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Abstract

Early diagnosis and prevention play a crucial role in the treatment of patients with ARDS.

The definition of ARDS requires an arterial blood gas to define the ratio of partial pressure of

arterial oxygen to fraction of inspired oxygen (PaO2/FiO2 ratio). However, many patients

with ARDS do not have a blood gas measured, which may result in under-diagnosis of the

condition. Using data from MIMIC-III Database, we propose an algorithm based on patient

non-invasive physiological parameters to estimate P/F levels to aid in the diagnosis of

ARDS disease. The machine learning algorithm was combined with the filter feature selec-

tion method to study the correlation of various noninvasive parameters from patients to iden-

tify the ARDS disease. Cross-validation techniques are used to verify the performance of

algorithms for different feature subsets. XGBoost using the optimal feature subset had the

best performance of ARDS identification with the sensitivity of 84.03%, the specificity of

87.75% and the AUC of 0.9128. For the four machine learning algorithms, reducing a certain

number of features, AUC can still above 0.8. Compared to Rice Linear Model, this method

has the advantages of high reliability and continually monitoring the development of patients

with ARDS.

1. Introduction

Acute respiratory distress syndrome is a disease that seriously threatens the health of human

lives[1,2]. According to relevant epidemiological investigations, the in-hospital mortality rate

of ARDS is as high as 40%[3,4]. Currently, the diagnosis of ARDS disease is mainly based on

the Berlin definition[5]. The Berlin definition was introduced in 2012 and allowed a clear diag-

nosis of ARDS disease by stating that when positive end-expiratory pressure (PEEP)�5

cmH2O, ARDS can be classified into three stated with increasing severity, namely, mild

(200< arterial oxygen partial pressure (PaO2)/ fraction of inspired oxygen (FiO2) (P/F)

�300), moderate (100 < P/F� 200), and severe (P/F� 100), according to the level of oxygen-

ation index (P/F). At present, blood gas analysis is mainly used to measure PaO2 to calculate
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the P/F value to evaluate the severity of ARDS. However, this method is still limited by some

defects[6]. Firstly, the calculation of the P/F value requires blood gas analyses. In the clinical

use of arterial indwelling catheters, daily care is difficult, and it is not easy to operate on some

particular patients, such as newborns and elderly patients[7]. Secondly, arterial blood gas anal-

yses cannot monitor the development of patients with ARDS in real-time, which makes doc-

tors unable to adopt appropriate respiratory therapy strategies and delay the diagnosis and

treatment of patients[8].

In recent years, in response to encountered problems in conducting blood gas analyses,

researchers attempted to use the noninvasive parameter pulse oximetric saturation (SpO2)/

FiO2 (S/F) to estimate P/F, thereby achieving noninvasive identification of the severity of

ARDS disease[9–11]. At this stage, the single SpO2 parameter was mainly used, and there was

a specific limit expected in relation to the range of SpO2 (SpO2� 97%). The traditional linear

regression algorithm[11] was used to construct the prediction model, but the model identifica-

tion effect was not ideal[10,12–16]. Additionally, it was challenging to provide accurate guid-

ance for medical staff in the clinic[12,17].

Based on a review of the literature[9], we found that when a patient’s condition changes,

the patient’s physiological parameters (such as heart rate, blood pressure, respiratory rate, etc.)

will change at varying degrees, which provided ideas that assisted the investigation of the aims

of our study.

In response to the problems listed above, we extracted a variety of noninvasive physiological

parameters from ICU patients and explored the relevance of these parameters for the identifi-

cation of the level of P/F ratio. An algorithmic model for identifying ARDS disease based on a

variety of noninvasive parameters was established to provide medical staff with the reference

basis for disease diagnosis. This model uses a feature selection algorithm and a cross-validation

model to evaluate the recognition effects of four machine learning algorithms using different

subsets of feature values.

Herein, we used a variety of evaluation indicators to assess the ability of different algorithms

and feature subsets for ARDS disease identification. To further investigate the performance of

machine learning algorithms, we used existing data to classify the ARDS disease using tradi-

tional linear regression models, and we discuss the various methods of development.

2. Materials

2.1 Data sources

Medical Information Mart for Intensive Care III (MIMIC-III, V1.4) is a large, freely available

database comprising de-identified health-related data associated with over forty thousand

patients who stayed in the critical care units of the Beth Israel Deaconess Medical Center

between 2001 and 2012[18]. The database includes information, such as demographics, vital

sign measurements obtained at the bedside, laboratory test results, procedures, medications,

caregiver notes, imaging reports, and mortality records.

2.2 Patients and data collection

The patient diagnostic information was recorded in the MIMIC–III database. In the patient

screening process, we combined the diagnostic information provided by the database and the

Berlin definition to determine whether the enrolled patient was suffering from ARDS, thus

ensuring the accuracy of the disease diagnosis. In combination with the Berlin definition and

the disease diagnosis, we propose the following conditions: 1) determine whether the patient

has a P/F < 300 on the first day of entering the ICU, 2) determine whether the patient under-

went chest imaging during his/her presence in the ICU and whether the imaging report was
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verified, 3) formulate a comprehensive judgment based on the patient’s disease diagnosis

information.

Combined with the above, we propose the corresponding patient selection criteria:

1. Choose the patients who first entered the ICU (if the patients entered the ICU multiple

times, it may be likely that the patient conditions were more complicated and may have

affected the identification result. In this study, we only used the data from the patients who

entered the ICU for the first time)

2. The patient is older than 16 years old

3. The patient stayed in the ICU for more than 48 h

4. Mechanical ventilation was used during the presence of the patient in the ICU

5. P/F< 300 on the first day

This study extracted a variety of noninvasive physiological parameters of patients: demo-

graphics (age, gender, height, weight, body mass index (BMI), ethnicity), ICU information

(ICU type, length of stay in ICU, admission type, in-hospital mortality), clinical measures

(SpO2, temperature, heart rate, blood pressure, Glasgow Coma Scale (GCS)), respiratory sys-

tem (respiratory rate, tidal volume, minute ventilation volume, peak pressure, plateau pressure,

mean air pressure, PEEP, FiO2), and oxygenation index (P/F, S/F, Oxygenation Index (OI),

Oxygenation Saturation Index (OSI)).

This study has paid more attention to the noninvasive physiological parameters of patients.

Based on an extensive review of the literature combined with the actual recording parameters of

patients in the database, the following noninvasive physiological parameters are finally used in

the identification algorithm: SpO2, temperature, heart rate, blood pressure, GCS, respiratory

rate, tidal volume, minute ventilation volume, peak pressure, plateau pressure, mean air pressure,

PEEP, FiO2, S/F, OSI, and demographics (age, gender, BMI). Additionally, convert these param-

eters into 24 features for model training. The main purpose of this study was to identify ARDS

by monitoring P/F values through a variety of noninvasive parameters. We used P/F as the out-

come variable, P/F� 300 data points as positive samples, and P/F> 300 as negative samples.

In the process of extracting the physiological parameters for patients from the database, we

also needed to extract the blood gas analyses outcomes obtained at a specific test time to ensure

the accuracy of the identified results. However, this also caused considerable data losses. To

avoid this problem, we allowed the use of data from the first two h following blood gas analyses

in the data collection process as a substitute for the respective outcomes at the specific, desired

test time.

3. Methods

This section provides an overview of the procedures described in the adopted methods, which

are visually summarized in Fig 1. The dataset for this study was from the MIMIC–III database.

After preprocessing the data, they were divided into a training (75%) and a test set (25%). In

the model training process, we used the training dataset, used cross-validation to evaluate the

identification performance of different feature subsets and algorithms, used the test set to ver-

ify the model, and compared it with the traditional algorithm.

3.1 Preprocessing

3.1.1 Handling missing values. In the process of collection of physiological parameters

from patients, we have found that some physiological parameters were recorded at a lower
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frequency, such as the noninvasive blood pressure recordings, thus resulting in the absence of

physiological data recordings at the time of the blood gas analyses. Fortunately, the patient’s

invasive blood pressure was continually monitored, which could provide data when noninva-

sive blood pressure data was lacking[19]. Therefore, the random forest was used to comple-

ment the patient’s noninvasive blood pressure missing values, and other physiological

parameters were imputed using k-nearest neighbor (k-NN)[20].

3.1.2 Oversampling and normalization. In the data preprocessing process, we found that

use of P/F� 300 to divide the dataset into positive and negative samples would result in an

imbalance in the dataset. The use of unbalanced data for the machine learning algorithm train-

ing would result in a bias toward the larger sample size, which would make the generalization

ability of the algorithm insufficient, and would affect the overall performance of the model.

For the above reasons, we used the oversampling method to deal with the problem of data

imbalance[21]. The current implementation methods of oversampling included random over-

sampling, the Synthetic Minority Oversampling Technique (SMOTE)[22], and the Adaptive

Synthetic (ADASYN) sampling approach[23]. Random oversampling solves the problem of

data imbalance by randomly sampling in the classes which are under-represented. SMOTE

uses the similarities of under-represented samples in the feature space to generate new sam-

ples. The ADASYN solution was used to generate different numbers of new samples for differ-

ent under-represented samples, based on the data distribution. It is an extension of SMOTE,

but from the results, ADASYN tended to focus on some outliers. Based on the above analyses,

we use SMOTE to deal with the problem of the data sample imbalance.

This study used a variety of physiological patient parameters each of which was associated

with a different range of values. For most machine learning algorithms (such as neural net-

works), this situation would result in the slow learning of the algorithm, and would be easier to

Fig 1. Overview of the model design. Summarize the overall process of the experiment. The raw data in the MIMIC-III database was preprocessed, and the data set was

awakened and randomly grouped: 75% data was used for model training; the remaining 25% data was used for model testing, and comparative experiments were

conducted to obtain the final experimental results.

https://doi.org/10.1371/journal.pone.0226962.g001
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achieve the local optimal solution, thereby affecting the training outcomes of the algorithm.

Therefore, it was necessary to normalize the feature values of different orders of magnitude to

the same order of magnitude [a, b]. We used feature scaling to standardize data in accordance

with Eq (1):

X0 ¼ aþ
X � Xmin

Xmax � Xmin
ðb � aÞ ð1Þ

Where Xmin represents the minimum and Xmax represents the maximum value of an attribute.

The motivation to use feature scaling was based on the robustness to very small standard devi-

ations of features and the preservation of zero entries in the sparse data.

3.2 Feature selection

This study extracted a variety of information and physiological parameters of patients, and

these parameters correspond to 24 features, but it is unclear which features yield a strong cor-

relation with the identification of ARDS disease. Conversely, the performance of the super-

vised learning algorithm had a certain correlation with the number of input features, and the

correlation between features and outcome variables. The purpose of feature selection was to

identify a subset of features that optimized the algorithmic performance compared to the origi-

nal feature set. There were three types of feature selection algorithms, namely, filter, wrapper,

and embedded[24].

The filter method first selected the feature of the dataset and then trained the classifier. The

feature selection process was independent of the subsequent classifier. In contrast to the filter

method, the wrapper feature selection directly applied the performance of the classifier to be

used as the evaluation criterion of the feature subset. In the case where more features existed,

the computational overhead was usually much larger than that for the filter. The embedded

method combined the evaluation feature importance with the model algorithm, and resulting

in an increased correlation between the feature value selection results and the evaluation algo-

rithm. In most cases, other algorithms were not applicable[25].

The filter method was associated with a small number of calculations, and the feature value

selection result did not depend on the classification algorithm[24]. The filter method generally

evaluates the importance of feature values in three ways: distance, dependency, and informa-

tion. Based on this, we have selected three representative methods for these three aspects: relief,

chi-squared, and mutual information.

3.2.1 Relief-F. The key idea of the Relief-F algorithm was to estimate the quality of attri-

butes according to how well their values distinguished among instances that were close to each

other[26]. For example, the quality estimation of the attribute j is shown in Eq (2), if sample xj
i,

belonged to class k, Relief–F first searched for the xj
i;nh (near-hit) of xj

i in the sample of class k,

and then found xj
i;nm (near-miss) of x in each class other than the kth class.

@ j ¼
X

i
� diff ðxj

i; x
j
i;nhÞ

2

þ
X

l6¼k
ðpl � diff ðxj

i; x
j
i;nmÞ

2
Þ ð2Þ

3.2.2 Chi-squared. The chi-squared was based on the χ2 statistic and consisted of two

phases. The first phase began with a high significance level for all numeric attributes for discre-

tization. Each attribute was sorted according to its values[27]. The following steps were then

performed: 1) calculate the χ2 value in accordance with Eq (3) for every pair of adjacent inter-

vals, and 2) merge the pair of adjacent intervals with the lowest χ2 value. Eq (3) was used for
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computing the χ2 value in accordance to

w2 ¼
X2

i¼1

Xk

j¼1

ðAij � EijÞ

Eij

2

ð3Þ

Where Aij denotes the number of patterns in the ith interval and jth class, and Eij is the

expected frequency of Aij.

3.2.3 Mutual information. Mutual information based feature selected(MIFS) was used to

measure the amount of information shared between the two features[28]. The mutual informa-

tion I(X,Y) between two variables X and Y was expressed as

IðX;YÞ ¼
R
Pxyðx; yÞlog2

Pxyðx;yÞ
PxðxÞPyðyÞ

� �
dxdy ð4Þ

3.2.4 Rank aggregation. To ensure the stability of feature selection, we used a combina-

tion of filter feature selection methods[25]. The results of the three algorithms were not in a

uniform numerical range, and it is not convenient to evaluate the importance of the features.

In order to make the three methods equally important, we normalized the three results[29].

The rank aggregation method was formulated based on Eq (5).

Rj ¼
1

n

Xn

i¼1

Fi;j

Fi;max � Fi;min
ð5Þ

Where Fi is the result of different filter feature selection methods, and Rj is the final rank score

for the jth feature.

3.3 Classification algorithms

This study designed an algorithm that combined feature selection with multiple classification

algorithms, used a 10-fold cross-validation model, trained classifiers for different feature sub-

sets, and selected the optimal combination of feature subsets and classifiers, and achieved the

identification of the ARDS. This section presents an abridged description of the four classifiers

selected for this study.

3.3.1 L2 regularized logistic regression (L2–LR). In order to prevent overfitting of the

classification algorithm, a regularization term was added to the traditional logistic regression

cost function J(w,b). Since the feature selection used the external filter method, this study used

L2 regularization to avoid the situation where the L1 regularization caused the weight to be

sparse[30]. Furthermore, λ is the regularization parameter used to control the weight w.

ŷ ¼ sðwTxþ bÞ ð6Þ

Jðw; bÞ ¼ min
w;b

�
1

m

Xm

i¼1
½yilnŷi þ ð1 � yiÞlnð1 � ŷiÞ� þ

l

2n

X

w
kwk

2

� �

ð7Þ

Where ŷi is defined in accordance to Eq (6), m is the number of samples, and n is the number

of features.

3.3.2 Artificial neural network. This study used a single hidden layer feedforward neural

network (SLP–FNN). According to the number of features and the outcome variables, the fol-

lowing network structure was designed. Specifically, the number of neurons in the input layer

was 24, the number of neurons in the hidden layer was 23, and the number of neurons in the

output layer was two. In order to quickly iterate and train the network, we used a stochastic

gradient descent algorithm to optimize the parameters of the network, while we concurrently
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used adaptive learning rates. Selecting the rectified linear unit function as the activation func-

tion we could effectively prevent the occurrence of gradient disappearance. To prevent overfit-

ting in the network training, we used the L2 regularization term. The principle is the same as

that described in subsection 3.3.1.

3.3.3 AdaBoost. The AdaBoost algorithm is a two-class learning method in which the

model is an additive model, the loss function is an exponential function, and the learning algo-

rithm is a forward step-by-step algorithm. The specific idea of AdaBoost was to increase the

weights of samples that had been misclassified by the previous round of weak classifiers, and to

reduce the weights of those samples that were correctly classified[31]. As a result, the data that

were not correctly classified were more concerned by the latter round of weak classifiers owing

to their increased weight. Herein, Gm(x) is a weak classifier, and αm indicates the importance

of Gm(x) in the final classifier, Eq (8) is a mathematical description of the forward distributed

algorithm, and Eq (9) is the final classifier constructed based on Eq (8).

f ðxÞ ¼
XM

m¼1
amGmðxÞ ð8Þ

GðxÞ ¼ signðf ðxÞÞ ¼ signð
XM

m¼1
amGmðxÞÞ ð9Þ

3.3.4 XGBoost. XGBoost is a scalable machine learning system for tree boosting. The

impact of the system has been extensively recognized in a number of machine learning and

data mining challenges[32].

~LðtÞ ¼
Xn

i¼1
lðyi; ŷ

ðt� 1Þ

i þ ftðxiÞÞ þ OðftÞ ð10Þ

OðftÞ ¼ gTþ
1

2
l
XT

j¼1
w2

j ð11Þ

Herein, ~LðtÞ is a differentiable convex loss function that measures the difference between the

prediction ŷi and the target yi. The second term O(ft) penalizes the complexity of the model.

The additional regularization term helps to smooth the final learned weights to avoid overfit-

ting. Moreover, γ and λ are the regularization parameters used to control regularization terms.

3.3.5 Traditional noninvasive classification method. Previous studies on the use of the

noninvasive parameter identification ARDS focused on the use of a single parameter S/F to fit

the P/F value. This study used the linear regression model proposed by Rice et al[11]. The

model used adult SpO2 values (SpO2 < 97%) to fit the P/F values, thus enabling continuous

monitoring of the patient’s P/F values using noninvasive parameters. The Rice Linear Model is

shown in Eq (12).

S=F ¼ 64þ 0:84� ðP=FÞ ð12Þ

The noninvasive parameter S/F is used to obtain the predicted P/F value according to Eq (12)

so as to classify the severity of ARDS disease, and to obtain the classification result of the tradi-

tional algorithm.

3.4 Performance metrics

According to the diagnostic definition of ARDS disease, P/F� 300 is ARDS. According to this

standard, the sample is divided into positive and negative results. Table 1 describes the rela-

tionship between the real category and the identification category.
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We measured the classification performance based on the average of AUC, and the accu-

racy (ACC), sensitivity (SEN), specificity (SPE), and balanced error rate (BER), as defined by

Eqs (13)–(16), respectively.

ACC ¼
TN þ TP

TP þ FP þ FN þ TN
ð13Þ

SEN ¼
TP

TPþ FN
ð14Þ

SPE ¼
TN

TN þ FP
ð15Þ

BER ¼ 1 �
1

2
ðSEN þ SPEÞ ð16Þ

BER is a balanced metric that equally weights errors in SEN and SPN. We used the BER

index to select the optimal feature subset based on a 10-fold cross-validation model[33]. For

each algorithm, under the different feature subsets, the smallest mean BER was chosen as

the optimal feature subset (the minimum BER subset) of this algorithm[29]. The search

algorithm for optimal feature subsets is summarized in Algorithm 1 (Fig 2). According to

the results of this algorithm, the minimum feature subset of the algorithm was found within

the BER standard deviation of the optimal feature subset. At the same time, the two cases

presented above were compared with all of their features to select the optimal identification

result.

4. Results

We identified 8702 patients who met our inclusion criteria from a total of 46476 patients

enrolled in the MIMIC–III database. Fig 3 is a flowchart outlining the patient selection and

detailing the number of patients and the data selection process. There were 6601 patients

(148414 data points) in the training set and 2101 patients (47352 data points) in the test set.

The demographics and utilization characteristics are summarized in Tables 2 and 3. Table 2

summarizes the demographic information of patients. The training set has a consistent patient

distribution with the test set. In the training set, the patients were hospitalized in different

intensive care units: CSRU (2231, 33.8%), MICU (1851, 28.4%), SICU (927, 14.04%), TSICU

(904,13.09%), and CCU (688, 10.42%), the average age of patients was 65.14. The majority of

the patients were male (58.64%). The patient in-hospital mortality rate was 16.34%. Table 3

summarizes the distribution of physiological parameters of patients classified in the training

and test sets. As observed, there is a large difference between the positive samples (P/F� 300)

and the negative samples (P/F > 300) within the same dataset. For the training set and the test

set, the two datasets were randomly grouped and had a common distribution. There is no sig-

nificant difference in the dataset.

Table 1. The relationship between real categories and recognition results.

Predicted class Actual class

Positive(P/F�300) Negative(P/F>300)

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

https://doi.org/10.1371/journal.pone.0226962.t001
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Fig 2. Algorithm 1. MIN–BER–FS algorithm.

https://doi.org/10.1371/journal.pone.0226962.g002
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4.1 Feature selection result

Table 4 represents the normalized values of the scores provided by the three filter methods

under consideration. The importance of the features in this study is relative to the level of oxy-

genation index. The closer the value is to one of the scores, the more relevant the feature is.

The MIFS criterion showed that a number of parameters were relevant, while the Relief–F and

Fig 3. Flow diagram for patient selection. According to the ARDS diagnostic criteria, the appropriate enrolled population was selected from more than 40,000 patients

in the MIMIC-III database, and 8702 eligible patients were finally included, and the data sets were randomly divided into training sets and test sets.

https://doi.org/10.1371/journal.pone.0226962.g003
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chi-squared tests were more conservative, and indicated that the SpO2 and S/F were the more

important and relevant features. The ranking of the final features is listed in Table 3. This com-

bined score was calculated based on Eq (5). According to the combined score, SpO2 is clearly

more relevant than the rest of the parameters. Furthermore, SpO2, S/F, FiO2, and PEEP, are

also likely to be highly relevant features.

4.2 Algorithmic evaluation

Using the training dataset, the 10-fold cross-validation methods were used to evaluate the per-

formance of the four algorithms. According to the feature ranking results in Table 4, the fea-

tures were substituted into the four algorithms in turn, the BER of each algorithm was used to

select the feature subset, and the algorithm effect was compared based on AUC. As shown in

Fig 4, the BER of the four algorithms change as a function of the number of features, and the

average BER results of the four classification algorithms are listed for different feature subsets.

The gray area represents the standard deviation of the BER. The red triangle and green dot

marks and their corresponding numbers represent the minimum feature and the optimal fea-

ture subsets, respectively. We found that the BER of the four algorithms decreased

Table 2. Patient demographics in training and test sets (ICU: Intensive Care Unit, CSRU: Cardiac Surgery Recov-

ery Unit, MICU: Medical Intensive Care Unit, CCU: Coronary care unit, SICU: Surgical intensive care unit,

TSICU: Trauma Surgical Intensive Care Unit).

Variables Training dataset Test dataset

n = 6601 n = 2101

Age(year)
�

65.14±16.16 64.89±16.00

Gender, n (%)

Female 2730(41.36) 845(40.22)

Male 3871(58.64) 1256(59.78)

BMI(kg/m2)
�

29.52±7.81 29.91±8.12

Length of stay in

ICU (days)+
5.04(3.08–9.89) 4.98(3.04–10.15)

Mortality, n (%) 1080(16.34) 331(15.75)

ICU type, n (%)

CSRU 2231(33.80) 741(35.27)

MICU 1851(28.04) 583(27.75)

SICU 927(14.04) 287(13.66)

TSICU 904(13.09) 266(12.66)

CCU 688(10.42) 224(10.66)

Admission type, n (%)

Emergency 5252(79.56) 1681(80.01)

Elective 1349(20.44) 418(19.90)

Ethnicity, n (%)

White 4568(69.11) 1485(70.68)

Asian 143(2.16) 37(1.76)

Black 372(5.63) 133(6.33)

Hispanic 198(3.00) 59(2.81)

Other 1320(19.97) 387(18.42)

� Data are mean ± SD

+ median (interquartile range)

https://doi.org/10.1371/journal.pone.0226962.t002
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considerably when the first five features were added to the model, but as the features were

added gradually, the BER decreased slowly.

For SLP–FNN, L2–LR, and AdaBoost, almost all feature training models were used to

achieve minimum BER. Compared to the first three algorithms, XGBoost achieved the mini-

mum BER in the 13th feature. As the number of features increased, the BER appeared to

increase. We selected the smallest number of features for which the mean BER was within one

standard error of the minimum BER (subset selection threshold). According to this standard,

we found the optimal and smallest feature subset of the four algorithms: L2–LR (24, 18), SLP–

FNN (24, 20), AdaBoost (23, 21), XGBoost (12, 6).

4.3 Performance of classification algorithms

4.3.1 Training dataset. Based on the selected features, we obtained the minimum, optimal

feature subset for the training set. We used training data for the minimum, optimal, and all

feature subsets. Four classification algorithms were trained using 10-fold cross-validation. The

results are shown in Table 5.

By comparing the results of the optimal and minimum feature subsets, we found that the

minimum feature subset was determined using the minimum BER and standard deviation,

but with the use of fewer feature quantities (reducing certain data information). However,

Table 3. Patient characteristics in training and test sets (Nisbp: Noninvasive systolic blood pressure, Nidbp: Noninvasive diastolic blood pressure, Nimbp: Noninva-

sive mean blood pressure, OI: (FiO2×Mean air pressure)/PaO2, OSI: (FiO2×Mean air pressure)/SpO2.

Variables Training dataset Test dataset

(n = 148414) P/F>300(n = 34647) (n = 47352) P/F>300(n = 10972)

P/F�300(n = 113767) P/F�300(n = 36380)

SpO2

�

96.57±3.70 98.72±2.93 96.56±3.58 98.68±2.93

S/F
�

183.31±50.02 218.80±54.04 184.08±49.88 219.72±53.87

OSI
�

7.90±5.04 5.37±2.92 7.79±4.91 5.28±2.88

PaO2

�

102.65±37.30; 200.74±91.84 102.00±36.28 198.74±89.74

P/F
�

188.98±61.91 410.72±142.58 188.78±61.23 408.82±141.58

OI
�

8.21±6.51 2.80±1.22 8.09±6.13 2.77±1.17

FiO2(%)
�

57.64±19.21 49.23±17.98 57.31±19.00 49.03±18.08

Temperature (˚C)
�

37.14±0.88 36.93±0.94 37.16±0.88 36.95±0.94

Respiratory rate(b/min)+ 20(16–25) 18(14–23) 20(16–25) 18(14–23)

Tidal volume(mL)
�

551.39±116.71 555.89±115.70 550.58±114.49 556.62±115.32

Tidal volume(mL/kg)
�

6.72±2.02 7.14±2.05 6.64±2.10 7.21±2.22

Minute ventilation volume(mL/min)
�

10.69±3.31 9.56±3.14 10.69±3.32 9.52±3.05

Peak pressure(cmH2O)
�

26.62±7.86 24.46±6.99 26.50±7.76 24.36±6.78

plateau pressure(cmH2O)
�

22.82±5.60 20.67±4.59 22.69±5.56 20.58±4.38

Mean air pressure(cmH2O)
�

12.75±5.15 10.68±3.88 12.66±5.00 10.53±3.62

PEEP(cmH2O)+ 7(5–10) 5(5–7) 6(5–10) 5(5–7.6)

Heart rate(bpm)+ 88(78–101) 86(75–97) 88(77–100) 87(77–97)

Nisbp(mmHg)
�

115.38±15.44 116.49±15.70 115.36±15.38 115.61±15.36

Nidbp(mmHg)
�

56.00±9.56 56.92±9.85 56.20±9.42 56.37±9.78

Nimbp(mmHg)
�

73.12±10.02 74.21±10.36 73.26±9.97 73.53±10.01

GCS+ 12(6–14) 10(5–13) 12(7–14) 10(4–13)

� Data are mean ± SD

+ median (interquartile range)

https://doi.org/10.1371/journal.pone.0226962.t003
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there was no significant decline in AUC. Fig 5 shows the AUC results for each algorithm with

the use of different feature subsets.

4.3.2 Test dataset

The test set was completely independent of the data of feature selection and model training.

When the training set was used to test the performance of the algorithm, we added a tradi-

tional noninvasive identification algorithm to compare the traditional and the machine learn-

ing algorithm. The final result is shown in Table 6.

The ROC curves of the five algorithms are shown in Fig 6. Based on the results, we show

that the overall performance of the traditional algorithm exhibits a specific gap with respect to

the machine learning algorithm. The AUC (0.7354) of the Rice Linear Model is much lower

than the AUC of L2–LR under the minimum feature subset (0.8156).

In this study, we analyze the classification ability of features, use filter methods to sort the

importance of features, and use MIN–BER–FS algorithm to find the optimal feature subset

and the minimum feature subset. In the algorithmic evaluation, we compare the experimental

results of the minimum, optimal, and all feature subsets, which can reflect the ability of the

algorithm to mine information from different aspects. In the process of feature traversal, it can

also be said that the feature importance is consistent with the feature sorting experiment

results. From the results, XGBoost has the best results under the optimal subset. At the same

time, XGBoost achieved better results than the other three algorithms in the minimum feature

Table 4. Physiological parameter scores and rankings for different feature selection methods.

Feature MIFS Relief-F Chi-squared Aggregation

SpO2 0.9517 1.0000 1.0000 0.9839

S/F 0.7484 0.7314 0.8154 0.7651

FiO2 0.9610 0.4044 0.3971 0.5875

PEEP 0.8666 0.3412 0.2989 0.5023

Mean air pressure 0.9316 0.2589 0.1667 0.4524

Respiratory rate 0.9569 0.3014 0.0761 0.4448

Plateau pressure 0.9078 0.2549 0.1666 0.4431

GCS (eye) 0.9676 0.2820 0.0499 0.4332

GCS (motor) 0.9577 0.2056 0.0375 0.4003

TV/kg 1.0000 0.1502 0.0475 0.3992

GCS (verbal) 0.9367 0.2157 0.0365 0.3963

Gender(female) 0.9660 0.0000 0.1466 0.3709

Peak pressure 0.8401 0.1775 0.0782 0.3652

OSI 0.3259 0.2795 0.4875 0.3643

GCS 0.8870 0.1582 0.0399 0.3617

Heart rate 0.8950 0.1587 0.0228 0.3588

Gender(male) 0.9772 0.0000 0.0963 0.3578

Nidbp 0.9354 0.0829 0.0030 0.3405

Minute ventilation volume 0.6954 0.1859 0.1206 0.3340

Nisbp 0.9124 0.0778 0.0003 0.3302

Temperature 0.8066 0.1290 0.0189 0.3182

Nimbp 0.8592 0.0666 0.0027 0.3095

Age 0.0000 0.4365 0.0000 0.1455

BMI 0.2376 0.1515 0.0422 0.1438

https://doi.org/10.1371/journal.pone.0226962.t004
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subset (only the first six features). Observing the variation of the standard deviation during the

training process, we can see that AdaBoost has the best stability.

5. Discussion

In this study, a novel identification algorithm was presented that combined multiple noninva-

sive physiological parameters with machine learning algorithms to estimate P/F ratio levels.

First, we used the MIMIC–III database to extract the SpO2, PaO2, and FiO2 that were com-

monly used to identify ARDS. At the same time, we extracted a variety of other noninvasive

physiological parameters relevant to the patient. In terms of feature selection, the filter method

was selected, and its feature selection was independent of the subsequent models. We used a

variety of feature selection algorithms (Relief, chi-squared, MIFS) to filter the features, com-

bined with the rank aggregation method, to obtain the final feature ranking results[25]. In the

process of designing the ARDS identification algorithm, we used the cross-validation model to

evaluate the average BER of the four algorithms (L2–LR, SLP–FNN, AdaBoost, XGBoost) in

the optimal feature subset and the minimum feature subset according to the results of feature

Fig 4. Feature selection based on the four methods discussed in this study. The X-axis is the feature number, the y-axis is the BER average of the ten-fold cross-

validation, and the gray shaded area is the BER standard deviation of the ten-fold cross-validation under a specific feature subset. The figure shows the trend of BER

changes of the four algorithms in the process of adding features step by step. The position of the green circle is the optimal feature subset of the algorithm, and the red

triangle is the smallest feature subset.

https://doi.org/10.1371/journal.pone.0226962.g004
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sorting to comprehensively consider the number of features and the identification results,

thereby allowing the choice of the most suitable combination[29,33,34]. Conversely, selection

of the minimum number of features implied the elimination of features that were insensitive

to the accuracy of identification, simplification of the difficulty of the identification algorithm

in actual use, and saving computation time. Conversely, the accuracy of the identification algo-

rithm cannot be sacrificed.

Regarding the noninvasive identification related research on the severity of ARDS, most of

the current research is concerned on the relationship between S/F and P/F[9,10,12,35]. S/F

and P/F did exhibit strong correlations, but the use of S/F for regression analyses alone led to a

large error in the classification of the severity of ARDS disease[6], and there was a range of

restrictions on SpO2 (SpO2 < 97%)[10,11]. Some researchers have found that P/F was affected

by some other parameters, such as the possible connection to a ventilator, or the modification

Table 5. Identification results of the four algorithms on the training set for different feature subsets.

Feature subset Algorithm Result Number of Features

SEN (%) SPN (%) PPV (%) NPV (%) ACC (%) AUC

Minimum Number of Features SL–FNN 80.61±2.79 72.76±2.96 74.80±1.39 79.04±1.76 76.68±0.20 0.8429±0.0013 20

L2–LR 79.72±0.18 71.45±0.10 73.63±0.09 77.90±0.16 75.59±0.12 0.8249±0.0017 18

AdaBoost 81.47±0.18 76.59±0.23 77.68±0.16 80.52±0.14 79.03±0.11 0.8687±0.0019 21

XGBoost 83.02±1.39 86.21±1.17 85.77±0.87 83.56±0.91 84.61±0.15 0.9192±0.0054 6

Optimum Number of Features SL–FNN 81.56±2.77 72.41±3.36 74.79±1.63 79.79±1.73 76.98±0.30 0.8464±0.0023 24

L2–LR 79.50±0.30 71.89±0.14 73.88±0.14 77.81±0.26 75.70±0.18 0.8268±0.0017 24

AdaBoost 81.58±0.16 76.59±0.21 77.71±0.15 80.62±0.13 79.09±0.11 0.8694±0.0019 23

XGBoost 84.96±1.64 83.97±1.53 84.15±1.07 84.84±1.13 84.65±0.19 0.9282±0.0068 12

All Features SLP–FNN 81.56±2.77 72.41±3.36 74.79±1.63 79.79±1.73 76.98±0.30 0.8464±0.0023 24

L2-LR 79.50±0.30 71.89±0.14 73.88±0.14 77.81±0.26 75.70±0.18 0.8268±0.0017 24

AdaBoost 81.71±0.21 76.23±0.12 77.69±0.19 80.57±0.13 79.05±0.11 0.8691±0.0020 24

XGBoost 83.18±0.44 85.28±0.36 84.97±0.28 83.53±0.33 84.23±0.20 0.9241±0.0017 24

https://doi.org/10.1371/journal.pone.0226962.t005

Fig 5. AUC of the four tested algorithms on the training set for different feature subsets. Based on the feature

selection experiment, the training data set is used to study the recognition performance of four machine learning

algorithms under different feature subsets.

https://doi.org/10.1371/journal.pone.0226962.g005
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of ventilator-related settings (PEEP, FiO2, Minute ventilation volume, etc.)[9]. At the same

time, when the P/F changed, some physiological parameters of the patient (such as heart rate,

respiratory rate, etc.) also changed[7]. Based on the above analyses, this study considered a

variety of noninvasive physiological parameters obtained from patients. In the feature selection

method design, we did not use an algorithm alone, but chose a variety of algorithms and inte-

grated the results to prevent the selection of a single sorting algorithm to make the feature sort-

ing less accurate. We selected three representative methods in accordance with distance,

dependency, and information, and normalized the three feature ranking results to calculate

the final feature ranking outcome. Compared to a single method, the sorting result is more sta-

ble and reliable.

Table 5 shows the results of the training set. L2–LR achieved a minimum BER when all the

features were used, thus yielding an AUC = 0.8268. The neural network also reached the mini-

mum BER when all the features were used, and its recognition performance was slightly better

than L2–LR, thus yielding an AUC = 0.8464. Both AdaBoost and XGBoost were lifting tree

algorithms. The identification results of the lifting tree algorithm were better than the logistic

regression and neural networks (single hidden layer). When AdaBoost used 23 features, the

BER outcome was the smallest, and yielded AUC = 0.8694. When XGBoost used 12 features,

the BER outcome was minimal and yielded an AUC = 0.9282. Using the average minimum

BER to find the minimum feature subset, it was found that reducing the number of features to

a certain extent did not affect the recognition performance of the algorithm. In this respect,

the advantage of XGBoost is obvious. With the use of six features, the accuracy rate only

dropped by 0.42%. Combined with Fig 4, we found that the first six features (SpO2, S/F, FiO2,

PEEP, mean air pressure, respiratory rate) contributed considerably to the identification algo-

rithm, and the BER decrease was more distinct. After the addition of the features, the BER

decreased gradually.

In the test set, we introduced a traditional linear regression algorithm[11] to evaluate the

recognition performance of the classification algorithm. The performance of the four algo-

rithms on the test set was basically consistent with the results of the training set, and yielded

good generalization ability for the single-center independent dataset. The Rice Linear Model

yielded an AUC = 0.7738 and ACC = 70.67%, which are far from the corresponding results

elicited based on the machine learning algorithm. According to the literature published by

Table 6. Identification results of four algorithms on test sets for different feature subsets.

Feature Select Algorithm Result

SEN (%) SPN (%) PPV (%) NPV (%) ACC (%) BER (%) AUC

Minimum Number of Features SL–FNN 77.91 73.30 46.81 91.67 74.36 24.40 0.8307

L2–LR 78.62 71.69 45.39 91.54 73.16 25.14 0.8156

AdaBoost 74.06 75.97 48.17 90.66 75.52 24.99 0.8376

XGBoost 81.68 87.92 87.11 82.75 84.80 15.20 0.9086

Optimum Number of Features SL–FNN 75.10 76.17 48.73 91.03 75.92 24.36 0.8310

L2–LR 77.74 72.03 45.60 91.48 73.35 25.11 0.8161

AdaBoost 74.00 75.93 48.11 90.64 75.58 25.04 0.8434

XGBoost 84.03 87.75 87.28 84.61 85.89 14.11 0.9128

All Features SLP–FNN 75.10 76.17 48.73 91.03 75.92 24.36 0.8310

L2-LR 77.74 72.03 45.60 91.48 73.35 25.11 0.8161

AdaBoost 74.00 75.93 48.11 90.64 75.58 25.04 0.8334

XGBoost 81.23 87.45 88.38 81.19 84.01 15.87 0.8957

Rice Linear Model 39.45 72.87 69.73 77.49 70.67 48.16 0.7738

https://doi.org/10.1371/journal.pone.0226962.t006
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Rice in 1994, we know that the Rice Linear Model method was based on the premise of SpO2

< 97%[11]. This study directly used the model for the existing data (and the range of SpO2

without limitations), and some deviation was expected. In actual clinical problems, there are

often some ARDS patients with SpO2 > 97%, but their P/F� 300. In this case, Rice Linear

Model cannot provide doctors with auxiliary diagnosis decisions, and our algorithm model

can overcome the shortcomings of traditional methods.

The application scenario for this algorithm is as shown in S1 Fig. The patient’s oxygenation

level (�300 or>300) was identified by collecting mechanical ventilation parameters and phys-

ical signs to assist the physician in the diagnosis of ARDS without blood gas analysis. For

patients who have been diagnosed as ARDS, the algorithm is used to monitor the patient’s oxy-

genation index level in real-time, and the doctor can adjust the ventilator treatment plan at

any time. On the other hand, the MIN–BER–FS algorithm can significantly reduce the amount

Fig 6. ROC curves of the applications of the four algorithms studied herein on the test dataset. According to the experimental results of the training set, the

four machine learning algorithms and the Rice linear model are used to identify the performance of the minimum feature subset on the test set data, and the

ROC curve of each algorithm is drawn.

https://doi.org/10.1371/journal.pone.0226962.g006
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of computation, and it is easy to transplant the algorithm to the ordinary microprocessors of

ventilators and monitors, which can realize a more intelligent aided diagnosis.

There were also some limitations associated with this study. The MIMIC–III database used

in this study was a single-center database. Even though in the experimental design we sepa-

rated the training set from the test set, we still need to perform external verification to ensure

that the model works well in different hospitals. We found no data on bilateral pulmonary

infiltrate of non-cardiogenic origin in the database, and there were very few patients with a

clear diagnosis of ARDS. In the process of patient screening, this study based on the actual def-

inition of the Berlin definition and database, as far as possible to select patients who meet the

diagnostic criteria of ARDS, this process may introduce some confounding factors. The popu-

lation of the clinical database we used was mainly concentrated at the age of 55, and most of

the patients were middle-aged and elderly patients, which may bias our training model more

focused on elderly patients, and there may be deviations in low-age populations.

Dataset imbalance is a ubiquitous problem in clinical research, and we have adopted a compro-

mise of oversampling dataset imbalances. Oversampling does not solve the problem fundamen-

tally, but can only alleviate the deviation of the results caused by data imbalances to some extent.

The problem of data set imbalance can be fundamentally solved only by expanding the dataset.

Missing data is an important problem in all modeling efforts, especially in the healthcare domain.

For the MIMIC database, missing data problems also exist, such as the patient’s noninvasive

blood pressure, airway pressure, and other physiological parameters. If these missing data is omit-

ted, a lot of samples will be lost. If some technical means are used for missing data processing,

most of the samples will be retained. However, the above two methods will cause deviations in the

model, the former was caused by the partial patient data loss, and the latter was caused by the

introduction of some errors in the process of missing value estimation based on interpolation[19].

This study was exploratory and was mainly applied to investigate whether the use of nonin-

vasive parameters could identify the ARDS patients, and to use feature selection techniques to

select which noninvasive parameters yielded a higher correlation to the oxygenation level. In

the future, we will include more patients with ARDS and develop multi-classification methods

to achieve continuous ARDS disease severity identification. The outcomes of this study are

expected to provide some ideas for future related research.

Next, in the future, an early warning system of the severity of ARDS for the monitors and

ventilators will be developed using a multi-classification algorithm The patient’s oxygenation

level (�300 or>300) was identified by collecting mechanical ventilation parameters and physi-

cal signs to assist the physician in the diagnosis of ARDS without blood gas analysis. For patients

who have been diagnosed as ARDS, the algorithm is used to monitor the patient’s oxygenation

index level in real-time, and the doctor can adjust the ventilator treatment plan at any time.

6. Conclusion

In conclusion, the overall classification effects of machine learning algorithms were better than

those elicited by traditional algorithms. For machine learning algorithms, XGBoost was signifi-

cantly better than the other three algorithms. Feature sorting and feature selection algorithms

can help us understand the characteristics of ARDS to identify which features elicit better cor-

relations, and can improve us design high-precision algorithms. The method can continually

provide medical assistants with auxiliary diagnosis suggestions.

Supporting information

S1 Fig. The application scenario for the present algorithm. The algorithm continuously

monitors the patient’s oxygenation level using basic patient information, ventilator
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parameters, and monitoring parameters to help the doctor diagnose whether the patient has

ARDS and adjust the treatment plan for ARDS patients.

(TIF)

S1 Dataset. The train dataset. The train dataset including 6601 patients (148,414 points).

(CSV)

S2 Dataset. The test dataset. The test dataset including 2101 patients (47,352 points).

(CSV)
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