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Abstract: India is home to 1.3 billion people. The geography and the magnitude of the population
present unique challenges in the delivery of healthcare services. The implementation of electronic
health records and tools for conducting predictive modeling enables opportunities to explore time
series data like patient inflow to the hospital. This study aims to analyze expected outpatient visits
to the tertiary eyecare network in India using datasets from a domestically developed electronic
medical record system (eyeSmart™) implemented across a large multitier ophthalmology network in
India. Demographic information of 3,384,157 patient visits was obtained from eyeSmart EMR from
August 2010 to December 2017 across the L.V. Prasad Eye Institute network. Age, gender, date of
visit and time status of the patients were selected for analysis. The datapoints for each parameter
from the patient visits were modeled using the seasonal autoregressive integrated moving average
(SARIMA) modeling. SARIMA (0,0,1)(0,1,7)7 provided the best fit for predicting total outpatient
visits. This study describes the prediction method of forecasting outpatient visits to a large eyecare
network in India. The results of our model hold the potential to be used to support the decisions of
resource planning in the delivery of eyecare services to patients.

Keywords: forecasting; electronic health records; health resources; patient flow; SARIMA

1. Introduction

The geography and the magnitude of the population in India present unique chal-
lenges in the delivery of healthcare services. Digitization of patient records brings with it
the benefits of real-time access to information and enables a better strategy for enhancing
future care. Various studies have predicted patterns in patient care such as patient flow for
outpatient consultation [1], discharge prioritization for inpatients [2], readmission rates
in hospitals [3,4] and adverse drug reactions [5]. Ramos et al. [1] described a predictive
model which calculated the patient flow based on geospatial variables in a medium-sized
Spanish city. Patients who had a higher socioeconomic status and those in the age groups
of 25–34 and 55–65 years paid visits to health centres less often. Monday and Friday were
the days of the greatest and lowest demand, respectively. February had the highest influx
of patients on a monthly basis. There were significantly more patient visits during days
with poor air quality and high relative humidity. Barnes et al. [2] presented a model which
used supervised machine learning methods to predict the total number of discharges in a
day for an inpatient medical unit. McLaren et al. [3] described a model which predicted
the readmission rates among heart failure patients based on their prior admission status.
They observed that the risk of readmission significantly increases with the increase in the
number of prior admissions after adjusting for the related clinical variables. Zhao et al. [5]
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proposed a predictive model to identify adverse events due to drugs and further presented
solutions to few of the challenges it presented.

The use of statistical modeling to predict healthcare outcomes is breaking new ground
in the field of biomedical informatics and data science. The implementation of electronic
health records (EHR) and tools for conducting predictive modeling enables vast opportu-
nities to explore time series data like patient inflow to the hospital. Historical traits are
assumed to manifest themselves in the future in time series models [6]. Autoregressive
integrated moving average (ARIMA) is a univariate stochastic model that uses probability
and statistics for forecasting purposes. Seasonal ARIMA (SARIMA) modeling approach,
a variant of ARIMA, is used in time series that have a tendency of showing a periodic
behavior after certain time intervals [7]. Efficient management of eyecare services can be
enhanced with predictive forecasts of future eyecare demand and resource availability in
real time. In the present analysis using a SARIMA model, we aimed to evaluate the ex-
pected outpatient visits to a large tertiary eyecare network in India. We present a predictive
model to forecast the presentation of patients that can assist in better resource allocation
for an efficient delivery of eyecare services.

2. Materials and Methods

EyeSmart Electronic Medical Record (EMR) (eyeSmart™) is an electronic medical
record system developed in-house at the L.V. Prasad Eye Institute, India. The project which
started in August 2010 has successfully completed digitization of the entire LVPEI network
which comprises centers which span four states of India. On the average, 4500 patients
visit the network on a given day. The EMR system allows structured documentation of
demographic and clinical information which are stored in the database of the respective
centers. The study protocols and procedures adhered to the tenets of the declaration of
Helsinki [8]. The data were made anonymous prior to access by the authors.

Data Preparation

Demographic information of 3,384,157 patient visits was obtained from eyeSmart
EMR from August 2010 to December 2017 across the LVPEI network. Data of the four
tertiary centers, namely, Hyderabad campus (KAR), Vishakhapatnam campus (GMRV),
Bhubaneswar campus (MTC) and Vijayawada campus (KVC) were considered for analysis.
The length of time series data of patient visits was 1250 days for the KAR, 1809 days for the
GMRV, 1986 days for the MTC and 2793 days for the KVC. The parameters of age, gender,
date of visit and time status of the patients were selected for analysis. The subset of patients
0–1 years of age and all the patients who presented on time for the appointment were
excluded from the analysis due to sparse data. The time status of the patient at presentation
was defined as “before time” or “delayed” with respect to their time of appointment. The
datapoints in each parameter from the patient visits were modeled using a train—test
split, with a ratio of 80:20. This split was formed for the development and validation of
the predictive model. The data for training and testing the model were selected from the
KVC with 481,262 outpatient visits. The training and testing sets were separated by time.
The training data consisted of 2241 days. The predictive model was tested by a one-week
prediction of the parameters for 52 weeks. The model was trained on the data which were
recorded before the date and validated on the data from a week ahead from the date.

3. Results

The following sequential steps were followed for SARIMA modeling and forecasting.

3.1. Exploratory Data Analysis and Data Preprocessing
3.1.1. Data Visualization

The daily outpatient visits show an overall increasing trend (Figure 1). A significant
number of patients visited the center on most of the days except for few days like sundays
where there was a dip in the total number of patients who visited the center.
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Abstract: Understanding transpiration responses to physiological and environmental factors is 
essential for efficient water management practices in greenhouse grapevine farms. To determine the 
driving factors of grapevine sap flow under solar greenhouse conditions in a typical cold climate, 
the sap flow, greenhouse micro-environmental conditions, and canopy details were measured and 
analyzed for the 2017‒2018 growing season in Northeast China. The results showed that leaf area 
index controlled the upper boundary of sap flow rate (SFR). Correlations between SFR and 
meteorological factors obviously varied with time scales. Besides, the correlations at the hourly scale 
varied across the seasons. Photo-synthetically active radiation (PAR) was the primary control factor 
of sap flow, irrespective of time scale or season. The start and stop times of sap flow did not change 
with weather conditions, but SFR had broader peaks with higher peak values during sunny days. 
The diurnal variation of SFR lagged behind that of PAR, but remained ahead of those of VPD and 
temperature. Weather condition changed the sizes of the hysteresis loops, but not the rotation 
direction. The hydrological and physiological processes involved in sap flow are useful for refining 
transpiration models and improving water use efficiency in the greenhouse environment. 

Keywords: sap flow rate; transpiration; water use; environmental factors; physiological factors; 
grapevine; solar greenhouse; Northeast China 

 

Figure 2. Periodogram of the total patients (KVC).

3.1.2. Stationarity Check

Visualization tools such as the sample autocorrelation function (ACF) and sample
partial autocorrelation functions (PACF) were used to examine stationarity of the series
(Figures 3 and 4). The Kwiatkowski–Philips–Schmidt– Shin (KPSS) test at the 0.05 signifi-
cance level (α = 0.05) was used to understand the type of non-stationarity in the data and
suggested the necessary transformations. From the KPSS test, it was observed that the
series which is differenced with the lag of 7 was trend-stationary. The autocorrelation plot
(Figure 3) showed spikes at lag 7 and its multiples and the partial autocorrelation plot
(Figure 4) demonstrated an initial significant spike with a rapid decline at multiples of
lag 7, both indicating a seasonal moving average term. Similar observations were in other
categories as well; hence, similar procedures were followed to model other time-series data.
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3.2. Model Identification and Diagnostic Checking

The type (seasonal or non-seasonal) and order (p, q, P, Q) of model parameters were
identified on the basis of the ACF, PACF diagrams and Akaike information criterion (AIC)
values. Different seasonal moving average (MA) models as suggested by the ACF and
PACF plots were applied to our differenced data and the proximity of the model residuals
to white noise was observed. The ACF and PACF of residuals of the ARIMA (0,0,0)(0,1,7)7
applied to the time-series data were closest to the white noise (Figures 5 and 6). However,
the ACF and PACF values observed at lag 1 suggested additional AR (autoregressive) or
MA terms in our present model.
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Table 1. AIC values of possible SARIMA models. 

Parameter (0,0,0)(0,1,7)7 (0,0,1)(0,1,7)7 (1,0,0)(0,1,7)7 (1,0,1)(0,1,7)7 

Male 20,507.11 20,506.7 20,506.8 20,508.45 
Female 20,002.47 19,996.45 19,996.72 19,998.37 

Pediatric 16,727.46 16,729.34 16,729.33 16,726.48 
Adult 20,513.51 20,515.45 20,515.46 20,517.45 

Elderly 19,066.63 19,051.54 19,049.88 19,049.98 
Before time 21,557.36 21,556.42 21,556.58 21,558.15 

Delayed 19,089.98 19,083.4 19,083.14 19,084.94 

Figure 6. Partial autocorrelation function of residuals of ARIMA (0,0,0)(0,1,7).

ARIMA (0,0,1)(0,1,7)7 was found to be the best model for the total patient footfall data
with an estimated sigma square of 1864, log likelihood of −11,548.23 and AIC value of
23,114.46. The majority of values of the ACF and PACF plots were within the confidence
intervals which resemble the signature plots for white noise (Figures 7 and 8). The selection
of the model for the respective parameters based on the AIC values and parsimony criteria
is detailed in Table 1.
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Table 1. AIC values of possible SARIMA models.

Parameter (0,0,0)(0,1,7)7 (0,0,1)(0,1,7)7 (1,0,0)(0,1,7)7 (1,0,1)(0,1,7)7

Male 20,507.11 20,506.7 20,506.8 20,508.45
Female 20,002.47 19,996.45 19,996.72 19,998.37

Pediatric 16,727.46 16,729.34 16,729.33 16,726.48
Adult 20,513.51 20,515.45 20,515.46 20,517.45

Elderly 19,066.63 19,051.54 19,049.88 19,049.98
Before time 21,557.36 21,556.42 21,556.58 21,558.15

Delayed 19,089.98 19,083.4 19,083.14 19,084.94
Total 23,117.58 23,114.46 23,114.66 23,116.3
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3.3. Evaluation Protocol

Our training and testing sets were separated by time. The model was trained using
data from the past and applied to the future data. The training data consisted of 1986 days
from 2 June 2013 to 7 October 2017. The testing data consisted of 364 days from 8 October
2017 to 7 October 2018.

3.4. Measuring Forecast Performance

We compared the forecasts obtained using our proposed approach with the actual
recorded values from the EMR on the measures of the root-mean-square error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE) and symmetric mean
absolute percentage error (SMAPE).

The modeling process found the following SARIMA, (0,0,1)(0,1,7)7, provided the best
fit for predicting total outpatient visits, generating the median of 37.56, 48.01 and 16.82%
for MAE, RMSE, MAPE, respectively, in the validation dataset. Table 2 shows median error
values of the predictive model.

Table 2. Median error values of the predictive model.

Parameter Mean Absolute Error Root-Mean-Square
Error

Mean Absolute
Percentage Error

Male 22.98 28.36 22.99%
Female 17.53 24.58 17.03%

Pediatric 11.84 15.07 62.75%
Adult 19.97 26.62 18.36%

Elderly 16.97 21.91 23.79%
Before time 30.16 36.72 44.17%

Delayed 22.36 27.10 18.56%
Total 37.56 48.01 16.82%

Different SARIMA models (Table 1) were used to make predictions of total outpatient
visits and associated parameters for the week ahead. The prediction model was run for
52 weeks, spanning an entire year from 6 May 2017 to 6 May 2018. We used the SMAPE
as the performance metric to account for the days where the actual value was zero. The
comparison of total outpatient visits between the actual and predicted values for the KVC
campus is shown in Figure 9. The number of weeks where the prediction was within the
20% margin of the SMAPE is detailed in Table 3.
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Table 3. Performance measurement of the model at 52 weeks (KVC).

Parameter No. of Weeks (Error < 20%)

Male 51 (98.07%)
Female 50 (96.15%)

Delayed 51 (98.07%)
Before time 44 (84.61%)

Pediatric 37 (71.15%)
Adult 51 (98.07%)

Elderly 51 (98.07%)
Total 51 (98.07%)

Figure 10 shows the prediction of the total patient footfall for the next seven days; an
option to visualize a one-week-ahead forecast of variables such as the total count, male
count, female count, pediatric count, adult count, delayed patient count and count of
patients who are before the appointed time is given in the dropdown list. As a part of
the ongoing validation of the model with the actual footfalls in the hospital, actual vs.
predicted values of the previous seven days were showcased to assess the accuracy of the
prediction. The forecasting model was integrated into the eyeSmart EMR system for the
administrative staff.
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4. Discussion
4.1. Principal Results

This study described the methodology of predicting outpatient visits in a large eyecare
network in India. The parameters of age, gender and time status at presentation were also
predicted to gain better insights to provide efficient eyecare services. The modeling process
found SARIMA (0,0,1)(0,1,7)7 to provide the best fit for forecasting total outpatient inflow.
The MAPE of 16.82% was observed for the predictive model which forecasted the total
outpatient inflow.

4.2. Comparison with Prior Works

Ramos et al. [1] predicted the expected outpatient visits to primary health centers in a
medium-sized city in Spain. The study used multiple regression analysis and showed an
improvement in error values on the addition of geospatial variables such as temperature,
air quality, relative humidity and economic status. Further, Luo et al. [9] described a model
which was used for forecasting outpatient visits daily about a week ahead from the data
which contained one year of daily visits of outpatients to a large hospital in Chengudu. The
combinatorial model which combined SARIMA and simple exponential smoothening (SES)
was used in this study. The MAPE values of only the SARIMA model for respiratory and
endocrine outpatient visits was 15.26% and 11.77%, respectively for a seven-day forecast
horizon. In addition, Calegari et al. [10] forecasted daily visits to a tertiary care teaching
hospital in Brazil using different mathematical models. Model accuracy was evaluated
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using the MAPE. Their MAPE at seven days was comparable, at 12.01%, using the SARIMA
model. Huang et al. [11] used a hybrid prediction model which combined ARIMA and
filtering to accurately forecast the demand for medical services in the medium as well as
short term. Another retrospective study in a medical center in Taiwan forecasted emergency
visits using time series analysis. They identified that ARIMA (0,0,1) was the best fit and
yielded the MAPE of 8.91% [12]. A group in China conducted an observational study
which analyzed patient’s visits across 10 years at an eyecare facility [13]. They observed a
continuous increase in patient visits over the years leading to an increased demand and
hence more burden on the eyecare system.

Numerous studies have been undertaken to forecast new admission inpatients, out-
patient visits and visits to blood sampling rooms and emergency departments [14–18].
Predictive models can be used to support the decisions regarding the allocation of resources
and can significantly reduce the burden on healthcare. In a country of 1.3 billion, data
science holds a potential for predictive models to be applied to healthcare delivery. To the
best of our knowledge, there is no study currently in literature describing the use of data
modeling in predicting outpatient visits in eyecare in India.

4.3. Limitations

The model used in this study is used only for short-term forecasting. Apart from
the time series data used for prediction, many other influence factors such as preference
of a particular doctor by the patient and supply of outpatient resource will also have a
significant impact on the visits of the patients. The model can be made more efficient by
taking these features into consideration.

5. Conclusions

In conclusion, this study contributes to the exploration of the prediction method to
forecast outpatient visits in India’s largest eyecare centers. Our study confirms that the
daily patient inflow follows seasonal weekly patterns. Further, it shows that SARIMA
models can be implemented to accurately predict forecasts of highly complex patient
inflow data, mainly in the short term. This model is feasible in terms of implementation
and computation of prediction for a week ahead, yielding small mean (0.02) and lower
standard deviation (17.34) of the residuals. The current prediction model is integrated
into the eyeSmart EMR system across the four tertiary centers in the LVPEI network to
validate outpatient visits predictions in the real-life scenario. The results of our model
hold a potential to be used to support the decisions of resource planning in the delivery of
eyecare services to the patients.

Future work mainly involves building models which can forecast outpatient visits in
the middle and long term. The inclusion of geospatial variables like temperature, air quality
and relative humidity can also increase the prediction accuracy of the model. Our future
work will involve addition of these variables to the model to increase prediction accuracy.
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