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Abstract

Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be
they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by
each combination of input molecules that it binds. This ‘‘regulatory complexity’’ causes a combinatorial increase in the
number of parameters required to fit experimental data as the number of protein interactions increases. It therefore
challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework
that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as
‘‘black boxes’’, we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the
regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters
required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is
thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity
of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and
how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious
model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of
agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable
modelling of biochemical networks in systems and synthetic biology.
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Introduction

A goal of biology is to understand the structure and function of

the biochemical networks that underpin cellular decision-making.

One organizing principle is that these networks are inherently

modular [1–3], with specific functions ascribed to a subset of

proteins in the network. Yet, like logic gates in electronic circuits,

even individual proteins can perform sophisticated computations

and integrate multiple inputs [4–7]. In engineering, a modular

approach to the analysis of a system scales well with the size of the

system and its complexity. Indeed, engineers design systems

hierarchically with modules comprising other modules. If

molecular biology is similarly modular, which structures are the

‘‘atomic’’ modules from which larger modules are constructed? In

signalling networks, we may plausibly ascribe this role to protein

subunits and domains [8,9]. Their function as elementary modules

often depends on allosteric transitions: an interaction at one site

alters the structure at a distant site via a conformational change.

Indeed, allostery increases the information-processing ability of a

network because it transforms proteins from passive substrates to

dynamic computational elements [10]. A modular approach to the

analysis and design of biochemical networks should therefore

explicitly describe the computations performed by individual

allosteric proteins.

Efforts to tackle complexity in biochemical networks should also

exploit the modularity of protein structure. Protein structure is

hierarchical, and a given protein often has domains also present in

other proteins or repeated subunits. For example, many signalling

proteins contain SH2 or PDZ domains, and many receptors, ion

channels and enzymes are multimers. In genetic networks,

transcription factors are also often multimers or have a common

DNA-binding domain, such as a zinc finger or homeobox. The re-

use of protein domains is both a simplifying and confounding

feature: once a domain has been characterized, that characteriza-

tion can be used again, but it is also necessary to model molecular

cross-talk between signalling pathways that contain proteins with

similar structures.

In vivo, protein interactions can generate both combinatorial and

regulatory complexity. Combinatorial complexity is an ‘‘explo-

sion’’ in the number of possible species in a system as the number of

proteins and interactions in the system increases. It arises because

the number of states of a module dramatically increases as its

proteins bind ligands as well as each other and as different residues

are covalently modified [11,12]. For example, p53, the so-called
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cellular ‘‘gatekeeper’’, has 37 known modification sites and so

potentially 237 states [13]. Thus, a complete description of the

system potentially requires a combinatorially large number of

chemically distinct species and reactions. In contrast, ‘‘regulatory

complexity’’ is a combinatorial increase in the number of parameters

required to describe the regulatory interactions within a system as

the number of interactions increase. This complexity arises

because the strength of protein interactions depends on the state

of a module, and each state of the module potentially requires a

unique set of parameters to characterize interactions within the

module, with other modules in the network, and with molecules

external to the network. Measuring this number of parameters in

vivo is challenging.

Rule-based modelling addresses combinatorial complexity and

allows biologists to specify the regulatory logic of a system [14].

Examples include BioNetGen [15], Kappa [16], Moleculizer [17]

and StochSim [18]. Rather than explicitly enumerating each

species and reaction in the network, a rule-based model describes a

system as a collection of biomolecules interacting according to a

set of rules. Each rule is a template for a reaction that specifies the

reactants, products and all relevant biochemical parameters. Thus,

combinatorially complex systems are compactly described because

a large number of distinct reactions are subsumed in the template

encoded by a single rule. An algorithm may automatically infer a

complete reaction network prior to simulation or, if the

combinatorial complexity is too great, use alternative techniques

to simulate the system [19,20]. Importantly, some rules also specify

contextual conditions that constrain when an interaction can occur

and hence encode the regulatory logic of the network. For

example, a rule may allow only a doubly phosphorylated MAP

kinase to phosphorylate its substrate.

Rule-based formalisms can describe complex biochemical

systems, but inherently offer little guidance on avoiding a number

of methodological problems. First, using rules to specify the

regulatory logic of a system does not address the system’s

regulatory complexity. Consider G protein-coupled receptors

(GPCRs), which allosterically couple an extracellular ligand-

binding site to an intracellular G protein-binding site [21].

GPCRs can be promiscuous, binding multiple intracellular targets

[22,23]. Supposing a given GPCR can bind one of L different

drugs or endogenous ligands and one of G different G proteins,

then in principle we require LG pair-wise cooperativity parameters

to describe how each ligand regulates the GPCR’s affinity for each

G protein. Thus, the number of regulatory parameters scales with

LG, and the number of rules also scales with LG because each

parameter is part of a rule with distinct contextual constraints.

Promiscuous allosteric proteins can therefore require a large

number of rules and parameters to characterize their interactions.

Second, a module should have a well-described function and be

easily re-used and ‘‘portable’’ between systems, but most rule-

based formalisms are not inherently modular. Modellers typically

treat proteins as ‘‘black boxes’’ and define interactions using

biochemical equations. In such ‘‘interaction-centric’’ approaches,

the regulation of proteins is encoded by rules with ad hoc (system-

specific) conditions that no longer apply when the proteins interact

with different partners. These ad hoc rules obfuscate the

mechanism underlying allosteric regulation because they do not

show explicitly how the intrinsic structural and thermodynamic

properties of allosteric proteins generate their functional proper-

ties. In contrast, a ‘‘biomolecule-centric’’ approach would encode

regulatory logic in the proteins themselves. Fewer changes to rules

would then be required to define how a new set of interaction

partners regulates the protein’s activity. If a model includes protein

domains and subunits, re-use of these components would also be

simplified.

Finally, models generated by rule-based methods should be

thermodynamically correct. In biochemical networks, there are

often sets of reversible reactions that connect into a closed loop,

forming a thermodynamic cycle. In many of these cycles no free

energy is consumed: for example, when proteins bind multiple

ligands, when ligands bind several conformations of a protein, or

when ion channels bind multiple agonists and have closed, open,

and desensitized states. Thermodynamics imposes a mathematical

relationship between the equilibrium constants for all the reactions

involved in such cycles: their product must be unity. Equilibrium

constants cannot therefore be assigned independently. A thermo-

dynamically correct methodology should ensure that a model

satisfies this constraint, ideally by construction.

Here, we present a modular and scalable modelling method-

ology that alleviates the regulatory as well as the combinatorial

complexity of biochemical networks. We first describe our

modelling framework, which uses a thermodynamically grounded

treatment of allostery in which ligands distinguish only the

conformational state of allosteric proteins. We also introduce a

rule-based modelling tool that implements our methodology: the

Allosteric Network Compiler (ANC). We use ANC to examine

how allostery can make macromolecular assembly more effica-

cious. We then show how our modelling framework describes

common mechanisms of allostery by mapping the regulatory

properties of a protein onto conformational changes in the protein

itself and demonstrate how we can ease the analysis of multiple

ligands interacting through an allosteric protein. Next, we discuss

how our approach reduces regulatory complexity and thereby

increases a model’s modularity. Finally, we use our framework to

develop a model of G protein-coupled receptors whose regulatory

complexity scales with (L+G) instead of LG and consequently has

greater predictive power. While our major goal is to introduce a

new modular modelling methodology rather than its implemen-

Author Summary

The complexity of biochemical networks challenges our
ability to create quantitative and predictive models of
cellular responses to extracellular changes. In these
networks, the regulation of allosteric receptors and
proteins by multiple drugs or endogenous ligands
introduces ‘‘regulatory complexity’’ because a large
number of parameters is required to describe such
interactions. Protein interactions also give rise to ‘‘combi-
natorial complexity’’ by generating large numbers of
protein complexes and covalent modification states. To
address these twin problems, we propose a modelling
framework that combines a modular description of protein
structure and function with a rule-based description of
protein interactions. We define the input-output function
of an allosteric protein through its thermodynamic
properties and structural components. We show that our
‘‘biomolecule-centric’’ methodology, in contrast to ad hoc
approaches that emphasize the regulatory logic of
interactions, can reduce the number of parameters
required to model experimental observations. We also
demonstrate how the application of our framework gives
insights into the assembly of macromolecular complexes
and increases the predictive power of a standard model of
G protein-coupled receptors. These benefits are possible in
many systems, given the ubiquity of allostery in biochem-
ical networks. Our research delineates a fundamental
relationship between allostery, modularity, and complexity
in biochemical networks.

Rule-Based Modelling of Allosteric Networks
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tation, we have made ANC and the models we discuss available at:

http://swainlab.bio.ed.ac.uk/anc.

Results

A structurally and thermodynamically grounded rule-
based methodology for modeling allosteric proteins and
biochemical networks is implemented in ANC

Our method is based on the Monod-Wyman-Changeux (MWC)

paradigm of allostery [24]. We assume that allosteric proteins are

dynamic and have one or more structural components, such as

domains or subunits, with distinct conformations. These confor-

mational states have different biological activity – for example, a

basal state with poor affinity to downstream proteins and an active

state that can bind these proteins. Thermal fluctuations cause

these allosteric components to transition between their two

conformations in either a concerted or sequential fashion [25].

Ligands and other molecules interact non-cooperatively with each

conformation of the protein, distinguishing only its conformational

state, and so contribute independently to the equilibrium of the

allosteric transition. Each such contribution is parameterized by a

‘‘regulatory factor’’ C, which gives the fold-change of the

equilibrium constant generated by interactions with the ligand.

We make a similar independence assumption with respect to the

transition state of the allosteric transition such that ligands also

contribute independently to the transition’s kinetic rate-constants.

These contributions to the kinetics are parameterized in terms of

one or more ‘‘W-values’’, which give the effect of modifiers on the

forward and reverse rates of the allosteric transition (see Methods).

Thus, an allosteric protein can be seen as a modular and dynamic

computational device, and we can define the input and output of

each allosteric component. The input is a ‘‘modifier’’, a molecule

that binds to and locally perturbs the structure of the component;

the output is the fraction of time the component spends in each

conformation when the allosteric transition is at equilibrium (see

Methods). Activation corresponds to biasing the equilibrium in favour

of the biologically active state; inhibition corresponds to biasing

towards the inactive state. Depending on the system, modifiers may

be ligands [24], covalent modifications [26,27], the conformational

state of another component [25,28,29], or mutations [30,31].

An ANC model consists of a set of modular structures and

interaction rules. Using our rule-based approach (Tables 1–5 of

Text S1, Figures 1–9 of Text S1) and building on the

thermodynamic framework described in Methods, each molecule

in a system is described using an ANC construct called a structure,

which captures the true structure of a protein in terms of its

components (Figure 1A). ANC-structures contain two types of

components: hierarchical components and interaction sites.

Hierarchical components have two roles. The first is that of

containment and composition: a hierarchical component typically

contains interaction sites but can also contain other hierarchical

components. Hierarchical components may represent a unit of

tertiary structure, such as a protein domain, or of quaternary

structure, for example, a protein with multiple subunits. Their

second role is to undergo conformational transitions if designated

as allosteric, following the two-state model described in Methods.

Interaction sites are of three types: catalytic sites (such as a kinase

or phosphatase), sites that can be covalently modified, and ligand-

binding sites. Next, rules specify the interactions between sites and

how the strength of these interactions depends on the conforma-

tional state or the covalent modifications of a protein (Figure 1B).

If the interaction is a binding reaction, the rule gives the

association and dissociation rates. If the interaction is enzymatic

– such as a phosphorylation or dephosphorylation – then we

assume a Michaelis-Menten mechanism, and the rules give the

rate of formation of the product and the association and

dissociation rates between the sites, which must be a catalytic site

and a covalent modification site.

The overall modelling process for a divalent adaptor protein

and two ligands is illustrated in Figure 1C. Structures and rules are

entered as text and saved to a file (section 12.7 of Text S1). ANC

reads the file, creates an initial set of seed structures, and launches

an iterative compilation algorithm. At each iteration, the

algorithm determines all inter- and intramolecular reactions, the

products created, and their biochemical rates. In a subsequent

iteration, the newly created products may in turn react to produce

yet more species. Once a final biochemical reaction network has

been obtained, it is simulated using deterministic or stochastic

methods (see Methods). The deterministic simulation in Figure 1C

shows how upon binding X, which could represent an activated

receptor, the adaptor A recruits increasing amounts of Y, which

could represent a downstream signalling protein.

Analysis of the cooperativity of ligand binding to a
generic divalent allosteric protein

The generic model of a divalent allosteric protein shown in

Figure 1C (full details in Figure 7 of Text S1) can be used to model

proteins that play other roles than adaptors. For example, A could

be a membrane-bound receptor, X an extra-cellular agonist, and

Y an intracellular signalling protein which binds preferentially to

the active conformation of the receptor. The usefulness and

simplicity of this model motivates us to analyze it mathematically.

In the model, the binding of X and Y to A is cooperative

because binding of X to A changes the affinity of A for Y by a

factor h and likewise the binding of Y to A changes the affinity of A

for X also by a factor h. By coarse-graining over the conformations

of A (Figure 2A, inset), we can express the cooperativity parameter

h as (section 12.1 of Text S1):

h~
(1zKRT )(1zCXCY KRT )

(1zCX KRT )(1zCY KRT )
ð1Þ

where KRT is the allosteric equilibrium constant and CX (or CY) is

the differential affinity of the X (or Y) to each conformation of A.

The cooperativity increases as the degree of bias (CX and CY) that

X and Y exert on the conformational transitions of A increase. We

can also define the apparent affinity of X and Y to this coarse-

grained A:

KX ~KRX

(1zCX KRT )

(1zKRT )
,KY ~KRY

(1zCY KRT )

(1zKRT )
ð2Þ

These equations relate the underlying parameters of the model to

experimental observables: both the affinity KX of X to A and the

affinity hKX of X to A when A is bound by Y are measurable.

Allostery can make macromolecular assembly robust
even when linker proteins are over-abundant

Counter-intuitively, an excess of some components of a

macromolecular complex can inhibit formation of the complex

[32], [33]. This phenomenon, called the prozone effect, is

strongest for a protein that links two or more separable parts of

a complex. It occurs because the linker protein competes with itself

for the binding of the other components of the complex, and so if it

is present in excessively high amounts, few of the linker proteins

will succeed in simultaneously binding all the other components,

resulting in partially formed complexes.

Rule-Based Modelling of Allosteric Networks
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Here, we show that allostery can mitigate the prozone effect, at

least for a divalent allosteric protein. We consider the divalent

structure A to represent a linking protein with X and Y being the

remaining parts of a complex. In Figure 2A, we demonstrate how

increasing the cooperativity increases the range of concentrations of

A for which assembly of the complex XAY is efficacious (i.e. where

the equilibrium amount of complex exceeds 50% of the maximum

amount). This range increases from 1.3 decades when h= 1 to 4.0

decades when h= 104, and the maximal amount of complex formed

increases by a factor of 5.7 (Figure 11 of Text S1). Thus, an allosteric

linker protein has a dual benefit in macromolecular assembly: it

both increases the amount of complex when the components are

present in their stochiometric amounts and makes complex

formation more robust to the over-expression of the linker protein.

Allosteric linker proteins could explain the low correlation observed

between over-expression of a linker protein and lethality of that

over-expression in budding yeast [34].

That the efficacy of macromolecular assembly depends strongly

on the value of the cooperativity parameter h suggests that

assembly could be modulated by changing h. Figure 2B shows the

dependence of h on the allosteric equilibrium constant and the

differential affinity of the ligands X and Y. Cooperativity has a

maximum at KRT = (CXCY)21/2 and thus assembly of the XAY

trimer could in principle be controlled through the binding of a

cofactor or a covalent modification that changes the allosteric

equilibrium constant of A from a value far from its optimum to a

value near the optimum (or vice versa).

A compact, structural and modular representation of
allosteric proteins

There are two well-known mechanisms for generating cooper-

ative behaviour in proteins: concerted and sequential allostery. In

their seminal paper, Monod, Wyman and Changeux introduced a

two-state model to explain cooperative interactions in oligomeric

Figure 1. The Allosteric Network Compiler – modelling elements and methodological flowchart. (A) Example structures. Each structure
has a name (underlined) and comprises a set of named components. Hierarchical components (triangles) represent part or all of a biomolecule and
contain, as denoted by arrows, one or more interaction sites (circles). Left: The structure X represents a simple ligand with a single binding site (circle
with horizontal bar). Centre-left: The structure A represents a generic, divalent allosteric adaptor protein. The adaptor’s hierarchical component is
allosteric (indicated by a tilde) and transitions between low (R) and high-affinity (T) conformational states. The dashed lines indicate that each binding
site acts as a modifier for the allosteric transition, with each interaction parameterized by the indicated W-value, and that ligands can distinguish each
conformation. Centre-right: The structure R is a simplified model of the nicotinic aceltylcholine receptor (nAChR), following Edelstein et al. [67] but
without desensitized states. The allosteric component transitions between closed (C) and open (O) states. Right: The structure K is a model of a
mitogen activated protein kinase (MAPK) with two activating phosphorylation sites (circles with vertical bar and a grey dot as a placeholder for the
state) and a catalytic site (circle with cross). The allosteric component transitions between inactive (I) and active (A) states. Both the phosphorylation
sites and the catalytic site are modifiers of the allosteric transition: each successive phosphorylation biases the equilibrium of the enzyme towards the
active state by a regulatory factor CY1 or CY2. Each of these interactions is also parameterized by a distinct W-value. (B) Example rules. A pair of
binding rules for the adaptor A and the ligand X specify the association and dissociation rates of AX with X when AX is in the R and T states, a similar
pair (not shown) specifies the rates for AY and Y, and we define the affinities KRX and KTX implied by the rates (in gray, e.g. KRX = kfRX/kbRX). A covalent
modification rule for the kinase K acting on an unphosphorylated (open dot) downstream target Y follows the Michaelis-Menten mechanism for
enzyme-substrate interactions and yields a phosphorylated substrate (filled dot). (C) Methodological flowchart. In a model of the adaptor protein A
and its ligands X and Y (Figure 7 of Text S1), the rules state that both ligands bind with higher affinity to the T state of the adaptor. This model is
compiled by ANC to generate a reaction network where horizontal transitions correspond to conformational changes, vertical transitions correspond
to binding the ligand X, and transitions into the page represent binding the ligand Y. KRT is the allosteric equilibrium constant, while the regulatory
factors CX and CY are the differential affinity of the ligands to each conformation of A and are calculated by ANC using the rate constants given in the
rules (e.g. CX = KTX/KRX). The reaction network is converted into ordinary differential equations by Facile and these are simulated in Matlab to compute
the output response of the system (bound AY vs. X, with ATOT = 1, YTOT = 1, KRT = 1023 KRX = 0.1, KTX = 10, KRY = 0.01, KTY = 100, arbitrary units).
doi:10.1371/journal.pcbi.1000975.g001

Rule-Based Modelling of Allosteric Networks
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enzymes and proteins [24]. They proposed that all subunits of

such proteins undergo a concerted, reversible, and quaternary-level

transition between two conformational states. Ligand-binding to

each conformation is non-cooperative, but each conformation

differs in its affinity for ligands and this difference gives rise to

cooperative effects. Subsequently, Koshland, Nemethy and Filmer

lifted the assumption of concerted transitions with their sequential

model, in which each subunit transitions individually between two

conformational states [25]. This model can explain negative

cooperativity in oligomeric proteins. It assumes, however, that

ligands cause an instantaneous conformational change, or an

induced fit, in the structure of the subunit. Both the concerted and

induced fit assumptions can be relaxed and are special cases of the

general allosteric model of Herzfeld and Stanley [28].

ANC-structures can be used to implement these models of

allosteric regulation. A concerted model of a generic, homote-

trameric protein is shown in Figure 3A. The transition between the

two conformations, labelled R and T, is concerted because a single

allosteric component contains all subunits. Cooperativity will arise

if a ligand has a higher affinity for one state, say the R state, and if

the unligated protein is mostly in the alternate state T. Then, once

bound by ligand, the protein spends more time in the R state and

so favours the binding of additional ligands. In contrast, a

sequential model has an ANC-structure with four allosteric

components, each with r and t states. Figures 3B and 3C show

how we implement the tetrahedral and square geometries

described by Koshland et al. [25] through different configurations

of the allosteric coupling between subunits. Two components are

allosterically coupled if the conformation of one component biases

the conformational equilibrium of the other component, and vice

versa. For example, in Figures 3B and 3C, ligand binding favours

the r state of an individual subunit, and this subunit when in its r

state favours the r state in those subunits to which it is allosterically

coupled and so generates a cooperative response. Finally, we

illustrate the general approach with the tertiary two-state model

shown in Figure 3D, which allows both quaternary, R«T and

tertiary, r«t, allosteric transitions [29]. Here, ligand binding

favours r at the bound subunit because of the ligand’s higher

affinity for r. Cooperativity arises because the R state of the

quaternary structure reciprocally favours the r state of the tertiary

subunits. Thus, a subunit in the r state favours R at the quaternary

level and so favours subunits not yet bound by ligand to also be in

the r state, promoting binding of additional ligands. Our ANC

implementation of the tertiary two-state model correctly repro-

duced the Henry et al. model, which has 252 molecular species

[29].

An advantage of ANC is its ability to easily formulate and

simulate mathematically complex models. For example, we will

show that the cooperativity of an allosteric protein binding a

ligand, such as a transcription factor binding an inducer, can be

substantially changed through adding a competing ligand.

Although a mathematical analysis of various allosteric models

with two competing ligands exists [35], little is known about

multiple ligands and the analysis is cumbersome for the sequential

model despite simplifying assumptions. Using ANC, we charac-

terized the binding cooperativity of a ligand L0 to a tetrameric

allosteric protein in the presence of one of three different

competing ligands for both the concerted and sequential models

(Figure 4). In the absence of competitors, the Hill coefficients for

binding L0 in the concerted and sequential models were ,2.8 and

,2.2 respectively. By increasing the concentration of the

competitor ligand L1, which binds preferentially to the same

conformation as L0, the Hill coefficient decreased progressively to

1 (i.e. no cooperativity). With ligand L3, which binds preferentially

to the low affinity state for L0, the Hill coefficients increased to

,3.6 and ,3.4. With ligand L2, which binds with equal affinity to

all conformations, the Hill coefficient did not change. With

competitors L2 and L3, the EC50 of L0 binding increased but at

low concentrations of L1, the EC50 of L0 was slightly lower

(Figure 12 of Text S1).

Figure 2. Allostery makes macromolecular assembly robust and controllable. (A) Effect of allostery on macromolecular assembly when a
linker component is over-expressed. Each curve shows the equilibrium concentration of the XAY trimer against the total amount of A. The total
amount of X and Y was unity, while KRT and the affinities of X and Y to each conformation of A (KRX, KRY, KTX, KTY) were chosen to yield a desired value
of h and with KX = KY = 1. Inset: A coarse-grained version of the divalent protein model of Figure 1C sums over the two possible conformations of A
and shows that with KX, KY and the concentrations of X and Y held constant, the efficacy of assembly depends only on the cooperativity parameter h.
(B) Regulation of cooperativity and assembly. The value of h depends on the other parameters of the model through Equation 1, which is plotted
against KRT on one axis and CX and CY (assumed equal) on the other. Increasing CX and CY always increases cooperativity, however h has a maximum
value as KRT is changed.
doi:10.1371/journal.pcbi.1000975.g002

Rule-Based Modelling of Allosteric Networks
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In addition to ligand binding, our methodology also describes

other mechanisms for allosteric regulation that are ubiquitous in

cellular signalling. Phosphorylation or other post-translational

modifications, dimerization, receptor clustering and point muta-

tions can also regulate or change protein function. Our

thermodynamic framework (see Methods) unifies the treatment of

such heterogeneous modifiers of protein activity. In section 12.4 of

Text S1, we discuss how dimerization and ligand binding jointly

regulate the activity of the epidermal growth factor receptor, and

how ligand binding combines with methylation to regulate a

chemotaxis receptor (Figure 13 of Text S1).

Encoding regulatory logic through intensive rather than
extensive parameters reduces regulatory complexity and
increases modularity

We can distinguish two types of parameters that affect

modularity in different ways: intensive parameters and extensive

parameters. Intensive parameters describe the conformational

transitions and intramolecular interactions of a protein and, as

such, are modular because they are inherent to the protein and

independent of the protein’s interaction partners. Therefore, we

associate intensive parameters with a protein’s ANC-structure. In

contrast, extensive parameters describe the interactions of a

protein with other biomolecules and increase in number as the

number of these interactions increase. Extensive parameters,

contained in rules for interaction, are the ‘‘wiring’’ between

modules and are non-modular because they depend on the system

in which the protein functions. Regulatory complexity occurs

when the number of extensive parameters describing a system

scales combinatorially with the number of interactions in the

system.

Figure 3. Classic and general models of allostery and protein
structure are described by our modelling framework. (A) A
concerted model of a tetrameric allosteric protein has one allosteric
component and 4 identical interaction sites to represent each subunit.
The dashed lines indicate that each ligand-binding site is a modifier for
the R«T allosteric transition and all 4 interactions are identically
parameterized by WLB. (B) In a sequential model of the protein, a top-
level hierarchical component comprises 4 identical allosteric compo-
nents that individually change conformation and bind ligand. These
components are allosterically coupled (dashed lines) such that each
subunit is equivalent and a modifier for all neighbouring subunits – the
‘‘tetrahedral’’ model. The strength of the coupling is given by the
regulatory factor CS and the effect of each modifier on the kinetics of
coupled components is parametrized by WLB and WS. (C) Altered lateral
interactions between subunits gives the ‘‘square’’ model. (D) A tertiary
two-state model has one allosteric hierarchical component containing 4
identical allosteric components, each with a ligand-binding site. The
upper quaternary component is allosterically coupled to each tertiary
component with strength C and the tertiary components are coupled
to their binding site. The effect of the quaternary conformation on the
kinetics of the tertiary transition is given by WQ, and the reciprocal
interaction is parameterized by WT. (E) The ligand for all four models.
(F) Rules for the concerted model in panel A. (G) Rules for the models in
panels B, C and D.
doi:10.1371/journal.pcbi.1000975.g003

Figure 4. Cooperative binding of competitive ligands to the
concerted and sequential models. The allosteric equilibrium of an
unligated protein favours a state T (or t). Ligand L0 binds preferentially
to state R (or r) and so binds cooperatively to the protein. The Hill
coefficient of the dose-response function for L0 (the number of L0
bound to the protein versus the concentration of L0) was measured in
the presence of increasing concentrations of three competing ligands:
L1 favours the R state; L2 is neutral; L3 favours the T state.
Concentrations of competing ligands are normalized to the EC50 of
their own occupancy function. For the concerted model KRT = 103; for
the sequential (tetrahedral) model Krt = 0.1 and CS = 10. Ligand affinities
were set to KRLi = KrLi = (Ci)

21/2 and KTLi = KtLi = (Ci)
1/2 with C0 =C1 = 0.01

(prefers R or r), C2 = 1 and C3 = 100 (prefers T or t).
doi:10.1371/journal.pcbi.1000975.g004
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Our biomolecule-centric methodology minimizes regulatory

complexity. For example, we analyzed a generic model of an N-

valent, two-state protein where each of the N binding sites is

unique and binds exactly L ligands (section 12.5 and Table 6 of

Text S1). In an ‘‘interaction-centric’’ modelling approach, there

are no intensive parameters and the number of extensive

parameters scales as LN. In the ‘‘biomolecule-centric’’ methodol-

ogy of ANC, there are 2 intensive parameters and the number of

extensive parameters scales linearly with the number of interac-

tions NL. Using our methodology can therefore yield large savings;

for instance if N = 6 and L = 5, we have 91 independent rate

constants rather than over 233,000 (Table 7 of Text S1). Thus, by

encoding the regulatory logic of proteins with intensive rather than

extensive parameters, we reduce regulatory complexity. We

therefore improve the model’s modularity because only extensive

parameters change when a model is updated.

Refactoring yields a scalable and modular GPCR model
that can explain functional selectivity

Using our biomolecule-centric modelling framework, we can

convert a non-modular model into a modular one. Such

refactoring is also useful when a protein has more than two

conformational states, unlike the core allosteric components in

ANC-structures. To illustrate, we introduce a new model for the

activation of G protein-coupled receptors (GPCRs). GPCRs are a

common target for pharmaceutical drugs [36]. Such drugs include

agonists that promote activation of the receptor, inverse agonists

that promote deactivation of the receptor, and antagonists that by

binding to the receptor block the action of agonists.

Although several allosteric models have been proposed [37,38],

we will consider the cubic ternary complex model [39] because

this model describes the constitutive activity of a GPCR, the action

of inverse agonists and antagonists, and how some inverse agonists

can cause a GPCR to recruit G proteins but remain inactive [40].

The model also explains the functional selectivity of receptors (also

called agonist trafficking, ligand-biased agonism, or protean

agonism) [41] through the notion of active states of the receptor

that are specific to a ligand or a G protein [38,42]. However, the

model does not include receptor homo- or hetero-oligomerization

[43–48], or the possibility that GPCRs form stable, pre-assembled

complexes with downstream proteins [49,50].

A naive implementation of the cubic ternary complex model in

our framework uses a divalent ANC-structure with a single

allosteric component (Figure 5A, C). This implementation

captures Weiss et al.’s assumption that the receptor has only two

conformational states. However, it does not capture the cooper-

ative binding of a ligand to either the inactive or active states of the

receptor because such binding is incompatible with the paradigm

that each modifier contributes independently to the equilibrium

constant of the allosteric transition [24]. This cooperative effect is

described in Weiss et al.’s model through the cooperativity

parameters c and d. However, these parameters are extensive

and specific to each combination of ligand and G protein. They

therefore introduce regulatory complexity.

To resolve this difficulty, we propose a sequential allosteric

model of the GPCR with two coupled allosteric components: an

extracellular allosteric component, which binds a ligand, and an

intracellular allosteric component, which binds a G protein

(Figure 5B, D). The ligand and the G protein interact

simultaneously with both allosteric components. They therefore

‘‘see’’ four possible conformations of the receptor instead of two.

These conformations are implied in the cubic ternary complex

model because each ligand has four distinct affinities to the

receptor. However, none of the extensive parameters in our model

are cooperativity parameters specific to a ligand-G protein pair,

thus eliminating regulatory complexity.

Our quartic ternary complex model can be projected onto the

cubic model by defining coarse-grained variables that sum over

the conformations of the extracellular allosteric component

(Figure 5 and section 12.6 of Text S1). The ‘‘inactive’’ and

‘‘active’’ states in the cubic model therefore correspond to a

mixture of conformational states, providing a mechanism for how

different ligands induce an apparently unique conformation of the

activated GPCR with a distinct affinity for the G protein [51]. In

our model, each ligand uniquely affects the allosteric equilibrium

of the extracellular domain and therefore the fraction of time that

the receptor is in the s and t states, which in turn uniquely

modulates the affinity of the active GPCR for the G protein.

Our quartic model for the GPCR is more modular and

parsimonious than the cubic model because it includes a

structurally and biophysically plausible mechanism for how ligands

and G proteins interact cooperatively with the GPCR. We encode

the logic of these regulatory interactions in the protein’s ANC-

structure using intensive parameters, rather than in ad hoc rules

with extensive parameters. Our ‘‘refactored’’ model has 11

parameters (3 of which are intensive) compared to the 7

parameters of the cubic model (1 of which is intensive) and

double the number of states. This initial cost for increased

modularity and ‘‘portability’’ becomes a benefit as the number of

types of ligands and G proteins increases. The number of extensive

parameters in our model scales linearly with the number of

interactions; in the cubic model, the number of extensive

parameters scales combinatorially. For example, suppose we wish

to model 4 different ligands that activate the thyroid-stimulating

hormone receptor. In human thyroid membranes, this GPCR can

activate at least 10 different G proteins [22]. With 4 ligands and

10 G proteins, our quartic model is almost twice as parsimonious

as the cubic model, requiring 59 rather than 109 parameters.

The quartic model also has more predictive power than the

cubic model and therefore can be more rigorously tested. For each

pair of ligands and G proteins, the cubic model requires the

specification of two cooperativity parameters, d and c, specific to

that pair. It is therefore limited in the predictions it can make. For

example, for each new G protein added to the system, new

cooperativity parameters are needed for all previously character-

ized ligands to be able to predict the new G protein’s GPCR-

mediated response to these ligands. In contrast, the quartic model

is completely characterized for the new target pathway by

measuring four extensive parameters – one for each conformation

of the GPCR – and we can then predict the GPCR-mediated

response to all ligands. In particular, we can predict the rank order

of potency of the ligands to activate the new pathway, a standard

means to compare agonists in pharmacology, and detect functional

selectivity [51].

Like the cubic model, the quartic ternary complex model also

explains functional selectivity, though this is not obvious

considering that these models cannot be related through a simple

projection when multiple ligands and G proteins interact with a

single receptor. Indeed, in the quartic model d and c are not free

parameters but are correlated because of their dependence on

underlying rates. We therefore simulated the GPCR-mediated

response to several ligands that cause (in)activation of two different

G proteins (Figure 6A and 6B). Ligand L1 has the greatest ability

to activate G protein G1 as measured by its potency (2log(EC50)

of the response) and efficacy (maximal activation). For G1, ligand

L2 has intermediate potency and efficacy and L3 has the lowest

potency and efficacy. Also, L1 is better able to activate G1 than

G2. If the receptor had only a single active state, we would
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therefore infer that this state must have a poorer ability to bind

and activate G2 and would expect that L2 should also have a

decreased ability to activate G2. The potency and efficacy of L2 on

G2 is, however, greater than that of L1 indicating a reversal in the

rank order of the potency and efficacy of L1 and L2. Also, ligand

L3 is an agonist for G1 but an inverse agonist for G2. These

observations of agonists selectively (in)activating distinct target

pathways cannot be reconciled with a model comprising a single

active state of the receptor. Functional selectivity can also be

observed for the repression of activity by inverse agonists because

there are also two inactive states of the receptor (Figure 6B).

The quartic model is modular and therefore is easily extended

to include additional signalling interactions such as the regulation

of the receptor by allosteric ligands [52], [38]. Also, by adding

dimerization sites, we could incorporate existing models of

dimerization of GPCRs [47]. Some GPCRs may also oligomerize

in vivo, for instance by forming tetramers [53]. We could model

oligomerization by concatenating multiple receptor models within

a larger ANC-structure through modular composition. A starting

point could be one of the models of Figure 3, but substituting for

each subunit the ANC-structure for a GPCR and, as appropriate,

adding allosteric couplings to model inter-receptor interactions.

Discussion

Biochemical networks are complex yet modular: networks

exhibit both combinatorial and regulatory complexity, but

individual proteins have intrinsic functional properties that

determine how they detect and process information. Complexity

is also reduced because similar proteins or similar protein domains

appear in many signalling pathways and often interact with similar

protein partners. We propose a modelling methodology, embodied

by ANC, that exploits the modularity of proteins to reduce the

complexity of modelling biochemical networks. Given modular

ANC-structures, which encode a protein’s regulatory properties,

adding new interactions to an ANC model usually requires

substantially fewer parameters than with other rule-based models,

particularly as the promiscuity of binding of proteins, and hence

the complexity of the network, increases. ANC-structures are also

portable because different signalling pathways are modeled by

Figure 5. Cubic and quartic ternary complex models of a GPCR in our modelling framework. The mapping between the cubic (A) and
quartic (B) models shows how the two models are related. (A) A naive implementation of the cubic ternary complex model. The ANC-structure R has
one allosteric component which transitions between a low-affinity, inactive (i) state and a high-affinity, active (a) state with the indicated equilibrium
constant (in gray). LB and GB are binding sites for an extracellular ligand L (not shown) and an intracellular target G protein (not shown). In the
corresponding cubic, 8-state transition diagram Kact is the unligated allosteric equilibrium constant, Ka and Kg are ligand affinities to the reference
(inactive) state, and a and b are ratios of affinities. We parenthesize the cooperativity parameters d and c to indicate that these parameters of the
cubic ternary complex model have to be added as ad hoc rules to the naı̈ve implementation. (B) In our quartic ternary complex model, an ANC-
structure R comprises two allosteric components: the extracellular domain ED transitions between low and high-affinity states (s and t); the
intracellular domain ID transitions between inactive and active states (i and a). These transitions are reciprocally linked (dashed line) so each domain
acts a modifier of the other with the interaction parameterized by C and W. The binding sites are allosterically coupled to both allosteric components,
therefore each ligand ‘‘sees’’ 4 possible conformations of the receptor. In the quartic state-transition diagram KactG and KactL are the unligated
allosteric equilibrium constants, G is the regulatory factor linking the s«t and i«a transitions, Ka9 and Kg9 are ligand affinities to the reference state si,
and a and b are ratios of ligand affinities of the subscripted state relative to the reference state. For clarity, we show only the unligated s«t transition.
(C) Rules for the cubic ternary complex model showing the rate and equilibrium constants for ligand and G protein binding. (D) A subset of the rules
for the quartic ternary complex model shows the rate and equilibrium constants for ligand binding. A similar set of rules specifies rate and
equilibrium constants for binding G protein (Figure 9 of Text S1).
doi:10.1371/journal.pcbi.1000975.g005
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simply ‘‘re-wiring’’ proteins rather than through writing new ad hoc

rules encoding the regulatory logic specific to each pathway.

In our methodology, models are structured to minimize

regulatory complexity both to avoid over-fitting data and because

large numbers of biochemical parameters are difficult to measure in

vivo. Indeed, our modelling framework reflects a natural division

between two classes of parameters: ‘‘intensive’’ parameters describe

the allosteric transitions and intramolecular interactions of a

particular protein and are attributes of ANC-structures; ‘‘extensive’’

parameters describe the interactions of the protein with other

biomolecules and are associated with rules. In different biochemical

networks, only the extensive parameters of a protein change.

Through its assumption that a ligand or substrate distinguishes only

the conformation of a protein or enzyme and not its occupancy or

state of covalent modification at distant sites, our modelling

framework substantially reduces the number of extensive parame-

ters required: their number scales linearly, rather than combinato-

rially, with the number of interactions. This reduction in extensive

parameters allows a model for the interaction of a protein with

individual ligands to also predict the response to mixtures of ligands

with no additional parameters [54]. We have shown that

interference with a competing ligand can either increase or decrease

the cooperativity of the response to the original ligand (Figure 4) – a

potentially useful mechanism of control.

Our methodology reduces the regulatory complexity but

increases the combinatorial complexity of a system because each

conformation of an allosteric protein introduces a new state. Thus,

a reduction in regulatory complexity incurs the computational cost

of modelling additional species. Nevertheless, recent advances in

rule-based modeling have introduced new methods that allow fast

simulation of systems with large numbers of chemical species and

reactions [17,19,20,55–57]. By focusing on avoiding an exponen-

tial increase in extensive parameters in systems with promiscuous

binding, our methodology both complements and potentially

benefits from these innovations.

We also make a first step at integrating free energy-based

constraints into a rule-based modelling framework, adding to

earlier work on imposing detailed balance in models of

biochemical networks [58–61]. By automatically computing all

dependent extensive parameters associated with allosteric transi-

tions – the allosteric equilibrium and rate constants for each

ligated and modified state – from the appropriate independent

parameters, ANC prevents the modeller from incorrectly specify-

ing these parameters. Thus, cycles comprising allosteric transitions

are biophysically correct by construction. For complex models

with a combinatorially large number of occupancy states and

covalent modifications, this automation is essential.

Two other advantages of our modelling framework are

significant. First, ANC-structures enable a coarse-grained hierar-

chical description of physical structure by requiring the specification

of protein domains and if desired tertiary and quaternary structure,

including oligomeric receptor clusters. ANC-structures can also

model the internal geometry of a protein by describing those

domains of the protein that interact allosterically and those that do

not (Figure 3). Second, the thermodynamic framework underpin-

ning our method offers a systematic and unified way to model how

proteins integrate heterogeneous inputs such as ligands, phosphor-

ylations, or even small mutations to compute an output response.

Our modelling framework encourages the modeller to develop a

mechanism to explain the regulatory properties of a protein and

hence to build models that have predictive power and so can be

experimentally tested. For example, an ANC model of the

activation of GPCRs suggests that the well-known cubic ternary

complex model has implicitly coarse-grained some conformations

of the GPCR. By including these conformations in an ANC-

structure, our new quartic model prevents over-fitting and has the

potential to predict the rank order of potency and efficacy of

ligands acting through a GPCR. This model of the GPCR has two

linked allosteric components, each with just two conformational

states that interact independently with other molecules. These

mechanistic assumptions do not, however, apply to the GPCR as a

whole, which has four conformational states. Thus, while the two-

state assumption may not hold for all proteins, other mechanistic

models can be accommodated within our framework.

Figure 6. Functional selectivity of agonists in the quartic ternary complex model. (A, B) We simulated the GPCR-mediated (in)activation
two target G proteins by several ligands. A dose-response for each ligand and G protein pair shows the amount of receptor species capable of
signalling (RsaG+RtaG+LRsaG+LRtaG) as a fraction of the total number of receptors and against the concentration of ligand (arbitrary units). The
concentrations of receptor and G protein are unity. Parameter values: KactL = 1, KactG = 0.05, C= 1, affinities for L1 are given by: (Ka9, at, aa,
aat) = (10,0.1,10,1), for L2: (1,20,20,400), L3: (0.1,10,10,0.01), L4: (100,0.1,0.4,0.01) L5: (20,20,0.05,5), G1: (Kg9, bt, ba, bat) = (10,0.1,10,1) and G2:
(1,10,10,100).
doi:10.1371/journal.pcbi.1000975.g006
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Having allostery at its centre, our framework can suggest simple

mechanisms through which the cell might regulate and increase

the efficacy of cellular processes. For example, the assembly of

macromolecular complexes can be considerably undermined

through the prozone effect when linker proteins are over-expressed

[32]. Consequently we might expect that expression of the

components of macromolecular complexes is tightly regulated.

Such regulation can be complex and expensive. Yet modelling

with our framework suggests that if allosteric proteins are part of

the macromolecular complex and if the linker proteins are

allosteric then the prozone effect can be substantially reduced

and without energy input (Figure 2A).

A challenge in designing synthetic biological systems is to have

predictive modelling tools. Here, ANC has several potential

advantages. First, the modularity of ANC-structures allows models

of synthetic systems to be straightforwardly extended: for example,

as different synthetic subsystems are combined to generate more

complex behaviour [7]. Second, through its rule-based modeling

and the specification of rules of interaction between protein

components rather than between proteins, ANC naturally models

molecular cross-talk between synthetic sub-circuits in a larger

synthetic circuit and between a synthetic circuit and the endogenous

biochemistry (if a rule-based model of endogenous signalling is

available). In both cases, ANC will find and model interactions if

proteins are present that happen to have complementary binding

domains. Such interactions could, for example, affect the formation

of macromolecular signalling complexes (Figure 2) or change the

Hill coefficient of the response of a crucial pathway (Figure 4).

Finally, an ANC model includes background activity in all enzymes

because control of each enzyme is described by an allosteric

transition between inactive and active conformations. This

transition will occur regardless of the presence of input signals to

the system, although the probability of such occurrences can be

small. Like molecular cross-talk, background activity can cause a

synthetic circuit to deviate substantially from its designed behaviour.

Faced with the complexity of cellular signalling and genetic

networks, researchers are developing new computational methods

to quantitatively model and predict cellular behaviour despite that

complexity. In this spirit, we have identified and discussed a

distinct form of complexity – regulatory complexity – which arises

from the allosteric regulation of proteins. Combining and

extending established biophysical principles with more recent

rule-based methods, we propose a modular and scalable

methodology, exemplified by our Allosteric Network Compiler,

to describe the complexity of cellular signalling. By emphasizing

the allosteric control of proteins, we capture the inherent

modularity of protein structure and function exploited by cells

themselves. Our method is a general, principled and simplifying

addition to any modeling framework.

Methods

Thermodynamic framework
To compute how multiple modifiers collectively bias the

conformational equilibrium of an allosteric component, we use

thermodynamics [62]. We arbitrarily designate one conformation as

the reference state R and the alternate conformation as T. If we let

DGRT be the difference in free energy between the R and the T

conformations in the absence of any modifiers, then the difference in

free energy in the presence of N modifiers is, quite generally [63],

DG’RT~DGRTz
XN

i~1

DG
(i)
RTz

XN

i~1

XN

j~iz1

DG
(ij)
RTz . . . ð3Þ

where we include contributions of free energy to the new allosteric

equilibrium that are determined by each modifier alone, by pair-

wise interactions between modifiers, and by all higher order

interactions.

We assume that all modifiers interact independently (non-

cooperatively) with each conformational state of the protein

component, with the energy of interaction to the R state of the

component given by DG
(i)
R and to the T state by DG

(i)
T for the

modifier indexed by i. Consequently, the free energy required to

apply a modifier to each conformation does not depend on the

presence or absence of other modifiers – a modifier can only

distinguish the conformational state of the component. Therefore

we need consider just the first order terms of equation (1) and

ignore higher order interactions:

DG’RT~DGRTz
XN

i~1

DG
(i)
RT ð4Þ

For each modifier, a reversible thermodynamic cycle exists around

which the change in free energy must be zero. For example,

equilibria exist between the R and the T states of the component,

between the modifier i being applied to the R state (a free energy

change of DG
(i)
R ), the modifier being applied to the T state (a free

energy change of DG
(i)
T ), and between the R and the T states of the

modified form of the component. To have no change in free

energy around this cycle implies that DG
(i)
RT~DG

(i)
T {DG

(i)
R .

Hence, we have:

DG’RT~DGRTz
XN

i~1

(DG
(i)
T {DG

(i)
R ) ð5Þ

From statistical mechanics, we know that the equilibrium constant

between any two states of a system, say A and B, is connected to

the difference in their free energy through the expression

KAB~e{DGAB=kT

Therefore, we may exponentiate equation (3) to find the

corresponding equilibrium constant:

K ’RT~KRT P
N

i~1
Ci, where Ci~e

{(DG
(i)
T

{DG
(i)
R

)=kT ð6Þ

with kT denoting the product of Boltzmann’s constant and

temperature.

Equation (6) describes the input-output function of an allosteric

component, which may embody a domain, a subunit, or an entire

protein. The output K ’RT is the allosteric constant of the

component under the effect of N modifiers. It is obtained by

multiplying a baseline equilibrium constant KRT with each

‘‘regulatory factor’’ Ci, which describes the effect of an input

modifier i on the allosteric equilibrium. If the modifier is a ligand,

then Ci is the ratio of the ligand’s affinity to each conformation. If

the modifier is a covalent modification such as a phosphorylation,

the regulatory factor is an independent parameter related to the

free energies required to phosphorylate each conformation. If the

modifier is another allosteric component to which the component

is allosterically coupled (e.g. Figure 3B–D), then Ci is an

independent parameter related to the free energy of interaction

of the T form of the modifier with each conformation of the

allosteric component, and gives the fold-change in the allosteric

Rule-Based Modelling of Allosteric Networks

PLoS Computational Biology | www.ploscompbiol.org 10 November 2010 | Volume 6 | Issue 11 | e1000975



equilibrium constant induced by the T form of the modifier. When

this modifier is in its reference state, which we label R, the output is

by definition unchanged and the regulatory factor is not applied.

To compute how the kinetics of a component’s allosteric

transition are affected by the presence of modifiers, we first write

the forward and backward rate constants for the unmodified

component in terms of the free energy difference between the

transition state (denoted {) and each conformational state [64]:

kRT~Ce
{DGR{=kT ð7aÞ

kTR~Ce
{DGT{=kT ð7bÞ

To obtain the rate constants for a modified state, the simplest

approach is to assume a constant pre-exponential factor C and that

modifiers contribute independently to a change in the free energy

of the transition state (section 11.2 of Text S1). The assumption of

independence is not arbitrary: at the core of the MWC paradigm

of allostery is the assumption that modifiers contribute indepen-

dently to the free energy of each conformational state. Here we

extend this idea to the transition state of the allosteric transition.

As a result, modifiers independently affect the kinetic rates, just as

they do the equilibrium constant, and we can write:

k’RT~kRT P
N

i~1
(Ci)

Wi ð8aÞ

k’TR~kTR P
N

i~1
(Ci)

Wi{1 ð8bÞ

for parameters Wi.

We choose this parameterization because Wi =Wj implies the

existence of a linear free energy relationship for two modifiers i

and j (section 11.3 of Text S1). A linear free energy relationship

[65] is a common, simplifying assumption in biophysical models:

in a set of related reactions, the logarithm of a transition rate is

assumed to be linearly related to the logarithm of the equilibrium

constant [31,66]. The parameter W denotes the proportionality

constant. Assuming a linear free energy relationship to model

simultaneous modifiers, for example in models of hemoglobin or of

the nicotinic acetylcholine receptor [29,66,67], also implies that

these modifiers independently affect the conformational transition,

with each effect parameterized by the same value of W (section

11.3 of Text S1).

Validation, testing, modelling and simulation
We validated our overall methodological flow (Figure 1C) and

verified the output of ANC by implementing and simulating an

allosteric model [68] of the signalling protein calmodulin (Figure

10A and Figure 10B of Text S1). Binding of calcium to calmodulin

modulates its affinity for downstream effectors. We confirmed that

ANC correctly generates the 352 biochemical equations of the

model of Stefan et al. and that our simulation results were

consistent with theirs, using their experimentally derived param-

eter values (Figure 10C of Text S1).

ANC possesses a number of features which ease modelling and

simulation of biochemical networks. First, ANC allows users to

parameterize a model so that parameter values can be changed

after compilation. Also, ANC supports stimuli, through which the

user can apply input waveforms to specified nodes in the network,

and probes – user-defined collections of molecules – to measure

network output. Finally, ANC allows the creation of ad hoc

regulatory conditions to support interaction-centric approaches.

Such ad hoc conditions, however, reduce the modularity and

scalability of a model and so do not play to the strength of our

methodology.

Using Facile [69], an application distributed with ANC, we can

export an ANC-compiled network to standard tools such as

Matlab, XPP, Maple or Mathematica for deterministic simulation

or analysis, to EasyStoch for stochastic simulation [70], or to

SBML [71].

Limitations of method
The current implementation of ANC has three principle

limitations. 1) The reaction network is enumerated, so ANC’s

performance may degrade significantly if the compiled network is

large. 2) Only rules for binding and Michealis-Menten interactions

can be created. 3) While ANC supports unimolecular association

and dissociation, detailed balance is enforced only for cycles

comprising purely bimolecular associations.

Supporting Information

Text S1 Supplementary information. This file contains all

supplementary information for the article.

Found at: doi:10.1371/journal.pcbi.1000975.s001 (4.94 MB

PDF)
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