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Abstract: Erosion and erosion–corrosion tests of as-built Ti-6Al-4V manufactured by Selective Laser
Melting were investigated using slurries composed of SiO2 sand particles and either tap water (pure
water) or 3.5% NaCl solution (artificial seawater). The microhardness value of selective laser melting
(SLM)ed Ti-6Al-4V alloy increased as the impact angle increased. The synergistic effect of corrosion
and erosion in seawater is always higher than erosion in pure water at all impact angles. The seawater
environment caused the dissolution of vanadium oxide V2O5 on the surface of SLMed Ti-6Al-4V alloy
due to the presence of Cl− ions in the seawater. These findings show lower microhardness values
and high mass losses under the erosion–corrosion test compared to those under the erosion test at all
impact angles.

Keywords: selective laser melting (SLM); Ti-6Al-4V; slurry erosion; slurry erosion–corrosion; wear
resistance; erosion mechanisms

1. Introduction

Ti-6Al-4V is the most broadly utilized titanium alloy as it currently covers about 50% of
the worldwide production of titanium alloys [1–3]. It is a duplex ((hcp, α-Ti) + (bcc, β-Ti))-type
microstructure alloy at room temperature. The major advantages of Ti-6Al-4V are its high strength
and hardness, low specific weight (roughly 45% lighter than steel), superior corrosion resistance,
biocompatibility, high creep resistance, low maintenance cost, and long service life [4–6]. Thanks to these
advantageous characteristics, Ti-6Al-4V has emerged as a powerful alloy for a wide field of applications.
In addition to its wide use in surgical instruments and medical implants, it is currently used as a material
for aerospace components (i.e., engine compressor blades and disks and helicopter rotor blades) [7–9],
marine and offshore components (i.e., marine ship hulls, propellers, tubes, and shells) [1,10,11], oil and
wastewater systems components (i.e., valves, pipelines, pipe fittings, and pumps) [12–14], hydropower
plant components (i.e., turbine blades, pumps) [15–17], and architectural cladding and roofing [11].
These components are typically exposed to slurry erosion, where the working surfaces are continuously
impacted by a stream of a slurry mixture. So, central to the entire discipline of Ti-6Al-4V industrial
slurry carrier applications is the investigation of its tribological behaviors, especially slurry erosion
and corrosion.

Slurry erosion is a type of mechanically induced wear process that occurs as a result of relative
motion and/or impact between a stream of liquid containing suspended abrasive particles such as sand
and the target surface, causing material degradation. It is a life-limiting challenge in the design of
Ti-6Al-4V components exposed to a slurry environment leading to a drop in efficiency and increased

Materials 2020, 13, 3967; doi:10.3390/ma13183967 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-8848-8343
http://www.mdpi.com/1996-1944/13/18/3967?type=check_update&version=1
http://dx.doi.org/10.3390/ma13183967
http://www.mdpi.com/journal/materials


Materials 2020, 13, 3967 2 of 16

maintenance cost. The characteristics of slurry erosion conditions include the material properties,
liquid medium and erodent properties, slurry impact velocity, impact angle, and erodent concentration.

Casting, forging, machining, joining, and powder metallurgy are the dominant conventional
processing techniques of Ti-6Al-4V [18,19]. Slurry erosion on conventionally processed Ti-6Al-4V has
been studied by several authors under different conditions over the years [13,15,20–26]. The general
outcome of all studies has been poor erosive wear resistance of Ti-6Al-4V, and it is recommended that
hardness and yield strength should be enhanced to increase the erosion resistance. Surface coatings
and heat treatments have been observed to be common practices to improve both surface hardening
and strength. It was also reported that the Ti6Al4V alloy has ductile material erosion behavior with
maximum erosive wear rate at an impact angle of around 20–30◦ [12,27–29].

The past few decades have seen increasingly rapid advances in the field of metal additive
manufacturing (AM), making it a new manufacturing route for freeform fabrication of complex
net-shape metal components with applications across a range of industrial sectors. In contrast
to subtractive and formative manufacturing methods, such as turning and casting, AM allows
the building of 3D objects layer-by-layer. The classification of AM techniques has been outlined
elsewhere [30,31]. Selective laser melting (SLM) is one of the metal powder bed fusion AM processes.
In SLM, objects are manufactured directly from specific metal powders in a layer-by-layer manner
using a computer-controlled laser system following a digital design or acquisition and virtual slicing
of complex 3D models. Ti-6Al-4V is the most common material used for SLM and it is currently
being explored as a candidate material for many components where major failure occurs due to slurry
erosive wear.

A layered manner and an extremely fast solidification rate (~103 to 108 K/s [32–34]) vs. (~20 to
100 K/s in casting [35]) during processing are important aspects of SLM that make it very different from
conventional cast or wrought counterparts in terms of the microstructure and mechanical properties of
products [36,37]. Previous research on the microstructure of as-built SLM-produced Ti-6Al-4V has
indicated that brittle hexagonally packed acicular α’ martensitic structure contained within prior-β
grains is formed due to the high cooling rate and smaller melt pools size during the melting process,
resulting in higher strength and lower ductility, in contrast to the formation of coarse equiaxed β

grains and straight (α + β) lamellas in typical as-cast Ti-6Al-4V [38–43]. Previous research also
showed that the hardness of as-built SLMed Ti6Al4V is about (~ 430–450 HV) [44], which is higher
than the hardness (~200 HV) of as-cast Ti-6Al-4V [45], as well as the hardness (~320–350 HV) of the
superplastic forming process of Ti-6Al-4V [33]. In general, as-built Ti-6Al-4V processed via optimized
SLM also has a comparable yield strength and ultimate tensile strength to conventionally processed
counterparts; however, it has a higher surface roughness, lower ductility, and questionable fatigue
performance [42,43,46–50].

In light of these differences, one of the major current concerns in SLMed Ti-6Al-4V is the
investigation of its tribological behavior. Up to now, few studies have investigated the erosion
behavior of additively manufactured Ti-6Al-4V [28]. Moreover, too little attention has been paid to
the investigation of the slurry erosion/erosion–corrosion behavior of SLMed Ti-6Al-4V. The aim of
the present study, therefore, is to experimentally investigate the slurry erosion and erosion–corrosion
characteristics of as-built Ti-6Al-4V manufactured by selective laser melting using a slurry whirling
arm rig under different conditions. The findings should make an important contribution to the field of
tribology of SLMed Ti-6Al-4V parts.

2. Experimental Details

2.1. Material and Sample Preparation

The slurry erosion tests were performed on Ti-6Al-4V test samples shaped like rectangular blocks
with dimensions of 23 mm × 10 mm × 2.5 mm. They were manufactured using the AM250 SLM system
(Renishaw, Staffordshire, UK) from extra-low interstitial Ti-6Al-4V powder with particle sizes in the
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range of 15–100 µm and were sourced from Renishaw. The chemical composition of the powder before
the manufacturing process is listed in Table 1. Figure 1 depicts an SEM image of the morphology
of Ti-6Al-4V powder particles. Overall, particles have a smooth, spherical shape indicating a good
flowability. The SLM processing parameters are shown in Table 2. Figure 2 shows the sample size
and orientation on the building platform. After fabrication, the as-built SLMed samples were cut,
and sample surfaces were subjected to standard metallographic procedures using the following
protocol: grinding with 240, 600, 1200, and 2500 Grit SiC papers and then mirror polishing using a
polishing cloth with suspensions containing 6, 3, and 1 µm diamond particles, followed by cleaning
in distilled water. Next, to reveal the microstructure, selected polished samples were etched using a
solution comprising 10% hydrofluoric acid (HF), 5% nitric acid (HNO3), and 85% distilled water for an
etching time of 5–10 s. All samples were then degreased in ethanol using an ultrasound cleaner for
10 min each and dried using compressed hot air.

Table 1. Chemical composition (wt.%) of used Ti-6Al-4V.

Element Ti Al V C Fe O N H Yttrium

wt.% Balance 5.50–6.50 3.50–4.50 ≤0.08 ≤0.25 ≤0.13 ≤0.05 ≤0.012 ≤0.005

Table 2. Process parameters of selective laser melting (SLM).

Laser
Power

(W)

laser Spot
Size (µm)

Scanning
Velocity

(m/s)

Layer
Thickness

(µm)

Hatch
Spacing

(mm)

Hatching
Strategy Atmosphere

200 75 0.857 60 0.095 Meander Inert atmosphere
(Purged with Argon gas)
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2.2. Microstructure and Microhardness Investigation

The surface morphology and microstructure of samples before and after erosion and
erosion–corrosion tests were observed using both scanning electron microscopy (SEM, JEOL JSM 5400,
Japan) and optical microscopy (PME OLYMPUS, Tokyo, Japan). Microhardness was measured on the
eroded surface at a load of 200 g and an indentation duration of 15 s using a Vickers microhardness
tester (MICROMET®, ADOLPH I. BUEHLER INC, Lake Bluff, IL, USA). An average of at least five
readings for each sample was reported in this study. The microhardness results are reported as the
microhardness versus the impact angle.

2.3. Erodent

Natural SiO2 sand with a nominal size ranging from 355 to 500 µm was employed as an erodent to
form a solid–liquid slurry with tap water and artificial seawater (tap water + 3.5% NaCl). A scanning
electron micrograph of the erodent is shown in Figure 3, and the statistical values of the used SiO2

particles are listed in Table 3. The SEM image in Figure 3 shows that the particles’ shapes were relatively
block-like and regular.
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Table 3. Statistical values are determined from image analysis processing of particle parameters.

Particle
Size Range

(µm)

Statistical
Parameters

Area, A
(µm)2

Average
Dia.
(µm)

Width,
W, (µm)

Length,
L, (µm)

Aspect
Ratio =
(W/L)

Perimeter,
P, (µm) P2/(4πA)

355–500
Mean

Median
Std. Dev

130,512 395.66 358.12 496.53 0.734 1435.71 1.29
128,716.2 396.74 356.10 481.85 0.727 1402.37 1.23
33,737.24 50.35 54.62 84.61 0.126 192.53 0.213

2.4. Slurry Erosion and Erosion–Corrosion Tests Procedure

Erosion and erosion–corrosion tests were performed using a whirling arm slurry erosion test rig
(WASET) [52], as shown in Figures 4 and 5. The rig was composed of 3 main units: a slurry mixing
unit, a slurry test chamber, and a vacuum unit. The details of the used experimental test rig design
and performance are provided in [53,54]. In the first set of experiments (erosion tests), the procedure
started with a slurry mixing unit consisting of a 25 L cylindrical tank containing 1% sand particles
that were added to tap water and mixed via a stirrer, before being passed through a pipe to the slurry
test chamber. In the slurry test chamber, the slurry mixture flowed to a funnel with a 3 mm diameter
orifice equipped with a stirrer to keep the slurry under suspension. The funnel provided a falling
homogenous stable slurry stream at the center of the sample surface. Test specimens were placed
on two holders mounted at the ends of two horizontal arms fitted at 180◦ apart from each other to
balance the dynamic forces. The diametric holder-to-holder distance was 248 mm, and samples were
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positioned 40 mm from the tip of the orifice. An impact angle from 0◦ to 90◦ could be adjusted by
rotating the sample holder around the arm axis, as shown in Figure 5. The two arms were attached
to a brass sleeve firmly tightened to the top end of a vertical whirling shaft which provided balance
under high-speed operation and was driven by a variable speed motor. Two samples were tested at
the same time, and a single surface with dimensions of 23 mm × 10 mm (see Figure 1) for each sample
was exposed to the slurry stream at impact angles of 30◦, 45◦, 60◦, and 90◦. To eliminate aerodynamic
effects on the slurry stream, the slurry test chamber was evacuated by a vacuum system (up to 28 cm
Hg). The second set of experiments (erosion–corrosion tests) followed the same procedure, but samples
were exposed to a slurry with seawater (tap water + 3.5% NaCl) instead of tap water. To replenish the
consumed slurry during any set of experiments, predetermined amounts of pure water (or seawater)
and SiO2 sand flowed and were stirred continuously in the slurry tank.
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At each test condition, five measurement intervals were carried out, and the weight of the specimen
was very carefully measured before and after each interval using a precision balance with an accuracy
of ±0.1 mg. Two specimens were tested in each test condition, and the average mass loss value was
reported. All of the slurry erosion tests were carried out at an ambient temperature of about 25 ◦C and
a relative humidity of 30–40%.

At the same test time, specimens at different impact angles were not subjected to the same mass of
erodent. Therefore, in this test rig, a comparison between the different impact angles was carried out
depending upon the mass of the erodent, i.e., all samples at each impact angle should be impacted by
the same amount of erodent and not the same test-time. Table 4 illustrates the mass of the erodent that
impacts the surface of the sample and the corresponding test time at each impact angle. If the interval
mass of the erodent was 28.2 g of SiO2 particles, then the test time was 15, 17.5, 21.6, and 30.9 min at
impact angles 90◦, 60◦, 45◦, and 30◦, respectively. The mass of the erodent and the corresponding test
time at each impact angle was determined according to Equation (1) [52]:

mp =

[
l sin(θo) An +

lCos(θo) Q
πDN

]
Cwρw (1)

where θo is the angle between the surface plane of the specimen and the horizontal plane; l is the
length of wear specimen surface in m; An is the area of the orifice in m2; Cw is the weight fraction of
solid particles in the water; ρw is the water density in kg/m3; D is the rotational diameter of the wear
specimen in m; Q is the volume flow rate of slurry in m3/min; N is the rotational speed of the wear
specimen in rpm.

Table 4. Test-time corresponding to the impact angle for the same mass of erodent (mp = 1.8729 g).

Impact Angle θ, Deg. Mass of Erodent mp, (g) Corresponding Test Time t, (min.)

15 1.8729 4.12
30 1.8729 2.06
45 1.8729 1.44
60 1.8729 1.17
75 1.8729 1.04
90 1.8729 1.00

3. Results and Discussion

3.1. As-Built Microstructure

Figure 6 shows an SEM image of the morphology of the external surface of as-built SLMed
Ti-6Al-4V specimens. The image reveals the presence of un-melted and partially melted powder
particles adhering to the surface due to the high scan speed and rapid cooling, causing increased
surface roughness which is a common characteristic in the SLM process.

The microstructure of as-built SLMed Ti-6Al-4V is shown in Figure 7. It can be seen in Figure 7
that the microstructure consisting of a fine acicular α’ martensite originated from the prior β grain
boundaries. This microstructure evolved due to the martensitic transformation of the bcc β-phase
as a consequence of the inherent rapid heating and cooling of the SLM process. These findings are
in accordance with reported work [38–43]. As a consequence, the as-built Ti-6Al-4V possesses high
hardness and strength, giving it greater wear resistance compared to its as-cast counterpart [55].
SLM process parameters, including the laser type and energy, scan parameters and strategy, powder
characteristics, and layer thickness have strong influences on the surface quality and microstructure [41].
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3.2. Eroded Surface Characteristics and Erosion Mechanisms

Figures 8a,b and 9a,b show the accumulative mass loss of specimens as a result of slurry erosion
tests using pure water and artificial seawater, respectively, at impact angles of 30◦, 45◦, 60◦, and 90◦.
By increasing the striking mass of the erodent (increasing the test time) on the samples, the mass loss
increased dramatically with an almost constant rate for all impact angles—30◦, 45◦, 60◦, and 90◦—and
for both mediums (pure water and seawater). Also, from Figures 8b and 9b, it is clear that the amount
of mass loss decreased as the impact angle increased. The highest mass loss value due to slurry erosion
of both mediums (pure water, and seawater) was recorded at an impact angle of 30◦, while the lowest
value was recorded at an impact angle of 90◦.
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Figure 9. Mass loss of the SLMed Ti-6Al-4V alloy due to slurry erosion in seawater at impact angles
30◦, 45◦, 60◦, and 90◦: (a) mass loss versus mass of erodent; (b) mass loss versus impact angle.

Although titanium alloys have good resistance to corrosion, seawater is considered a severe
medium for most commonly used materials, and it influences the amount of material lost due to
corrosion. As the corrosion of specimens in pure water is negligible [56], the mass loss due to slurry
erosion using pure water is referred to as erosion mass loss (WE). The mass loss due to slurry erosion
using seawater is referred to as the erosion–corrosion mass loss (WEC). The erosion–corrosion mass
loss (WEC) was found to vary similarly to the erosion mass loss (WE) at impact angles of 30◦, 45◦, 60◦,
and 90◦. At all studied impact angles—30◦, 45◦, 60◦, and 90◦—the mass loss due to slurry erosion in
seawater was always higher than that due to slurry erosion in pure water, i.e., WEC was higher than
WE at all impact angles (see Figure 10). Also, it is clear from Figure 10 that when the impact angle
increased, the WEC and WE curves and their error bars approached each other. This indicates that the
effect of corrosion decreases as the impact angle increases.
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Figure 10. Mass loss of the SLMed Ti-6Al-4V alloy due to slurry erosion in pure water and seawater at
impact angles of (a) 30◦, (b) 45◦, (c) 60◦, and (d) 90◦.

The previous results can be explained by considering the slurry erosion mechanism at each impact
angle. At relatively small impact angles (e.g., θ = 30◦), the dominant slurry erosion mechanism is
plowing, whereas the impacted solid particle forms a relatively long crater on the surface of the sample
with some depth, causing chips to be accumulated on both sides of this crater and in front of it, as shown
in Figure 11. When the impact angle increased, the length of the slurry erosion craters decreased.
The impacting force has two components, the horizontal impacting force component and the vertical
impacting force component, and both of these components work simultaneously to form the slurry
erosion crater. At low impact angles, the high horizontal force component causes long craters, while at
high impact angles (e.g., θ = 90◦) the vertical force component causes penetrations, micro-forging, and
extrusions on the surface of the specimens [54,57]. In between, at medium impact angles (e.g., θ = 45◦,
and θ = 60◦) the predominant mechanisms are a mixture of plowing and micro-cutting mechanisms
(see Figure 11). Furthermore, because of the high strength and ductility of the SLMed Ti-6Al-4V alloy
compared to other materials, such as low alloy steel, the SLMed Ti-6Al-4V alloy has a high resistance for
penetration but a weakness for scraping. Therefore, the effect of the vertical impacting force component
is insignificant compared with the effect of the horizontal impacting force component. Accordingly,
at an impact angle of 30◦ the mass loss was found to be the highest, while at an impact angle of 90◦,
the mass loss was the lowest. This suggests that the erosion mechanism is similar to slurry erosion
using pure water slurry or sodium chloride water (seawater) slurry [58].
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Figure 11. SEM morphologies of the SLMed Ti-6Al-4V alloy due to slurry erosion in pure water and
seawater at impact angles of (a) 30◦, (b) 45◦, (c) 60◦, and (d) 90◦.

Additionally, through measuring the microhardness along with the slurry eroded pathway in the
middle of the surface, it was found that the microhardness value increased when the impact angle
increased (Figure 12), unlike the unworn areas that were not exposed to any strikes, which showed the
lowest microhardness value (412 HV). The measured microhardness values at impact angles of 30◦,
45◦, 60◦, and 90◦ were 490, 608.5, 650.8, and 757.6 HV, respectively, for pure water slurry and 442.8,
495.3, 522.3, and 755.7 HV, respectively, for seawater slurry. It is clear from the microhardness results at
all impact angles that the increased surface hardness resulted in lower mass losses for both erosive
and corrosive tests. A higher microhardness can effectively block plowing, micro-cutting, penetration,
and the separation of formed chips.

Despite the excellent corrosion resistance of the Ti-6Al-4V alloy, its slurry erosion–corrosion
resistance in a corrosive environment such as seawater is weaker than that in a pure water environment
at all impact angles. The superior corrosion resistance of Ti-6Al-4V alloy is due to the passive oxide
film that protects it from corrosive agents such as seawater. However, under the consecutive impacts
of sand particles on the surface of the alloy, the formed passive film is destroyed and removed, causing
subsequent exposure of fresh active material to seawater.

Natively formed TiO2 films on titanium alloys, in general, have poor mechanical properties and
they can be easily fractured under slurry erosion conditions or any other mechanical actions. Due to
the successive slurry impacts, the distortion of the oxide layer and the reformation of the passive
oxide layer processes, which cause a sustained dissolution of the underlying metal, result in gradual
consumption of the material [56,59–62]. Furthermore, the native passive film resistance can change
due to the film’s structural changes or changes in the electrical conductivity or ionic components of
the film. The formed vanadium oxide V2O5 on the surface of the Ti-6Al-4V alloy strongly dissolves
due to the presence of Cl− ions in the seawater [62,63]. Dissolution of vanadium oxide V2O5 results
in the creation and diffusion of vacancies in the oxide layer of the SLMed Ti-6Al-4V alloy. Therefore,
the change in the passive behavior of SLMed Ti-6Al-4V alloy with slurry erosion testing using seawater
(contain Cl− ions) may be the cause of the lower microhardness values and high mass losses compared
to those of the same material tested in pure water.
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Figure 12. Microhardness values of worn and unworn SLMed Ti-6Al-4V alloy. The worn areas are the
result of slurry erosion in pure water and seawater at impact angles of 30◦, 45◦, 60◦, and 90◦.

The slurry erosion test at a normal impact angle is similar to the wet shot peening process. For both
of these tests, the specimens are impacted in the vertical direction with high-speed solid particles.
Shot peening increases the strength and durability of the surface and makes it more resistant to many
wear types, which may be the cause of the low mass loss of the SLMed Ti-6Al-4V alloy at a normal
impact angle (i.e., θ = 90◦); however, reducing the impact angle from the normal angle causes the
strength of the sample surfaces to decrease, which leads to greater mass loss. This further illustrates the
behavior of slurry erosion at different impact angles of the SLMed Ti-6Al-4V alloy. Figures 13 and 14
show the optical microscopy images of the solid particles impacting the specimen surfaces at impact
angles of 30◦, 45◦, 60◦, and 90◦ using pure water slurry and seawater slurry, respectively. Figure 13
also shows the large size of micro-distortion that occurred on the surface of the samples as a result of
the successive solid particle strikes. These micro-distortions increased slurry erosion resistance and
surface roughness. It can also be seen from Figure 14 that small pits over the SLMed Ti-6Al-4V alloy
surfaces were observed at all impact angles; therefore, the mode of degradation under the seawater
environment is pitting corrosion.
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4. Conclusions

In this study, the erosion and erosion–corrosion behaviors of as-built SLMed Ti-6Al-4V alloy
were examined using pure water slurry and seawater slurry, respectively, at different impact angles.
The microstructure of as-built SLMed Ti-6Al-4V appeared as a needle-like martensitic α’ phase.
The impact angle was found to dramatically affect the erosion and erosion–corrosion behaviors of
SLMed Ti-6Al-4V alloy. The SLMed Ti6Al4V alloy showed ductile erosion behavior, and the maximal
mass losses for erosion and erosion–corrosion occurred at an impact angle of 30◦. The minimal mass
losses for erosion and erosion–corrosion occurred at an impact angle of 90◦. SEM investigations
of the eroded surfaces of the SLMed Ti6Al4V alloy specimens revealed the dominant erosion and
erosion–corrosion mechanisms, such as ploughing, microcutting, and penetrations, at each impact
angle. The microhardness increased as the impact angle increased in both erosion and erosion–corrosion
tests. The vanadium oxide V2O5 formed on the surface of the Ti-6Al-4V alloy strongly dissolved due
to the presence of Cl- ions in the seawater. Therefore, the mass losses of slurry erosion–corrosion was
higher than that of slurry erosion at all impact angles.
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