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An external validation study 
of the Score for Emergency Risk 
Prediction (SERP), an interpretable 
machine learning‑based triage 
score for the emergency 
department
Jae Yong Yu1,2, Feng Xie3, Liu Nan3,4,5, Sunyoung Yoon1, Marcus Eng Hock Ong3,6, 
Yih Yng Ng2,7 & Won Chul Cha1,8,9*

Emergency departments (EDs) are experiencing complex demands. An ED triage tool, the Score for 
Emergency Risk Prediction (SERP), was previously developed using an interpretable machine learning 
framework. It achieved a good performance in the Singapore population. We aimed to externally 
validate the SERP in a Korean cohort for all ED patients and compare its performance with Korean 
triage acuity scale (KTAS). This retrospective cohort study included all adult ED patients of Samsung 
Medical Center from 2016 to 2020. The outcomes were 30‑day and in‑hospital mortality after the 
patients’ ED visit. We used the area under the receiver operating characteristic curve (AUROC) to 
assess the performance of the SERP and other conventional scores, including KTAS. The study 
population included 285,523 ED visits, of which 53,541 were after the COVID‑19 outbreak (2020). The 
whole cohort, in‑hospital, and 30 days mortality rates were 1.60%, and 3.80%. The SERP achieved 
an AUROC of 0.821 and 0.803, outperforming KTAS of 0.679 and 0.729 for in‑hospital and 30‑day 
mortality, respectively. SERP was superior to other scores for in‑hospital and 30‑day mortality 
prediction in an external validation cohort. SERP is a generic, intuitive, and effective triage tool to 
stratify general patients who present to the emergency department.

Abbreviations
ED  Emergency department
SERP  Score for emergency risk prediction
SMC  Samsung Medical Center
EHR  Electronic health record
DOA  Dead on arrival
KTAS  Korean triage acuity scale
CART   Cardiac arrest risk triage
NEWS  National early warning system
MEWS  Modified early warning system
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RAPS  Rapid Acute Physiology Score
REMS  Rapid Emergency Medicine Score
CTAS  Canadian Emergency Department Triage and Acuity Scale
AUROC  Area under the receiver operating characteristic curve
SD  Standard deviation
CI  Confidence interval
NEDIS  National Emergency Department Information System of Korea
TRIPOD  Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis
STROBE  The Strengthening the Reporting of Observational Studies in Epidemiology
UI  User interfaces

Emergency department (ED) triage is a critical process for emergency patients who need appropriate treat-
ment and for hospitals that need optimal resource  allocation1,2. During a pandemic, ED triage is much needed 
to distinguish patients with high acuity, as there was an increase in the number of cases presenting to ED with 
higher acuity after COVID-193.

Several early warning-scoring systems, such as the National Early Warning System (NEWS) or the Modified 
Early Warning System (MEWS), have been established to identify the risk of catastrophic deterioration and 
inpatient  deaths4. The Canadian Emergency Department Triage and Acuity Scale (CTAS) is a well-recognized 
and validated triage system that prioritizes patient care by the severity of  illness5.

Based on the CTAS, the Korean Triage and Acuity Scale (KTAS) was developed to assess the patient’s sever-
ity in  Korea6. Despite its potential, there were some problems, such as dependence on subjective medical staff 
assessment during ED  triage1,7,8.

Several digital machine learning-based triage systems have been proposed for ED  triage7,9,10. However, the 
black box property of machine learning makes it hard to interpret and implement in real-world situations. Few 
studies focus on interpretation to solve the black box  problem11–13.

Interpretable AI includes reasoning processes that can help make AI predictions understandable for triage in 
 ED14. Xie et al. developed the Score for Emergency Risk Prediction (SERP) based on the Singapore  population12. 
It used the AutoScore framework to generate and interpret the  score13. However, this was a single-center study, 
and external validation will be critical for generalization. This study aims to validate the SERP score derived from 
the Singapore population on the Korean population and compare the prediction result to that of conventional 
scores for various perspectives.

Results
As shown in Fig. 1, during the study period from 2016 to 2020 in SMC, 373,172 patients visited the ED. Among 
them, 87,649 patients were excluded, and 285,523 patients were included in the final analysis (Fig. 1). The mor-
tality rate of the whole cohort was 1.60% for in-hospital death and 3.80% for death at 30 days.

The distribution of ED patients’ demographics is shown in Table 1. The pre-pandemic period cohort included 
232,982 ED visits (mean [SD] patient age, 59.9 [17.1] years; 119,681 [51.6%] female). Whereas the pandemic 
period cohort included 53,541 ED visits (mean [SD] patient age, 56.1 [17.4] years; 27,114 [50.6%] female).

There were differences between the pre-pandemic and pandemic periods, especially in vital signs and mor-
tality prevalence. Systolic blood pressure and Diastolic Blood Pressure during the pandemic (mean [SD] 130.3 
[24.9] and 77.5 [15.1]) were higher than those during the pre-pandemic period (134.1 [24.6] and 81.5 [15.3]). 
The 30-day mortality was 4.0% during the pre-pandemic period and 2.5% during the pandemic. Regarding the 
comorbidities, cancer, diabetes, and stroke were the most common diseases. Moreover, patient severity at scene 
was quite different, the pandemic period saw higher severity patients (1637 (0.8%) vs. 103 (0.2%) (pre-pandemic) 
for KTAS1, 15,715 (7.2%) and 2762 (5.9%) (pre-pandemic) for KTAS2.

The SERP-30d achieved better performance than KTAS for in-hospital and 30-day mortality prediction, with 
an AUC of 0.813 (95% CI 0.809–0.817) and 0.795 (95% CI 0.789–0.801), respectively (Table 2). In contrast, KTAS 
achieved an AUC of 0.717 (0.712–0.722) and 0.741 (0.733–0.749) which results in more than 40% improvement.

The SERP-30d score showed good calibration (based on the Kolmogorov Smirnov test for calibration data: 
P = 0.405). The SERP-30d calibration plot on the validation data set is illustrated in Supplementary Fig. 1. As 
shown in Supplementary Table 2, the results before and after the pandemic period based on 2020 were very dif-
ferent. All SERP performance after the COVID season was superior to that before the COVID season.

In terms of score accuracy, we compared the performance at the same sensitivity and specificity level from 
0.7 to 0.9. As shown in Table 3, the SERP score achieved a higher sensitivity than KTAS at the same specificity 
level. For example, at the same 0.7 sensitivity, the specificity of SERP was 0.790, whereas KTAS was 0.568. This 
result shows that SERP can detect more patient with a higher mortality risk than KTAS.

Regarding the alarm fatigue problem, we compared the performance between scores at the same mortality 
event occurrence. As shown in Fig. 2, KTAS results in more alarms for the same event than SERP. For example, 
for 9937 and 7925 events, KTAS raised 263,172 and 143,382 alarms, respectively, whereas the SERP score resulted 
in only 211,848 and 85,134, a decrease of 19% and 40% of alarms, respectively.

Discussion
We validated the SERP score to predict mortality in the ED using SMC data. The results of SERP in our main two 
aspects (performance and alarm fatigue) were better than conventional ED triage scores. Also, SERP resulted in 
fewer false alarms for the same event occurrence. Excessive false alarms can reduce productivity and result in 
alarm fatigue, putting critical patients at  risk15.
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Previous studies on machine learning usually focus on  accuracy7,9,10. However, only a few studies have dem-
onstrated interpretability for easy use of the model. One of the critical points is the importance of real-world 
application. In the complex and busy ED environment, it is necessary to make the model light and interpretable. 
The other strength of SERP is that it requires few features for development. The features in the SERP are routinely 
collected during triage—so implementing the SERP score in the ED is not a big challenge.

There is growing consensus among researchers related to efforts for the real-world application of AI in 
healthcare and practical issues regarding the implementation of AI into existing clinical  workflows16,17. Brajer 
et al. suggested a machine-learning model fact sheet reporting for end-users18. Visualization-based efforts such 
as population, patient, and temporal level feature importance, or nomograms, could be  adopted19–22. Like the 
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) or 
The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines for reporting 
machine learning  results23,24, there should be a guideline for the standardization of user interfaces (UIs) and a 
format for clinical decision support for end-users, including clinicians and  patients25,26. In terms of data-sharing, 
privacy, and interoperability across multiple platforms, hospital policies and national laws are also important. 
Lack of standardization, black box transparency, proper evaluation, and problems with patient safety are the 
other major key issues for AI  implementation16,17.

The characteristics of the patient populations could be quite different in different hospitals and countries. 
Although the SERP validation performance was good for long-term outcomes, conventional indexes such as 
NEWS, MEWS, and KTAS were equivalent for short-term outcomes. There may be a role for customization of 
a new SERP score for Korea. We recognized that as the mortality timeframe increased from 2 to 30 days, the 
performance worsened in the conventional indexes but improved in the ML-based score.

The subgroup analysis showed a difference in the performance between the pandemic and pre-pandemic 
periods. This could be due to the different patient mix during the  pandemic27,28. We also identified differences in 
feature importance between the pandemic and pre-pandemic periods. During the COVID season, the top three 
important features were related to vital signs, whereas age was the second most important variable during the 
pre-pandemic period. Finally, the rate of admission and transfer were higher during the pandemic, even though 
patient illnesses were less severe based on KTAS.

There are some limitations to this study. First, it is a retrospective study and needs to be further evaluated 
prospectively, although the strengths of this validation are the multi-center and multi-nation nature of this 
evaluation. Second, we only considered Korean SMC data, which may not represent all Koreans. In the future, 
we intend to conduct the same validation with more hospitals in Korea or the National Emergency Department 
Information System (NEDIS), which is a nationwide registry of ED  data29. As the variable used for SERP score 
is not complicated, we can consider international validation of the score, applying to other nationwide registry 
ED using Common Data Model or Pan Asia Trauma Outcome Study.

In this study, we validated the SERP score with Korean data. Its performance was better than the conventional 
indexes in terms of accuracy and false alarms.

Methods
Study setting. This was a retrospective validation study of the SERP score using data from the Samsung 
Medical Center (SMC) in Korea. SMC is a tertiary hospital located in a metropolitan city in Korea. The hospital 
has approximately 2000 inpatient beds. More than 80,000 patients visit the ED annually.

Figure 1.  Flow chart of the study population.
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Total (n = 263,539)
2016–2019 (Pre-pandemic 
period) (n = 216,780)

2020 (Pandemic period) 
(n = 46,759) p-valuea

Age, mean (SD) (years) 56.2 ± 17.1 56.1 ± 17.1 56.9 ± 17.2 < 0.001

Sex < 0.001

Male 128,499 (48.8%) 105,328 (48.6%) 23,171 (49.6%)

Female 135,040 (51.2%) 111,452 (51.4%) 23,588 (50.4%)

Korean Triage Acuity Scale < 0.001

1 (most severe) 1740 (0.7%) 1637 (0.8%) 103 (0.2%)

2 18,477 (70.%) 15,715 (72.%) 2762 (5.9%)

3 117,169 (44.5%) 96,446 (44.5%) 20,723 (44.3%)

4 109,150 (41.4%) 88,796 (41.0%) 20,354 (43.5%)

5 (less severe) 17,003 (6.5%) 14,186 (6.5%) 2817 (6.0%)

Shift time < 0.001

8 a.m. to 4 p.m. 122,218 (46.4%) 99,832 (46.1%) 22,386 (47.9%)

4 p.m. to midnight 95,260 (36.1%) 79,143 (36.5%) 16,117 (34.5%)

Midnight to 8 a.m. 46,061 (17.5%) 37,805 (17.4%) 8256 (17.7%)

Day of week < 0.001

Friday 36,710 (13.9%) 30,068 (13.9%) 6642 (14.2%)

Monday 42,421 (16.1%) 35,089 (16.2%) 7332 (15.7%)

Weekend 75,638 (28.7%) 62,702 (28.9%) 12,936 (27.7%)

Midweek 108,770 (41.3%) 88,921 (41.0%) 19,849 (42.4%)

Vital signs, mean (SD)

Pulse (/min) 88.8 ± 19.5 88.5 ± 19.5 90.1 ± 19.6 < 0.001

Respiration (/min) 18.5 ± 2.5 18.6 ± 2.4 18.1 ± 2.7 < 0.001

SpO2 (%) 97.5 ± 3.2 97.5 ± 3.2 97.6 ± 3.2 < 0.001

Blood pressure (mmHg)

Diastolic 131.0 ± 24.9 130.3 ± 24.9 134.1 ± 24.6 < 0.001

Systolic 78.2 ± 15.2 77.5 ± 15.1 81.5 ± 15.3 < 0.001

Comorbiditiesb

Myocardial infarction 3,924 (1.5%) 3,275 (1.5%) 649 (1.4%) 0.049

Congestive heart failure 13,805 (5.2%) 11,047 (5.1%) 2,758 (5.9%) < 0.001

Peripheral vascular disease 6,380 (2.4%) 5,174 (2.4%) 1,206 (2.6%) 0.015

Stroke 24,215 (9.2%) 19,681 (9.1%) 4,534 (9.7%) < 0.001

Dementia 9,169 (3.5%) 7,564 (3.5%) 1,605 (3.4%) 0.553

Chronic pulmonary disease 19,122 (7.3%) 15,685 (7.2%) 3,437 (7.4%) 0.390

Rheumatoid disease 3,571 (1.4%) 2,925 (1.3%) 646 (1.4%) 0.599

Peptic ulcer disease 14,997 (5.7%) 11,995 (5.5%) 3,002 (6.4%) < 0.001

Diabetes

Diabetes without chronic com-
plications 28,969 (11.0%) 23,437 (10.8%) 5,532 (11.8%) 0.001

Diabetes with complications 11,201 (4.3%) 9007 (4.2%) 2194 (4.7%) < 0.001

Hemiplegia or paraplegia 2052 (0.8%) 1593 (0.7%) 459 (1.0%) < 0.001

Kidney disease 15,625 (5.9%) 12,486 (5.8%) 3139 (6.7%) < 0.001

Cancer

Local tumor, leukemia, and 
lymphoma 92,076 (34.9%) 74,592 (34.4%) 17,484 (37.4%) < 0.001

Metastatic solid tumor 16,903 (6.4%) 13,553 (6.3%) 3350 (7.2%) < 0.001

Liver disease

Mild liver disease 23,107 (8.8%) 18,704 (8.6%) 4403 (9.4%) < 0.001

Severe liver disease 3930 (1.5%) 3085 (1.4%) 845 (1.8%) < 0.001

Healthcare use, mean (SD)

Emergency admissions in the 
past year 0.3 ± 0.8 0.3 ± 0.8 0.3 ± 0.8 < 0.001

Operations in the past year 0.2 ± 0.6 0.2 ± 0.6 0.2 ± 0.7 < 0.001

ICU admissions in the past year 0.2 ± 0.6 0.2 ± 0.5 0.2 ± 0.6 < 0.001

Mortality-related outcomes

Continued



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17466  | https://doi.org/10.1038/s41598-022-22233-w

www.nature.com/scientificreports/

The Electronic Health Records (EHR) were obtained from the Clinical Data Warehouse at SMC. This study 
was approved by the Samsung Medical Center Institutional Review Board (2022-05-083-001), and a waiver of 
consent was granted for EHR data collection and analysis because of the retrospective and de-identified nature 
of the data.

All methods were performed in accordance with the relevant guidelines and  regulations24.

Population. The population for the validation cohort was ED visits from 2016 to 2020. All patients who vis-
ited the ED from January 2016 to December 2020 were initially included. We excluded patients who were under 
the age of 20 years, did not come for emergency treatment, left without being seen by a clinician, had missing 
triage data, or were dead on arrival (DOA) (see Fig. 1)15. To assess the impact of the COVID-19 pandemic, we 
defined two non-overlapping cohorts based on “pre” and “post” pandemic periods.

SERP score. Three SERP scores were validated using the primary outcomes of 30-day and in-hospital mor-
tality from the ED visits. Each score was developed using the AutoScore framework, which is an automatic and 
interpretable score generator for risk prediction using machine learning and logistic  regression12,13.

Table 1.  Baseline characteristics of the validation population. a p-values were calculated using the t-test for 
continuous and the chi-square test for categorical variables to compare the 2016–2019 and 2020 cohorts. 
b Comorbidities were calculated for the consideration of the previous 5 years from the ER visit for each patient, 
and healthcare use was calculated using the previous 1 year.

Total (n = 263,539)
2016–2019 (Pre-pandemic 
period) (n = 216,780)

2020 (Pandemic period) 
(n = 46,759) p-valuea

7 days 3289 (1.2%) 2850 (1.3%) 439 (0.9%) < 0.001

14 days 5474 (2.1%) 4770 (2.2%) 704 (1.5%) < 0.001

Inpatient 4150 (1.6%) 3415 (1.6%) 735 (1.6%) 0.973

30 days 9921 (3.8%) 8758 (4.0%) 1163 (2.5%) < 0.001

Table 2.  Comparison of AUROC by different scores and outcomes. AUROC Area under Receiver Operating 
Characteristic, CI Confidence Interval, SERP-nd Score for Emergency Risk Prediction for predicting n day 
mortality from admission day in original paper, KTAS Korea Triage Acuity Scale, CART  Cardiac Arrest Risk 
Triage, MEWS Modified Early Warning Score, NEWS National Early Warning Score, RAPS Rapid Acute 
Physiology Score, REMS Rapid Emergency Medicine Score.

AUROC (95% CI) In-hospital mortality 30-day mortality

SERP-30d 0.813 (0.809–0.817) 0.795 (0.789–0.801)

SERP-7d 0.752 (0.747–0.756) 0.766 (0.759–0.773)

SERP-2d 0.756 (0.751–0.761) 0.782 (0.775–0.789)

KTAS 0.717 (0.712–0.722) 0.741 (0.733–0.749)

CART 0.730 (0.724–0.735) 0.753 (0.745–0.761)

MEWS 0.764 (0.759–0.769) 0.797 (0.790–0.805)

NEWS 0.617 (0.611–0.622) 0.643 (0.634–0.651)

RAPS 0.688 (0.683–0.693) 0.702 (0.695–0.710)

REMS 0.675 (0.670–0.680) 0.722 (0.715–0.728)

Table 3.  Comparison of prediction model accuracy with same specificity point. KTAS Korea Triage Acuity 
Scale, SERP Score for Emergency Risk Prediction (in-hospital mortality outcome here), CI Confidence Interval 
PPV Positive predictive value.

Type Specificity cut-off value Sensitivity (95% CI) PPV (95% CI)

SERP–In-hospital 0.7 0.792 (0.785–0.796) 0.094 (0.093–0.094)

KTAS 0.7 0.524 (0.518–0.531) 0.064 (0.063–0.065)

SERP–In-hospital 0.8 0.673 (0.668–0.683) 0.116 (0.115–0.118)

KTAS 0.8 0.402 (0.397–0.408) 0.073 (0.072–0.074)

SERP–In-hospital 0.9 0.453 (0.443–0.463) 0.151 (0.148–0.153)

KTAS 0.9 0.276 (0.272–0.289) 0.098 (0.096–0.102)
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For outlier data, we assumed that extreme ranges of vital sign data were input errors and designated them 
as “missing” based on clinical knowledge. For example, any vital signs value under 0, heart rate above 300/
min, respiration rate above 50/min, systolic blood pressure above 300 mm Hg, diastolic blood pressure above 
180 mm Hg, or oxygen saturation as measured by pulse oximetry above 100% were treated as a missing value 
and imputed with the median value from a training cohort. Missing rates of each variable are presented in the 
“Supplemental Tables S1”.

Statistical analysis. The data were analyzed using R software, version 3.5.3 (R Foundation for Statistical 
Computing).

For the descriptive summaries of baseline characteristics of the study population, frequency (percentages) 
for categorical variables and mean (SD) for continuous variables were reported.

Performance evaluation. We compared the validation performance of SERP with conventional indexes 
such as NEWS, MEWS, and KTAS, in terms of two main  aspects4. First, how accurately can the SERP score pre-
dict the outcome compared to a conventional index? The predictive power of validation was measured using the 
AUC in the receiver operating characteristic (ROC) curve. Other metrics such as sensitivity, specificity, and posi-
tive predictive value, were calculated under a certain threshold from 0.7 to 0.9 for the comparison. We also iden-
tified the calibration plot for the agreement between predictions and the observed  outcome30. Second, can SERP 
reduce the false alarm rate more than the conventional index? The alarm rate is important for the validation of 
SERP because false alarms can result in alarm  fatigue31. Alarm fatigue can make medical staff tired and cause 
critical alerts to be missed. Finally, it could affect patient safety and quality of care in the clinical environment. 
Therefore, an ideal SERP should have high sensitivity and a low false alarm rate. We compared the frequency of 
alarming events with the KTAS.

Data availability
Data was available in study site clinical data warehouse. The datasets generated and analyzed during the current 
study are not publicly available due dataset includes although is de-identified, part of patient information, but 
are available from the corresponding author on reasonable request.
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