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Analysis of whole exome 
sequencing in severe mental 
illness hints at selection of brain 
development and immune related 
genes
Jayant Mahadevan1,6, Ajai Kumar Pathak2,6, Alekhya Vemula1, Ravi Kumar Nadella1, 
Biju Viswanath1, Sanjeev Jain1, Accelerator Program for Discovery in Brain disorders using 
Stem cells (ADBS) Consortium*, Meera Purushottam1* & Mayukh Mondal2*

Evolutionary trends may underlie some aspects of the risk for common, non-communicable disorders, 
including psychiatric disease. We analyzed whole exome sequencing data from 80 unique individuals 
from India coming from families with two or more individuals with severe mental illness. We used 
Population Branch Statistics (PBS) to identify variants and genes under positive selection and 
identified 74 genes as candidates for positive selection. Of these, 20 were previously associated with 
Schizophrenia, Alzheimer’s disease and cognitive abilities in genome wide association studies. We 
then checked whether any of these 74 genes were involved in common biological pathways or related 
to specific cellular or molecular functions. We found that immune related pathways and functions 
related to innate immunity such as antigen binding were over-represented. We also evaluated for the 
presence of Neanderthal introgressed segments in these genes and found Neanderthal introgression 
in a single gene out of the 74 candidate genes. However, the introgression pattern indicates the region 
is unlikely to be the source for selection. Our findings hint at how selection pressures in individuals 
from families with a history of severe mental illness may diverge from the general population. Further, 
it also provides insights into the genetic architecture of severe mental illness, such as schizophrenia 
and its link to immune factors.

Severe mental illnesses (SMI) such as schizophrenia and bipolar disorder (BD) have a lifetime prevalence of 1%; 
and this seems to have remained relatively stable across geography and  time1,2. Psychiatric disease syndromes are 
common, usually begin in young adulthood, are a source of considerable personal and social distress, associated 
with premature mortality and the treatments have limited efficacy. Hence, detecting underlying mechanisms that 
may contribute to risk and recovery will be useful.

These syndromes are known to be heritable and their genetic architecture is quite likely to be polygenic, with 
a combination of common variants of small effect and rare variants of relatively larger effect being  implicated3. 
The apparently uniform genetic epidemiology of these syndromes in different parts of the world seems to sug-
gest that there is no specific selection for, or against, these conditions. This has been attributed to theories of 
balancing selection, ancestral neutrality or polygenic mutation selection  balance4.

From a population genetics standpoint, admixture, migrations and selection all have an impact on our under-
standing of the genetic contributions to risk of psychiatric  illness5. Summary statistics generated from genome 
wide association study (GWAS) data have been commonly used to investigate the contribution of natural selec-
tion on the genetic architecture of complex traits, such as psychiatric  syndromes6. Findings from studies inves-
tigating the role of natural selection in mental illness have been ambiguous with a few implicating the role of 
positive  selection7–9, while others have shown either no evidence for selection or negative  selection4,10,11.
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Whole exome sequencing, which documents the variation in protein-coding sequences, has also been used 
as a tool to investigate natural selection. A number of studies in isolated populations have identified genetic vari-
ation that confers protection against environmental conditions such as adaptation to hypoxia at high altitudes 
among  Tibetans12 or arctic climate among Nunavik  Inuit13 and  Siberians14. Signatures of natural selection are 
detected even in the context of more recent population divergence and this influences many aspects of physiol-
ogy, underscored by variations in genes that impact on height, blood coagulation, pigmentation, diet availability 
and resistance to  infections15,16.

People with psychiatric illness such as schizophrenia and BD are known to have protective alleles in their 
 genomes17, and these may be associated with  resilience18. A study which investigated the evolutionary pattern in 
the SLC39A8 gene, found that a schizophrenia risk variant in the European population had experienced recent 
positive selection in Europeans, and that it may have offered protection from the risk of hypertension, and also 
helped them adapt to the cold  environment19. These patterns have been suggested, and detected, for many dis-
eases, especially those that have an onset in adult  life20.

In addition to the role of natural selection, there has also been growing interest in understanding the con-
tribution of archaic sequences of DNA to liability for  disease21. We know that there has been more than one 
instance of admixture between early human populations along with Neanderthals and  Denisovans22,23. This 
has resulted in the persistence of a number of introgressed sequences of archaic (Neanderthal and Denisovan) 
DNA that account for around 2–4% of the genome in modern (Homo sapiens) human populations. Studies have 
demonstrated the influence of such sequences on immune functioning and susceptibility to infections including 
COVID-1924. These sequences have also been found to be depleted in genes related to specific brain  regions25 
and influence functional connectivity in the brain as  well26. Consequently, the impact of archaic introgression 
and admixtures on psychiatric disorders merits further exploration. South Asia has been inhabited by modern 
humans for the last several thousand years, and the population displays admixture with both extinct hominins, 
as well as significant migrations and bottlenecks in the recent  past27,28. These admixture events may thus have a 
noteworthy influence on the susceptibility and prevalence of disease.

Hence, in this study, we investigated signatures of positive selection in unrelated individuals from families 
with multiple affected individuals with severe mental illness from southern India. We also used allele frequency 
differences between the cases and controls from the same population to prune out potential regions directly 
associated with caseness, and concentrated on regions with strong positive selection. Additionally, we specifi-
cally explored whether genes which showed evidence of positive selection had any evidence of Neanderthal 
introgression.

Results
We used whole exome sequence (WES) data of 80 unrelated individuals each of whom was diagnosed with psy-
chiatric illness, as cases. These individuals were drawn from 80 separate and distinct families in which multiple 
members (at least 2 first-degree relatives in a nuclear family) were diagnosed to have a major psychiatric disorder 
[schizophrenia, BD, obsessive compulsive disorder (OCD), dementia and substance use disorders (SUD)]29 (A 
description of the sample is provided in the “Methods” section).

Since WES data is highly dispersed, we decided to use Population Branch Statistics (PBS) for our selection 
 analysis30. PBS is based on allele frequency differentiation between populations using three populations. Unlike 
 FST

31, PBS is directional and gives us a clear idea as to which population is under selection for the given allele. 
A high PBS value corresponds to a highly deviated allele frequency of the target population compared to the 
reference population caused by positive selection.

Here, we used our data set consisting of 80 cases as the target population, the South Asian and African 
ancestry genomes from the gnomAD dataset as reference and outgroup populations  respectively32. We also used 
WES data from 10 unrelated individuals from the same population as controls in the analysis to exclude PBS 
differences that may be attributable to case status rather than selection (A description of the same is provided 
in the “Methods” section).

Further, since the gnomAD dataset only reports South Asian ancestry Samples (SAS), which is a super popu-
lation, we also tried to test if using a super population may bias our results when using the same as a reference 
population for the PBS analysis. We used 1000 genome 3rd phase data, which provides labels of South Asian 
subpopulations [such as Indian Telugus from the United Kingdom (ITU) and Gujarati Indian from Houston 
(GHU)], for this purpose. We found that PBS values coming from a subpopulation and superpopulation were 
highly correlated  (R2 = 0.8534), especially SNPs with top values were common between both the results (Fig. S1). 
This reiterates our previous  results33, and supports the conclusion that the use of the SAS super population in 
our study did not influence the findings of the PBS analysis.

Identification of SNPs and genes under influence of selection. We followed an approach that 
defined the SNPs that fell in the top 0.1% (99.9th percentile) of the PBS value distribution as the most likely can-
didates for selection. Further, to increase the confidence that the SNPs that fell under extreme PBS values were 
caused by selection rather than sampling of cases, we calculated the frequency difference of these SNPs between 
cases and controls. We then excluded all SNPs (Table S9) that fell within the top 0.1% (99.9th percentile) of the 
frequency difference distribution between cases and controls, also supported by the Fisher’s exact test P value 
and Odds ratio (OR) for frequency difference in cases and controls. This provided a list of candidate genes which 
were a plausible target of adaptive evolution specific to our test population. Further, we filtered genes with at least 
two SNPs with high PBS value to reduce the chance of false positives.

A total of 398 SNPs located in 190 genes were found to lie in the top 0.1% of the PBS value distribution.  115 
genes had one SNP per gene (Table S1), while 75 genes had more than one SNP per gene (Table S2). A total of 
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10 SNPs from 10 genes were excluded due to case - control differences (Table S9). After this, we had 110 genes 
that had only one SNP per gene (Table S3) and 74 genes that had more than one SNP per gene (Table S3). For 
these 74 genes, we calculated an average PBS value per gene (Fig. 1; Table S3). We then used this list of 74 genes 
to look for any indications of an underlying shared biology.

Functions of putatively selected genes. Many of the 74 genes are involved with immunological and 
defense responses including activation and regulation of interferon-gamma, cytokine and immune system, and 
different signaling pathways. We manually curated these genes using the GWAS Catalogue (https:// www. ebi. ac. 
uk/ gwas/) and ENSEMBL (https:// www. ensem bl. org/ Homo_ sapie ns/ Info/ Index) and found that several of the 
listed genes were reported for having potential roles in cancer, liver disease and diabetes.

We found 20 genes (MAML3, SNX8, WRN, ATXN3, PAK6, TXNDC2, MICA, PK1LD2, AHNAK2, PI4KA, 
C17orf97, FCER2, SNTG2, GGT1, FLG, IGFN1, PCDHA4, ANTXRL SULT1A1), in this list of 74 genes, that have 
been previously associated with elevated risk for schizophrenia, Parkinson disease, Alzheimer’s Disease and 
cognitive abilities or intelligence (Table S4).

Functional enrichment and pathway enrichment analysis. Furthermore, to evaluate whether genes 
with extremely high PBS values (the 99.9th percentile) were enriched in any functional category or metabolic 
pathways, we evaluated our list of 74 genes for the three Gene Ontology (GO) categories: biological processes 
(Table S5), cellular components (Table S6), and molecular function (Table S7). In addition, we analyzed the gene 
list for pathway over-representation using the IMPaLa tool (Table S8).

In GO analysis, we observed that several of selected genes of the target population were functionally enriched 
(P < 0.05) for different signaling and regulatory mechanisms related to immune system, and viral defense such as 
negative regulation of natural killer cell mediated cytotoxicity, interferon-gamma-mediated signaling pathway 
and antigen processing and presentation of exogenous peptide or polysaccharide antigen via MHC class II.

Using the IMPaLa pathway analysis tool, we again observed an over-representation for the enrichment of 
genes (below Q-value 0.05) involved in different immune related pathways including antigen processing and 
presentation, Graft-versus-host disease, Type I diabetes mellitus and autoimmune thyroid disease.

We repeated the functional enrichment analysis and pathway analysis with our list of 74 genes after exclu-
sion of the HLA region (which is known to be extremely polymorphic). It was seen that while the GO analysis 
did not show any evidence of functional enrichment, the pathway analysis using IMPaLA suggested pathways 
involved with immune function (Table 1).

Archaic introgression in putatively selected genes. Further, we looked for the archaic introgression 
in these 74 genes that were chosen as candidates of selection. We applied  Haplostrips34 to the exome data of our 
80 unrelated case samples. However, we could not detect any definitive traces of archaic introgression in any of 
the genes in the gene sets except AHNAK2 gene (Fig. 2). Though we observed a few Neanderthal derived SNPs 
in the AHNAK2 gene region showing a pattern of unique haplotype sharing among the continental populations, 
none of these SNPs were found in high PBS value during selection scan.

The fact that Neanderthal introgression sequence in the AHNAK2 gene region does not contain any of the 
variants identified as putative candidates of selection, indicates that the introgressed haplotype of the gene was 
probably not selected, thus, rules out its significance in the adaptive role of AHNAK2 in this study.

Discussion
Our results identify a total of 74 genes that show definitive evidence of selection, in individuals coming from 
families with multiple individuals with severe mental illness from southern India, based on the PBS analysis. 
Many of the identified genes have complex biology with numerous being linked to immune processes, cancer 
and neuropsychiatric illnesses.

There is some prior suggestion that many genes implicated in brain function, and disease, may be under 
 selection35. This was supported by our findings where genes that we identified to be under selection have been 
previously implicated in a number of neuropsychiatric disease phenotypes. These include; SNX8 and PAK6, which 
were seen to harbour common variants that were associated with schizophrenia in  GWAS10,36–38, SNTG2 and 
PKD1L2 that were associated with neurodevelopmental disorders such as  autism39 and attention deficit hyperac-
tivity  disorder40, and ATXN3 and C17orf97 that have variants associated with neurodegenerative disorders like 
Amyotrophic Lateral  Sclerosis41 and Parkinson’s  disease42. We also found genes related to disorders of neuronal 
migration and brain malformations such as polymicrogyria, like AHNAK2 and PI4KA43.

Aside from associations with disease phenotypes, a number of the genes we identified have been implicated 
in brain biology, including neurodevelopment, maintenance of neuronal and axonal integrity and apoptosis. The 
SARM1 protein is a member of MyD88/TIR-domain containing superfamily of proteins, which are involved in 
innate immune responses. Deficiency of the protein is seen to influence the apoptotic cascade of a variety of 
neural cells, including microglia; and cytokine expression in the  brain44. The HYDIN protein, associated with 
cilia in the brain, is critical for development of ventricles and brain; and it interacts with other genes like FOXP2 
which are well known to be related to neurodevelopmental disorders such as ASD and  ADHD45. The neurode-
velopmental disorders of autism and schizophrenia have also been hypothesised to be linked to UV exposure 
possibly via vitamin D  levels46. Thus, it was interesting to identify the HORNERIN / HRNR gene which is very 
sensitive to UV light and is believed to also be involved in the species-specific differentiation of the outer layer 
of  skin47. Further, genes identified by us such as MAML3, WRN and SULT1A1 also harbour variants linked to 
intelligence and cognitive  abilities48–50. The contributions of these genes to neurodevelopment, intelligence and 
cognitive abilities suggests why they may be plausible candidates undergoing positive selection.

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ensembl.org/Homo_sapiens/Info/Index
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Figure 1.  Dot plot of genes with multiple SNPs against the average PBS value; the dot size varies based on gene 
size (number of SNPs). While plotting we removed the gene SARM1 that was behaving as an outlier (average 
PBS value = 0.89591), for better visualization.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21088  | https://doi.org/10.1038/s41598-021-00123-x

www.nature.com/scientificreports/

We also identified a number of genes linked to immune functions that were under selection in our sample. 
This was reflected in our functional enrichment and pathway enrichment analyses, where biological processes and 
pathways linked to the immune system were strongly implicated. This is expected, since immune function related 
genes are known to undergo significant selection pressure by virtue of factors such as the need to adapt to ecologi-
cal diversity, and biological factors such as the threat posed by new and ever-changing infectious  pathogens51,52.

The concurrent selection of genes that influence distinct, and apparently disparate biological processes, raises a 
number of extremely interesting questions about the interplay between the immune system and neuropsychiatric 
phenotypes. A well-known example is the role of the ApoE ε4 allele, which confers protection against viral illness 
on the one hand, but increases the risk of cognitive impairment later in  life53. The role of the HLA region on 
Chromosome 6 has also been a consistently reported finding from GWAS and WGS of  schizophrenia54. A study 
which investigated the role of balancing selection using exome data from modern and archaic humans also found 
an excess of SNPs across species in a gene set associated with the immune system, of which six were located within 
genes previously associated with  schizophrenia55. Another study also suggests shared genetic pathways linking 
white blood cell indices and complex diseases such as schizophrenia, autoimmune, and coronary heart  diseases56.

A number of genes that we identified in our study, such as the KIR family of genes have been implicated in a 
number of immune related functions, and also influence neurodevelopment and immune reactions in the brain. 
The KIR3DL1 has been linked to several aspects of natural killer cell responses, which in turn have been linked 
to susceptibility to multiple sclerosis, especially in African-Americans57. The KIR2DL4 immunoglobulin-like 
receptor has also been implicated in the development and maintenance of  oligodendrocytes58; and also thought 
to have been positively selected for enabling uterine tolerance for embryonic implantation in  humans59. Similarly, 
the KIR3DL2 have also been implicated in the interface between immunity genes and brain development, inflam-
mation and responses to damage. They are the receptors for the major histocompatibility complex class I (MHC-I) 
like HLA-F, and protect neurons from astrocyte induced toxicity, as is seen in  ALS60. The IGSF3 gene forms a 
complex with Tetraspanin (TSPAN7), which is involved in neurodevelopment (many mutations in this gene are 
linked to X-linked syndromes), and thus mediates a cross-talk between immune mechanisms and  development61.

Although we observed archaic introgression in a single gene (AHNAK2) out of the identified set of puta-
tive selected genes, we did not find any evidence of archaic introgression under positive selection in any of the 
genes that were identified using the PBS analysis. These could be related to the fact that exome sequences have 
a restricted utility when it comes to finding introgressed regions, as the exonic regions are short and spaced, 
in the context of the whole genome. Additionally, from an evolutionary standpoint, selection tends to happen 
either upstream or downstream of the genes in areas such as transcription binding sites, rather than in the exonic 
regions which are well  conserved62. Furthermore, exonic regions are generally under negative selection and 
therefore may not exhibit differences between modern and archaic hominins. Therefore, even if some highly dif-
ferentiated exonic segment introgressed, it is most likely to have been weeded out by negative selection from the 
population, as Neanderthals have many more deleterious SNPs due to their low effective population  size63. Thus, 
while it is not impossible to find an introgressed exonic region being selected for, these are rare in the  literature64.

A few previous studies looking for selection signatures in south Asian populations using different method-
ologies have found evidence for positive selection in genes related to lipid metabolism and glucose uptake and 
have posited a link between the same and the predilection towards development of type 2 diabetes and  obesity65 
and height in Andaman Island  populations66. Hence, our study also provides fresh insights into selection in a 
population from southern India.

In conclusion, our findings show that families with multiple members affected with severe mental illness 
can be used to detect signatures of selection. Immune related genes showed the greatest evidence of selection 
in these families. This underscores the contribution of immune mechanisms and infection susceptibility, to the 
genetic architecture of severe mental illness.

Methods
Study population. The study population consisted of 80 unrelated individuals (Females, N = 34); each of 
whom was diagnosed with psychiatric illness. The diagnoses were made by two trained psychiatrists based on 
DSM-IV TR criteria, and included BD (N = 26), schizophrenia (N = 25), dementia (N = 23), OCD (N = 3), SUD 
(N = 2) and Major Depressive Disorder (N = 1). These individuals were drawn from 80 separate and distinct 

Table 1.  IMPaLa pathways enrichment analysis results for the list of 74 multiSNP genes after removing HLA 
genes.

Pathway_name Pathway_source Num_overlapping_genes Overlapping_genes Num_all_pathway_genes P_genes Q_genes

Antigen processing and presenta-
tion—Homo sapiens (human) KEGG 6 KIR3DL1; KIR3DL2; KIR3DL3; 

KIR2DL1; KIR2DL3; KIR2DL4 77 (77) 8.44E−-08 0.000387

Natural killer cell mediated cytotox-
icity—Homo sapiens (human) KEGG 6 KIR3DL1; KIR3DL2; MICA; 

KIR2DL1; KIR2DL3; KIR2DL4 130 (131) 1.90E−06 0.00435

Graft-versus-host disease—Homo 
sapiens (human) KEGG 4 KIR2DL3; KIR2DL1; KIR3DL1; 

KIR3DL2 41 (41) 5.83E−06 0.00892

Immunoregulatory interactions 
between a Lymphoid and a non-
Lymphoid cell

Reactome 6 KIR3DL1; KIR3DL2; MICA; 
KIR2DL1; KIR2DL3; KIR2DL4 218 (221) 3.67E−05 0.0421

Termination of O-glycan biosynthesis Reactome 3 MUC4; MUC6; MUC12 26 (26) 5.73E−05 0.0526
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families who were recruited as a part of the Accelerator Program for Discovery in Brain Disorders using Stem 
Cells (ADBS) study, which has been approved by the ethics committee of the National Institute of Mental Health 
and Neurosciences, Bengaluru, India. The study was carried out in accordance with the Declaration of Helsinki 
for research involving human participants. Written informed consent was obtained from all recruited individu-
als and their family members, wherever required.

Sequencing and quality control. As described in our previous  study67, whole exome sequencing was 
carried out on the Illumina Hiseq NGS platform with libraries prepared using Illumina exome kits. Reads were 
aligned with the reference human genome hg19 using the Burrows-Wheeler algorithm tool (https:// acade mic. 
oup. com/ bioin forma tics/ artic le/ 25/ 14/ 1754/ 225615).

Variant calling. We used bcftools-1.968 to do the variant calling for all our samples from the bam files. First, 
we used bcftools mpileup to create genotype likelihoods. We then used a minimum base quality of 20 and a 
minimum mapping quality of 20 to accept it as a true variant. We also used an adjusted mapping quality of 50 
to downgrade reads containing excessive mismatches (as recommended in bcftools for BWA). Additionally, we 
annotated the file using FORMAT/DP so we had depth information in the vcf file. The output was then piped to 
bcftools call. We used -m for multi allelic caller. We only used SNPs which were present in the gnomAD vcf file 
using -T command. An example of the code is presented here:

bcftools mpileup–ignore-RG -q 20 -Q 20 -C 50 -r <chr> -a FORMAT/DP-f <ucsc.hg19.fasta>  <*.bam>| 
bcftools call-m-T <gnomead.vcf.gz> -O z-o <out.vcf.gz>.

A similar approach was also used for the 1000 genome phase 3 release  data69, where we merged the 1000 
genome vcf file using the bcftools merge command. We only kept our target population, Yoruba in Ibadan, 
Nigeria (YRI), Gujarati Indians in Houston, TX (GIH) and Indian Telugu in the UK (ITU) for further analysis.
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Figure 2.  Haplostrips plot of AHNAK2 gene: (A) Clustered and sorted by increasing distance with 
Neanderthals. A few Neanderthal derived SNPs show a pattern of unique haplotype sharing among the 
continental populations. However, none of these SNPs were found in high PBS value during selection scan and 
therefore have no significance in the adaptive role of AHNAK2 in this study. Population label abbreviations are 
as follows: NEAN Neanderthal, OIS Our Indian Samples, ITU Indian Telugus, CEU Central Europeans from 
Utah, CHB Chinese Han from Beijing, YRI Yoruba. (B) This plot visualizes the extent of closeness (based on 
SNP difference) between the haplotypes shared by continental populations and Neanderthal.
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Filtering. After variant calling, we first did a liftover of the vcf file from hg19 to GRCh37 using picard tools. 
We kept only SNPs (using –remove-indels flag). We removed any genotype where the coverage was less than 
10 × using (–minDP 10) and removed any SNPs where we had more than 50% missing genotype data (using –
max-missing 0.5). All these commands were done by using  vcftools70. We kept only unrelated individuals from 
the affected multiplex families and disease free (control group) individuals for further analysis.

PBS calculation. We took the vcf file generated from the previous step and used vcftools to create a fre-
quency file for both unrelated individuals and the control group. We used bcftools query to extract information 
about the frequencies of gnomAD vcf files. We only extracted AF_afr (alternate allele frequency of African-
American/African ancestry individuals), AF_sas (alternate allele frequency of South Asian ancestry individu-
als), AN_afr [(total number of alleles in samples of African-American/African ancestry individuals) and AN_sas 
(total number of alleles in samples of South Asian ancestry individuals] from the info columns from gnomAD 
vcf files. These frequency data were used to calculate PBS (X, SAS, AFR) [where X is our data consisting of dis-
eased unrelated individuals] using in house code with scikit-allele71. We then extracted the top SNPs by their 
PBS values and tried to find their impact on phenotype.

We also calculated PBS (X, ITU, YRI) and PBS (X, ITU + GIH, YRI) using scikit-allele to estimate the impact 
of using a super population instead of using a subpopulation. The  R2 was calculated using scipy.stat.linregress 
function from scipy-1.5.3.

Frequency differentiation between cases and controls. As our target population consists of cases, 
some of the top PBS values can come from regions which might simply be associated with caseness due to 
sampling bias. To circumvent this problem, we also calculated the allele frequency differences between case 
and control data set (|Freq case − Freq control|). Subsequently, SNPs (> 99.9th percentile distribution of PBS) were 
only considered as potential targets of selection if they had allele frequency difference between cases and con-
trols < 99.9th percentile and SNPs with allele frequency difference of > 99.9th percentile of the frequency differ-
ence distribution between case and controls were dropped. The rationale being that if the PBS value of a SNP 
is high due to selection instead of the caseness then the allele frequency difference between cases and controls 
should not vary as much.

We also implemented an alternative approach (Fisher’s exact test) to find out the top differentiated frequen-
cies in case and control studies. We used plink-1.9.072 –assoc fisher and –allow-no-sex to calculate the p-value 
and the odds ratio (OR).

Identification of top candidate genes. We used python to select genes at the top 0.1% (> 99.9th per-
centile) of the overall PBS distribution and calculated the number of SNPs per gene. We chose 99.9 percentile as 
significant based on previously published  analysis15. We thus identified 74 genes as the putative candidates for 
selection in the target population.

Analyses of functional enrichment. To perform the enrichment analysis, we used the set of genes 
obtained via the above method. For GO enrichment, we used the online tool in http:// www. geneo ntolo gy. org/ 
page/ go- enric hment- analy sis; (GO Ontology database https:// doi. org/ 10. 5281/ zenodo. 50809 93 Released 2021-
07-02; last accessed August 9, 2021). We analyzed each of the four gene lists with the three GO categories (bio-
logical processes, cellular components, and molecular function) using FDR correction with a significance based 
on P value < 0.05 (ran on 9th August 2021).

The pathway over-representation analysis on the same gene sets was run using the IMPaLA online  tool73 avail-
able at: http:// impala. molgen. mpg. de (ran on 8th Dec, 2020) and we considered only pathways with a Q-value less 
than 0.05 to minimize the false positives because Q-value < 0.05 implies only 5% of results can be false positives.

Detection of archaic introgression in selected gene regions. We applied haplostrips tool to detect 
archaic  introgression74 in putative positively selected genes. Haplostrips uses phased genetic data and visualizes 
polymorphisms of a particular genomic region by clustering and sorting haplotypes independently. The data was 
phased using  shapeit75 with 1000 genome third phase  reference69.
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