG signals [22] from auditory cortices. The diverse and contrasting findings 

have inspired the development of a family of alternative theories suggesting that WM is 

maintained in a more distributed and dynamic fashion than initially believed [23–25].

In explaining possible mechanisms for ‘activity-silent’ WM maintenance, a theory proposes 

that WM is maintained through intermittent bursts of neuronal firing and intervals of 

short-term synaptic plasticity (STSP) [26], i.e., transient changes in the strength of 

synaptic connections between neurons [27]. Item-specific activation of neurons during 

the encoding process leads to presynaptic accumulation of calcium, which facilitates 

postsynaptic connectivity. Due to this calcium buffer, which operates on a time scale of 

seconds, even sparse bursts of firing will be sufficient to maintain the “activity-silent” 

WM representations [3,25,26]. The network maintaining a synaptic WM trace will respond 
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in a content-specific fashion, even if the non-specific input is completely unrelated to 

the maintained representation [3]. Hence, information maintained in WM via the activity-

silent synaptic mechanisms should be decodable with machine learning techniques that can 

classify responses elicited to any unrelated stimulus that broadly activates the same neuronal 

population [3]. To test this prediction, recent human EEG and MEG studies presented 

participants with “impulse stimuli”, such as strong visual or auditory feature patterns 

unrelated to the maintained content, during WM maintenance [13,28–31]. The content 

maintained in WM, which is otherwise in an activity-silent (or “hidden”) state, became 

more readily decodable from EEG or MEG responses to such impulse stimuli [13,28–31]. 

A limitation in many of these studies, however, is that it is difficult to deliver such impulse 

stimuli to a particular brain area only.

A non-invasive way to probe hidden brain states that underlie human cognition is 

transcranial magnetic stimulation (TMS). Unlike observational methods such as MEG or 

EEG, TMS allows us to causally interact with focal areas whose role in WM we intend 

to evaluate [32]. In studies of human memory processes, TMS has been used to modulate 

maintenance of visual WM representations [33] and to enhance neuronal plasticity in visual 

cortex [34]. A particular benefit of using single-pulse TMS as opposed to task-irrelevant 

sensory stimuli for probing memory-related brain states that its effects are both temporally 

and anatomically specific [35]. In a recent study that used TMS to enhance WM decoding 

from EEG signals [28], perturbing the WM circuits during the seemingly activity-silent 

maintenance period yielded noteworthy results. This intervention not only augmented the 

decoding of representations that were stored passively in memory compared to actively 

maintained content but also contributed to participants recalling passively maintained items 

more effectively from WM. However, to our knowledge, this approach has so far not been 

tested in WM studies targeting auditory or other earlier sensory cortex areas, or in designs 

applying active and sham TMS in the same participants.

Thanks to recent advances in MRI-guided TMS navigation systems and more focal 

stimulation coils, TMS pulses can be delivered to the area of interest at an exact latency. 

This allows one to test anatomically and temporally specific hypotheses to develop an 

understanding of how sensory areas might be contributing to WM. Here, we investigated 

whether the content of auditory WM, which is embedded in an activity silent brain state, can 

be decoded from cortical effects of single-pulse TMS, delivered to posterior non-primary 

auditory cortex during the WM maintenance period. This non-primary auditory cortex target 

was in the left posterior superior temporal cortex (pSTC). In our multivariate pattern analysis 

derived from whole-scalp EEG, the decoding accuracy increases above chance level directly 

after the TMS pulse in an Active TMS condition, but not after a Control TMS pulse that was 

too weak to activate the pSTC target area. Therefore, our study provides strong evidence for 

the activity silent theory of WM maintenance.

2. Methods

2.1. Participants

A total of 23 healthy right-handed [36] participants (12 women, 11 men; mean age ± 

standard deviation, SD, = 32 ± 12 years) were enrolled. One participant was excluded due 
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to excessive movement artifacts (facial movement artifacts in more than 50 % of trials) and 

another due to their chance-level behavioral performance, resulting in a final cohort of 21 

participants (11 women, 10 men; mean age ± SD = 31 ± 10 years) for the Active TMS 

session. Significantly better than chance level performance is essential in WM experiments 

to ensure that task performance is not a result from a mere guessing. As for the Control TMS 

session, two participants opted not to continue the study and one dataset was rejected due 

to excessive noise, resulting in a final sample of 18 participants (9 women, 9 men; mean 

age ± SD = 31 ± 11 years). The same participants attended Active TMS and Control TMS 

conditions to eliminate variability in EEG responses from different participants in different 

conditions. All participants had normal or corrected to normal vision and self-reported 

normal hearing. The participants provided written informed consent and were informed that 

they could withdraw at any time. A monetary compensation was given for each visit. The 

study design, protocol, and consent form were approved by the Mass General Brigham 

Institutional Review Board.

2.2. Stimuli and experimental paradigm

2.2.1. Auditory stimuli: We employed non-conceptual, parametrically varied ripple 

sounds as WM items (Fig. 1a). Such stimuli do not allow verbal memorization strategies. 

The ripple-velocity pool was individualized based on each participant’s pre-determined 

ripple-velocity discrimination thresholds. Just noticeable difference (JND) values were 

calculated individually for each participant using a 2-down, 1-up staircase algorithm 

[12,13,22]. Based on these values, we created four auditory ripple sound stimuli, ensuring 

that each stimulus was positioned 1.5 JNDs apart from its closest neighbor in velocity. We 

used four different ripple sounds as to-be-remembered stimuli. The same four ripple stimuli 

were also presented as test stimuli. The order of the memory items was pseudo-randomized. 

The participants were naïve to the number of memory items. The auditory stimuli were 

presented at a comfortable listening level through Sensimetrics S14 Insert headphones 

(Sensimetrics, Malden, MA) that provide high-quality acoustic stimulus delivery while 

attenuating TMS click noise, analogous to our previous studies [37].

2.2.2. Experimental paradigm: Fig. 1 shows the retro-cue experimental paradigm used 

during the TMS-EEG recordings. Each trial started with a “!” presented on the screen. It was 

followed by two different consecutive ripple sounds (memory items) that were presented 

for 750 ms with a 250 ms interstimulus interval. Ripple sounds were followed by a visual 

retro-cue indicating whether the participant had to remember the first sound (“1″ on the 

screen) or the second sound (“2” on the screen). This was followed by a 4-s maintenance 

period, where a TMS pulse was delivered in the middle. We delivered the TMS pulse at 

the 2 s mark to have the same amount of signal before and after the TMS pulse during 

maintenance for balanced comparison of results. Next, a test sound was presented. The task 

was to determine whether the test sound was the same as or different from the memorized 

item. Participants responded with a mouse click with their right hand. An index finger click 

indicated that the sounds were the same and a middle finger press indicated that they were 

different. Finally, the screen showed whether the participant had responded correctly or 

incorrectly. One run of the experiment consisted of 48 trials and one session consisted of 6 

runs. Thus, one session had 288 runs in total.
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2.3. Structural MRI data acquisition

T1-weighted anatomical images were acquired for with a multi-echo MPRAGE pulse 

sequence (TR = 2510 ms; 4 echoes with TEs = 1.64 ms, 3.5 ms, 5.36 ms, and 7.22 ms; 

176 or 208 (to cover the ears) sagittal slices with 1 × 1 × 1 mm3 voxels, 256 × 256 mm2 

matrix; flip angle = 7◦) [38] in a 3 T Siemens Trio MRI scanner (Siemens Medical Systems, 

Erlangen, Germany) using a 32-channel head coil.

2.4. TMS-EEG data acquisition

To be used as stimulus amplitude, resting motor threshold (rMT) of each participant was 

measured by sending a pulse to the left motor cortex thumb area and measuring the response 

from first dorsal interosseous muscle of the dominant right hand. From peak to peak, the 

smallest stimulation intensity resulting in 5/10 responses with amplitudes was equal to or 

greater than 50 μV. After the rMT visit, participants completed two single-blind sessions. 

TMS pulses were delivered either 1) at 100 % of individual rMT to the posterior nonprimary 

auditory area pSTC in the left hemisphere (“Active TMS”) at 45◦ angle relative to the 

reference vector [0 0–1] (A 0-degree rotation relative to this reference vector means the coil 

handle is oriented from anterior to posterior. The rotation angle increases counterclockwise 

around the superior-inferior axis) or 2) at 100 % of rMT at the same location and same 

angle but with a 20 mm plastic block between the coil and scalp (“Control TMS”). The 

pulses were delivered 2 s into the 4 s maintenance period. EEG, horizontal EOG, and 

ECG data were sampled at 25 kHz with a 64-channel active EEG system (ActiChamp, 

Brain Products GmbH, Gilching, Germany). TMS was delivered with a MagPro X100 w/

MagOption stimulator and a C-B60 figure-of-eight coil (MagVenture, Farum, Denmark). 

The plastic block used in the control sessions was built in-house and was the same shape as 

the TMS coil. The order of Active and Control TMS sessions was counterbalanced across 

the participants.

In both Active TMS and Control TMS conditions, the TMS coil clicks were masked with 8 

kHz low pass filtered white noise throughout the experiment. The white noise and the sound 

stimuli were presented through Sensimetrics S14 Insert headphones (Sensimetrics, Malden, 

MA) with Comply Canal In-Ear Tips (Hearing Components, Inc., North Oakdale, MN) that 

have a Noise Reduction Rating (NRR) of above 29 dB. The sound level of the noise mask 

was measured using Larson Davis sound level meter LXT2 with a Larson Davis RA0038 

coupler (Larson Davis, New York, NY): The level of the white noise was at 73 dB SPL and 

auditory items was at 86 dB SPL. Additionally, subjective report from each participant was 

taken that they did not hear the TMS clicks or other background noise.

2.5. TMS neuronavigation

Continuous recording of the head position and orientation relative to the TMS coil was 

achieved through a commercial TMS neuronavigation system (LOCALITE GmbH, Bonn, 

Germany) with an optical camera and passive trackers (Polaris Spectra, Northern Digital 

Inc., Waterloo, Ontario). The participant’s registration to their anatomical data were all 

done in the Localite neuronavigation software. The reconstructed MRI images were used 

in the Localite neuronavigation system (LOCALITE GmbH, Germany) to guide the TMS 

procedure with MRI.
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2.6. E-field calculation

Data from one participant were discarded due to technical problems for Active TMS and 

Control TMS sessions. To confirm that we had stimulated the intended cortical target, we 

computed the TMS-induced Electric fields (E-field) using the Boundary Element Method 

accelerated by Fast Multipole method (BEM-FMM) MATLAB toolbox implementation 

[39,40]. The TMS coil locations/orientations were extracted from the TMS navigation 

software. The participant-specific anatomically realistic high-resolution head models were 

generated from the T1-weighted images using the SimNIBS toolbox [41]. The model 

included five distinct layers of scalp, skull, cerebro-spinal fluid (CSF), grey matter, and 

white matter, with the assumption of uniform conductivity within each layer. The E-fields 

were calculated on a cortical surface halfway between the grey and white matter surfaces. 

For group-level visualization, the individual E-field maps were resampled to the FreeSurfer 

template brain fsaverage (version 6.2) and averaged across participants [42].

2.7. Basic EEG preprocessing and analysis

EEG was preprocessed using MNE Python [43]. We used an established, rigorous 

preprocessing procedure [44,45]. The data were first detrended, and after selection and 

interpolation of noisy channels (on average 4, channels), they were epoched to exclude any 

potential TMS pulse artifacts. Two consecutive ICAs were calculated for the concatenated 

epochs [44,45]. The first ICA was used to remove remaining TMS related artifacts (3 

independent components were removed), and then the second ICA was performed to exclude 

physiological artifacts (on average, 5 independent components). Afterwards, we applied 

a 60-Hz notch filter to remove line noise and a 150 Hz low pass filter. The data were 

then downsampled to 1 kHz. We did not use any high pass filtering as it might introduce 

artifacts in the signal and tamper with later TMS-evoked potential components [46]. Finally, 

all epochs were visually inspected for remaining artifacts and noisy epochs were rejected. 

Signals from the occipital Iz electrode were excluded from all analyses due to excessive 

noise in most of the datasets.

To display the time course of brain activity, we calculated event-related potentials (ERPs) 

separately for each memory item during the memory period as well as a grand average 

for the whole trial. For memory item comparison, the cleaned data were separated into 

four groups according to cued memory item. Then, the separated data from all runs were 

concatenated and averaged across all trials for each memory item within each participant. 

The data were then averaged across all participants per memory item. For grand averages, 

the averages were calculated across all trials irrespective of memory item. Topographical 

maps were calculated with a time window of 0.5 s with equal weights for all trials.

2.8. Cross-participant multivariate pattern analysis

Fig. 2 shows the MVPA pipeline for the cross-participant classification analysis. We 

conducted the decoding analysis by employing the support vector machine (SVM) 

implementation from libsvm [47] as provided in the MATLAB/Octave CoSMoMVPA 

package [48]. To help generalize the analysis results to a larger population, we performed 

the classification across the participants [13]. For the MVPA analysis, to ensure that any 

TMS artifacts did not bias the results, the time window starting 50 ms before and ending 
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50 ms after the TMS pulse was excluded from the analysis. Using CoSMoMVPA and 

Fieldtrip toolboxes in each participant, we first balanced the number of trials for each class 

and then calculated the class-specific averages for each participant. Next, for spatial feature 

selection, we used principal component analysis (PCA) in MATLAB to transform the data to 

“virtual channels”, extracting the first eight principal components (PC) (Fig. 2). To keep the 

dimensionality constant to allow cross-validation, we selected the number of PCs based on 

the grand average of cumulative variance explained across all participants, conditions, and 

WM classes. The number of selected PCs refers to the point where the slope of the tangent 

decreased below one in a normalized plot with both dimensions scaled between zero and 

one. Calculating these spatial PCAs separately for each class in each participant ensured 

that no leakage of information occurred between participants/classes. In each task condition, 

including periods before and after the pulse in the TMS and Control conditions, this resulted 

in a two-dimensional (NSubjects ×4)× 8 feature matrix that was entered into the SVM (in the 

TMS conditions NSubjects = 21, in the control conditions NSubjects = 18).

The classification was conducted as a temporal searchlight analysis [48] with a 300 ms 

sliding window at 3 ms steps, and was done separately for the periods before and after 

the TMS pulse. The classification was performed using a leave-one out cross-validation 

procedure: the data sets were partitioned to training and test sets such that the class-specific 

sub-averages of one participant used as the test set and those from the rest of the participants 

as the training set. The decoding accuracy was averaged across all iterations. For each 

condition (Active TMS, Control TMS) and maintenance period (before or after the TMS 

pulse), the analyses resulted in time series with decoding accuracies of each searchlight 

centroid (Fig. 2).

2.9. Statistical significance, cross-participant MVPA

In our cross-participant MVPA approach, the data of one participant were, iteratively, 

used as the test set, to evaluate the model trained in the other participants. This analysis 

yields one decoding accuracy value for the entire group at each time point. Instead of 

conventional one-sample t-tests, we therefore determined the statistical significance of our 

cross-participant decoding results using robust cluster-based permutation testing, which 

handles multiple comparison problems using a maximum-statistic strategy [13]. Analogous 

temporal cluster-based maximum-statistic approaches have been widely used procedures 

in univariate analyses of ERP and MEG data [49]. In this procedure, we first generated 

500 unique permutations of the true item-content labels of the classifier. The temporal 

searchlight analysis was repeated with these permuted labels to generate a distribution of 

decoding accuracies for each time point. For each permutation, the time series of decoding 

accuracies were converted to z-values. This was done by comparing each decoding-accuracy 

value to the respective permutation distribution at the same time point. Continuous clusters 

with z > 1.65 (i.e., p < 0.05) were then identified in each permutation and the respective 

cluster sums of z-values were calculated. From each permutation, the largest cluster sum 

across all conditions was entered to the maximum-statistic null distribution. Analogously to 

the conventional procedure [49], each cluster identified from the analysis with true content 

labels was then compared to this null distribution, to determine their statistical significance. 

Clusters with pCorrected<0.05 were considered statistically significant.
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2.10. Within-participant multivariate pattern analysis

The within participant analysis is conducted based on the same principle as the cross-

participant decoding analysis (Fig. 2), by employing the SVM implementation from libsvm 

[47] and MATLAB/Octave CoSMoMVPA package [48]. The period 50 ms before and 

after the TMS pulse was not entered into the analysis. Using CoSMoMVPA and Fieldtrip 

toolboxes in each participant, we first balanced the number of trials for each class and 

low-pass filtered the signals at 75 Hz. To enhance the SNR, subaverages of four trials 

were calculated with each class. Twenty different random iterations were calculated of 

these sub-averaged samples. In each iteration, spatial feature selection was performed using 

a similar, yet individualized, PCA procedure to that used in the cross-participant MVPA 

(range 5–10 PCs, group median = 8 PCs; see Suppl. Fig. 1).

Similar to the cross-participant MVPA, within-participant classification was performed 

using a temporal searchlight analysis [48] with a 300 ms sliding window in 3 ms steps, 

conducted separately for the periods before and after the TMS pulse. A k-fold cross-

validation procedure was used to classify the maintained WM content (k = 6 in participants 

with six runs of data; k = 5 in two participants with five runs of data). In each fold, the 

model was trained in k-1/k of the samples and tested in the remaining samples. For each 

searchlight dataset, the decoding accuracies were averaged across the folds and iterations. 

For each participant, condition (Active TMS, Control TMS), and maintenance period (before 

or after the TMS pulse), the analyses resulted in a time series with decoding accuracies 

of each searchlight centroid. Similar to previous studies [30], each participant’s decoding 

accuracy time courses were smoothed over time with a Gaussian kernel with FWHM of 9.4 

ms for significance testing.

2.11. Statistical significance, within-participant MVPA

The statistical significance was determined using robust cluster-based permutation testing, 

which handles multiple comparison problems using a maximum-statistic strategy [13]. For 

each participant and TMS condition, we first generated 500 unique permutations of the true 

item-content labels of the classifier. The temporal searchlight analysis was repeated with 

these permuted labels to generate a distribution of decoding accuracies for each time point. 

To assign a p-value for each time point, the original group-mean decoding accuracy value, 

found from classifiers with true labels, was compared with this permutation distribution. 

To improve the precision, we modeled the empirical permutation distribution using a 

Gaussian fit. Continuous clusters with p < 0.05 were then identified in each permutation and 

the respective cluster sums decoding accuracies were calculated. From each permutation, 

the largest cluster sum across all conditions was entered to the maximum-statistic null 

distribution. Analogous to the conventional procedure [49], each cluster identified from the 

analysis with true content labels was then compared to this null distribution, to determine 

their statistical significance. Clusters with pCorrected<0.05 were considered statistically 

significant.
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3. Results

3.1. Behavioral performance

The participants’ behavioral percent corrects were 79.6 ± 6.5 % (mean ± SD) in the Active 

TMS sessions and 78.7 ± 6.2 % in the Control TMS sessions. Although we see a slight 

increase in behavioral performance in Active TMS session, the increase is not statistically 

significant. We additionally calculated the percent correct of answers as a function of the 

ripple-velocity distance from memory item to probe. This analysis revealed a consistent 

relationship between participants’ ability to reject non-matching probes and the difference 

in ripple velocity between the probe and WM item. In the TMS session, the percent correct 

of answers for match trials was 84.5 ± 6.3 %. For non-match trials with JND distance 1, 

the percent correct was 60.4 ± 13.9 %; for JND distance 2, it was 85.7 ± 8.6 %, and for 

non-match trials with JND distance 3, it was 93.9 ± 4.9 %. In the Control TMS session, 

match trial percent correct was 84.1 ± 5.7 %. Non-match trial JND distance 1 percent correct 

was 58.0 ± 14.9 %; JND distance 2 percent correct was 2 87.1 ± 10.2 %; and JND distance 3 

percent correct 92.2 ± 9.0 %.

3.2. Multivariate pattern analysis

We applied cross-participant and within-participant SVM classification analysis on EEG 

data collected during WM maintenance period. The results are explained in the following 

sections.

3.2.1. Cross-participant MVPA: We conducted a four-class cross-participant 

classification analysis to determine whether the single TMS pulses to left pSTC enhanced 

the decoding of memorized content from the ERPs. The analysis employed a temporal 

searchlight approach, in which the decoding was performed based on the spatiotemporal 

pattern of EEG activity within a 300-ms sliding window. The statistical significance was 

verified through a robust cross-participant cross-validation and cluster-based maximum-

statistic permutation procedure. According to these analyses, in the Active TMS condition, 

the MVPA decoding accuracy for memory content rose significantly above chance level 

during the first few hundreds of milliseconds after the TMS pulse (pCorrected <0.05, cluster-

based maximum-statistic permutation test; cluster sum of normalized accuracy = 137.2; Fig. 

3d). No statistically significant decoding results were observed in any other time period 

in the Active TMS condition or in the Control condition (for an additional analysis of the 

stability of decoding, see Suppl. Fig. 2).

3.2.2. Within-participant MVPA: We additionally conducted a within-participant four-

class SVM searchlight to test the effect of the TMS pulse on the individual brain activity. 

We employed a similar searchlight approach with a 300-ms sliding window as in the 

cross-participant analysis. Consistent with the cross-participant results, in the Active TMS 

condition, the group average of MVPA decoding accuracy for memory content rose 

significantly above chance level during the first few hundreds of milliseconds after the 

TMS pulse (pCorrected <0.01, cluster-based maximum-statistic permutation test; cluster sum 

of decoding accuracy = 24.5; Fig. 4). No statistically significant decoding results were 

observed in any other time period in Active TMS or Control TMS conditions.
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3.3. E-field calculations

Fig. 3a–b depict the median of the E-field calculations for Active TMS and Control TMS 

conditions, respectively, thresholded at 60 V/m [50]. The average E-field in the target area 

(Talairach −60, −38, 15) was 74.11 V/m for the Active TMS condition and 34.75 V/m for 

the Control TMS condition.

3.4. Control analyses

To control whether MVPA results are driven by differences in ERP amplitude between 

different conditions, we averaged the response to different cued content during WM period 

across participants. No systematic differences were found between signals for different cued 

content during the maintenance period before or after the TMS pulse. We also performed a 

grand average of the ERP data to observe the ERP time course during the task trial. Fig. 5 

depicts the grand average ERPs calculated for the WM maintenance period as the time of 

interest and TMS evoked responses (TEP) for Active TMS and Control TMS sessions. As 

expected, the ERP results revealed a N2/P3 response to the visual retro-cue at the beginning 

of the maintenance period. A pattern of TMS-elicited ERP deflections was detected 2–2.5 

s into the maintenance period. The auditory component reflects a typical TEP elicited by 

the TMS pulse (Fig. 5c). No comparable effect is observed in the Control TMS condition 

(Fig. 5d), although the auditory click sound was identical to the Active condition. This 

suggests that the click sounds were sufficiently masked by the constant noise masking used 

in all sessions. Finally, we did not observe any persistent elevation in ERP during the WM 

maintenance period (Fig. 5). To control the data quality, we calculated grand averages for the 

item presentation and probe and response period (Suppl. Figs. 3–4). The averaged responses 

for these periods were as expected.

To control whether the decoding results were driven by a difference in TEP in different 

memory conditions due to TMS pulse, we also performed a repeated measures ANOVA 

across ERPs of different memory conditions. We did not find any significant differences at 

a corrected or uncorrected level between averaged ERPs across different conditions (35–100 

ms: F3,60 = 0.65, p = 0.59; 100–200 ms: F3,60 = 0.22, p = 0.88; 200–300 ms: F3,60 = 

0.36, p = 0.78). We also tested the ERPs across the memory period after the TMS pulse to 

test whether the auditory click artifact might bias our main analysis results. We found no 

significant differences in the trial-averaged EEG patterns following the TMS pulses across 

the memory conditions during the whole 2-s memory period after the TMS pulse (F3,60 = 

0.28, p = 0.84).

Finally, we also performed a control decoding analysis with the same parameters as our 

main analysis using the task-irrelevant (i.e., “uncued”) items, which were to be forgotten 

after the retro-cue. This control MVPA showed no significant decoding for neither Active 

TMS nor Control TMS conditions at any time during the WM retention period.

4. Discussion

Here, we investigated auditory WM using a “perturbation approach”, which combines MRI-

navigated single pulse TMS with simultaneous EEG recordings, to unravel content-specific 
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mnemonic states from EEG otherwise obscured by the much larger EEG “background” 

activity. To decode WM content from EEG signals during the maintenance period, we 

employed two temporal-searchlight MVPA approaches: one utilizing cross-validation across 

participants, and another employing within-participant cross-validation. Both analyses 

incorporated robust non-parametric permutation testing to asses statistical significance. As 

predicted, the decoding accuracy of auditory WM content rose significantly above chance 

level after a single TMS pulse was delivered to the non-primary auditory areas in the left 

pSTC. Further, the Control TMS condition (otherwise the same as active single pulse TMS 

but with a 20-mm plastic block between the coil and the participant’s scalp) found no 

significant decoding accuracy.

One possible explanation for the present finding is offered by the synaptic theory of WM 

[26]. According to this model, WM information is coded to content-specific patterns of 

functional connectivity, which result from activity-based STSP in the synaptic terminals of 

neurons that are strongly activated at the encoding stage [26]. Instead of persistent neuronal 

activity, this model predicts that only sparse bursts of neuronal oscillations and firing activity 

are necessary to maintain this otherwise activity-silent mnemonic brain state [3,51–53]. 

Notably, although synaptic states are not directly measurable by non-invasive recordings, 

computational modeling predicts that a circuit that maintains information by content-specific 

changes of synaptic weights responds differently to other impulse stimuli (until the STSP 

decays) [26]. These content-specific responses to external impulses might not only provide 

a way for the maintained content to be read out at the recall stage, but they could also allow 

one to “ping” the maintained content with externally generated pulses such as single pulse 

TMS [13,28–30].

Whereas the original synaptic theory refers to local circuits in prefrontal cortices [26], it 

has also been proposed that this synaptic model can also provide a way to explain how 

WM information might be represented in sensory areas, which presumably cannot support 

persistent neuronal firing in the absence of sensory stimulation [54–56]. However, previous 

studies probing activity-silent states of WM have been limited to TMS-based perturbation 

of association areas [28], or to using auditory or visual “impulse stimuli” [13,31] that 

might activate a wide array of brain networks beyond sensory areas involved in orienting to 

task-irrelevant stimulus changes. TMS offers a more direct way to focally perturb cortical 

neurons [33,57] therefore increasing the likelihood that the content-related signals originate 

from the targeted sensory areas rather than from higher-order brain regions. The present 

results suggest that WM content can be decoded at a high accuracy from EEG responses 

to TMS pulses directed to pSTC. They could thus offer new insights into the role of 

activity-silent WM processes in the sensory cortices.

Alternative explanations for enhanced decodability of WM content, which follows an 

irrelevant impulse stimulus (i.e., “pinging effects”), have been recently presented. In a recent 

reanalysis of previous studies [28,30], Barbosa et al. [58] attributed “pinging effects” of 

visual WM content to reduced trial-to-trial variability of EEG signals, which was observed 

after the strong visual impulse stimuli that had been used to facilitate the decoding of 

(presumably activity-silent) WM content (see also [59]). Their reasoning was that such a 

reduction of variability across trials could have enhanced the performance of algorithm 
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because of enhanced SNR, rather than a genuine WM reactivation effect. It is, however, 

important to note that there were notable differences between the pinging effects of 

visual impulses vs. TMS-induced perturbations. In contrast to the effect of strong visual 

impulse stimuli (reanalysis the data in Ref. [60]), TMS perturbations increased, rather than 

decreased, the variability of signals from trial-to-trial (reanalysis of [28]). These results led 
Barbosa et al. to conclude that TMS-induced enhancement of WM decoding from EEG 
data could, nonetheless, reflect an activity-silent mechanism of WM. Notably, consistent 
with Barbosa et al., the present analyses provide no evidence of TMS-induced reduction of 
trial-to-trial variability of EEG signals, which could have explained the enhancement of the 
decoding accuracy of auditory WM content.

Using measures such as EEG to probe synaptic processes is supported by the notion that 

EEG signals primarily result from post-synaptic processes in apical dendrites of cortical 

pyramidal neurons [61–63]. These neurons constitute fundamental components of the 

canonical cortical circuit that presumably supports WM [25,64–66]. An inherent limitation 

of non-invasive measures, however, is that they do not conclusively rule out other alternative 

explanations. In addition to an activity-silent synaptic state, the present enhancement of 

WM decoding by TMS pulses could also result from perturbation of an activity-based 

maintenance process. Cellular-level studies demonstrate that single pulse TMS activates a 

broad population of cell bodies in the cortex [57,67]. The rapid firing of these neurons 

after the TMS pulse, which is followed by a refractory period, disrupts the cortical network, 

resetting the stimulated region [57,67]. The present results could therefore also be arguably 

consistent with a subthreshold attractor model [59,68]. The subthreshold attractor model 

suggests that WM-related persistent activity tends to be attracted to a bump state that 

emerges in varying locations across this network [69,70]. By interfering with such activation 

patterns, TMS pulses might result in content-specific signal changes that are recordable by 

EEG. However, a challenge for such a model in the present context is that the TMS pulse, 

which tends to overwrite the neuronal activity in the stimulated area, would disrupt the 

content-specific population activity in the stimulated network. Neurophysiological studies 

provide experimental evidence indicating that distractor events disrupt content-specific firing 

activities rather than amplifying them to a discernible level in the mass action of neurons 

[71]. Therefore, while it is not entirely incompatible, the subthreshold attractor model 

does not adequately describe our results because we found no evidence of impaired WM 

performance in the Active TMS vs. Control TMS condition.

Another alternative for a hidden state (whether it is due to synaptic plasticity or to other 

means) of WM content in sensory areas is that the WM maintenance is carried through 

a recurrent neural network where the PFC shapes and transforms the WM representations 

according to task demands [54,72]. The recurrent model is another possible explanation for 

how the synaptic weights could be formed and maintained in the posterior and sensory brain 

areas. Indeed, it has been recently shown that the WM content can be effectively maintained 

by a neuronal behavior explained by a combination of activity-based and activity-silent 

models of WM [73].

Another important consideration is that, although the initial E-field exceeded the stimulation 

threshold only in our targeted STG site, single-pulse TMS could influence not only local 
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but also distant neural circuits through axonal and transsynaptic propagation, potentially 

affecting other cortical and subcortical areas starting already at the first tens of milliseconds 

after the TMS pulse. The action potentials generated by the TMS-induced electric field 

may propagate along the axons in both anterograde and retrograde directions, facilitating 

forward and backward information flow within the stimulated pathway [74]. Computational 

modeling studies of TMS-EEG effects suggest that recurrent network feedback to the target 

regions begins driving TEP responses already around 100 ms post-stimulation, whereas 

only the earlier TEP components can be attributed to local reverberatory activity within the 

stimulated region [75]. Roughly consistent with previous impulse-stimulus and TMS studies 

of visual WM [28,30], here the significant increases of decoding accuracy occurred about 

200–300 ms after the TMS pulse, peaking slightly earlier in the within-participant than 

cross-participant analyses. The observed effects may result from feedforward propagation of 

activity from STG to other areas and/or subsequent feedback influences from other regions 

back to STG.

Our cross-participant decoding results indicate that the states that were revealed by the TMS 

pulse were stable across participants [76]. This is argued to be similar to the difference 

between fixed- and mixed-effects analyses [77]. In the context of MVPA, this distinction 

allows for the identification of differences in local computations. Significant prediction 

in a cross-participant model indicates that the stimulus-related information encoded by a 

time-resolved neuronal activity pattern stays relatively consistent across participants [78].

Some inherent limitations of EEG interpretations during a combined TMS-EEG study 

include several types of artifacts such as direct muscle/sensory nerve stimulation, 

somatosensory sensation related to the vibration of the coil, and acoustical clicks. There 

is a possibility that the improved decoding following a TMS pulse is attributable not only 

to its neurophysiological effects on the target area but also to non-specific effects associated 

with unrelated physiological events. Here, we attempted to control these biases with a 

Control TMS condition. Adding a hard plastic block provides similar tactile and auditory 

sensation as Active TMS but with subthreshold brain stimulation. To mitigate the effect of 

acoustical clicks we also used a continuous noise masker stimulus and TMS compatible 

insert earphones accompanied with earplugs that attenuate the background noise [37]. It 

is also worth noting that the same TMS stimulator output level was used for Control and 

Active TMS sessions for each participant, resulting also in exactly the same sound level 

of the TMS click sound. Our continuous noise masking should have mainly eliminated 

the possibility of TMS-evoked auditory effects (Fig. 5a–b). Further, such effects should 

be similar across the Control and Active TMS conditions as well as between the different 

memory conditions. It is thus unlikely that the decoding results would be biased by any 

auditory artifacts. The differences in WM decoding between Active and Control sessions 

thus cannot follow from the click sound, per se. Finally, TMS was applied at a fixed 2-s 

latency, which might have created an anticipation effect However, such an anticipation effect 

should have been identical in the Active TMS and Control TMS conditions, making it 

unlikely that our main results were influenced by such an effect.

To conclude, using TMS-EEG and cross-participant MVPA, the present study suggests 

maintenance of WM content involves an “activity-silent” brain state in auditory brain areas. 
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The study also demonstrates the power of TMS as a way to probe information content 

embedded in EEG signals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Task design. (a) Examples of the modulation patterns for ripple sounds (b) The target brain 

area for the TMS pulse, adapted from Uluç and colleagues [21]. (c) The auditory WM 

retro-cue paradigm. The timeline of events in one trial is depicted.
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Fig. 2. 
MVPA pipeline. Preprocessed whole head EEG data was entered into a PCA for spatial 

feature selection. The cut-off for the PC selection (nPC = 8) was determined based on the 

elbow in the grand-average cumulative variance curve, calculated across all conditions, WM 

classes, and participants. Then the data was entered into a searchlight analysis with cross-

participant 4-class SVM classification. Leave-one-out method was used for cross-validation. 

The analysis resulted with a decoding accuracy (DAc) time series where DAc is the value 

assigned to the centroid of searchlight sliding window. For statistical significance, we used 

maximum statistics with 500 permutations.
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Fig. 3. 
The results of E-field calculations and searchlight MVPA decoding of WM content from 

EEG. (a) Group median E-field maps for the Active TMS condition. (b) Group median 

E-field maps for the Control TMS condition. (c) Null distribution for 500 permutations, 

utilized to determine the statistical significance of decoding accuracies. From each 

permutation, the maximum cluster sum of normalized decoding accuracy was identified 

and added to this null distribution. The vertical dotted line illustrates the critical value 

for pcorrected<0.05 (cluster sum(z) = 130). (d) Decoding accuracies in the cross-participant 

four-class MVPA (% of correctly classified trials). The time series reflect the SVM decoding 

accuracies at the centroid of each sliding 300-ms searchlight. These decoding accuracies 

were derived from an iterative leave-one-participant out cross-validation procedure: In each 

searchlight time window, the data of each participant was used once as the test set and those 

from the rest of the remaining participants as the training set. The light red line denotes 

the Active TMS condition and the light blue line the Control TMS condition. The dotted 

horizontal line indicates the chance level of decoding-accuracy in a four-class classification 

(25 %). The time window when the decoding accuracy was significantly higher than chance 

level in the Active TMS condition is shown in dark red (pCorrected<0.05, non-parametric 

cluster-based permutation test).
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Fig. 4. 
The results of within-participant searchlight MVPA decoding of WM content from EEG 

for Control and Active TMS conditions. (a) Decoding accuracies in the within-participant 

four-class MVPA. The time-resolved decoding reflects the accuracies at the centroid of each 

sliding 300-ms searchlight. The thin red line denotes the Active TMS condition and the 

thin blue line the Control TMS condition. The dotted horizontal line indicates the chance 

level of decoding-accuracy in a four-class classification (25 %). The transparent red and blue 

areas denote the standard error of the mean. The time window when the decoding accuracy 

was significantly higher than chance level in the Active TMS condition is shown in dark 

red (pCorrected<0.05, non-parametric cluster-based permutation test). (b) Null distribution for 

500 permutations, utilized to determine the statistical significance of decoding accuracies. 

From each permutation, the maximum cluster sum of decoding accuracy was identified 

and added to this null distribution. The vertical dotted line illustrates the critical value for 

pcorrected<0.05 (cluster sum of decoding accuracy = 24.5).
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Fig. 5. 
Topographical and butterfly plots of ERP time courses for time of interest (TOI) in the active 

TMS condition. Different colors in the ERP plots refer to different electrodes. The electrode 

map above the figures denotes the locations of electrodes. The timeline starts from t = 0 s at 

the visual retro-cue. (a) TOI ERP topographical plots and time courses for WM before TMS 

pulse. The plot depicts the results for the visual retro-cue that starts the maintenance period. 

(b) TOI ERP topographical plots and time courses after TMS pulse. The timeline starts from 

t = 0 s at the TMS pulse. (c) TMS evoked response for Active TMS session. (d) TMS evoked 

response for Control TMS session.
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