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Kiel [1] provides an interesting analysis of connectivity among bivalve and gas-

tropod assemblages at hydrothermal vents, cold seeps and whale falls,

suggesting a role for sedimented vents as evolutionary stepping stones between

vents and seeps, but providing no support for whale falls playing a similar role.

We caution that the dataset for whale falls used in Kiel [1], as well as further

available data, are insufficient for network analysis to yield conclusions regard-

ing lack of connectivity between whale falls, vents and seeps. Although Kiel [1]

listed some limitations of the study, we present several more below to highlight

the weaknesses of the whale-fall analysis.

A global connectivity analysis based on presence–absence data [1] relies on

the validity of at least two assumptions:

(i) each vent, seep or whale-fall site included in the analysis has been well

sampled; i.e. if a taxon does not occur in the data from a particular site, it

is because it is absent from that site, and not a consequence of undersamp-

ling. Thus, absence from the data can be assumed to provide ‘evidence of

absence’; and

(ii) the sites representing a particular habitat type are broadly (in fact, globally)

distributed, with a substantial sample size within regions (e.g. ocean basins)

to avoid geographical biases. In other words, there should be multiple (well

sampled) sites for each habitat type in all regions across the globe so that

patterns within regions, and within and between habitats, can be revealed.

The datasets for vent and seep habitats in Kiel [1] may well meet these assumptions,

with 32 and 37 apparently well-sampled sites, respectively, distributed broadly

across the ocean basins. However, the deep-sea whale-fall dataset fails to meet

these assumptions owing to a small number (7) of whale-fall sites, with only two

sampled thoroughly for epifauna and sediment infauna. The sampling of sediment

infauna is particularly important because sedimented vent habitats are identified

as a linkage between vents and seeps. To make clear the limitations of the Kiel

[1] dataset, it is important to discuss the whale-fall sites used in more detail.

Kiel [1] included data from seven purported deep-sea whale-fall sites. One

of the ‘whale-fall’ sites is actually an artificially implanted cow carcass [2]. Cow

carcasses are dramatically smaller, and have different bone sizes and character-

istics (e.g. lipid content), than the carcasses of great whales (see Smith et al. [3]

for a discussion of the important characteristics of great whale falls) so there is

little reason to expect that the full suite of species responding to a large whale

carcass would be found at a single cow carcass.

Two of the ‘whale-fall sites’ used in Kiel [1] off New Zealand and Iceland

were actually isolated bones recovered in trawls from unobserved locations at
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the seafloor [4–6]. Because these trawl samples (i) collected

only portions of whale skeletons, (ii) lack any indication

that the bones came from a large intact whale fall, (iii) prob-

ably sustained significant loss of whale-bone fauna during

the trauma of trawl recovery (approx. 90% of bone-associated

species can fall off whale bones even when carefully collected

by submersible, C. Smith 1988–2005, personal observations),

and (iv) did not include sediment infauna, only ‘presence

data’ have any meaning for these ‘whale-fall’ sites. In other

words, the absence of a taxon from a site could easily be

owing to insufficient sampling. The use of trawled bones as

adequate samples of entire whale-fall sites (which can contain

tens of thousands of individuals and hundreds of species dis-

tributed both in sediments and over hundreds of bones

[3,7,8]), is similar to dredging rocks from a hydrothermal

vent and interpreting the attached fauna as representative

of the full suite of species likely to be found at the vent site.

Finally, the datasets for the whale-fall sites in Monterey

Canyon [9] and the Southern Ocean [10] in Kiel [1] included

little or no infaunal sampling. Since vesicomyid bivalves (a

key vent–seep–whale-fall molluscan taxon) at whale falls

typically live buried within sediments underlying the bones

and can only be fully identified with substantial sediment-

sampling effort [11,12], these two sites are also very likely

undersampled, especially with respect to vesicomyids. In

fact, very recent infaunal data from the Monterey canyon

whale fall reveal the presence of vesicomyid genera also

found at sedimented vents and seeps [13].

This leaves two well-sampled whale-fall sites on the north-

east Pacific margin in Kiel’s [1] ‘global’ analysis of connectivity

among vent, seep and whale-fall habitats. The small number

and restricted distribution of these whale-fall sites provides

minimal opportunity to explore global connectivity patterns,

yielding little basis for Kiel’s [1, p. 1] statement that: ‘The

hypothesis that decaying whale carcasses are dispersal stepping

stones linking these environments is not supported.’

Although several other whale-fall sites, not included in Kiel

[1], have been sampled well [12,13], the whale-fall dataset is

still too sparse to support a global network analysis [3]. How-

ever, shared habitats (e.g. sulfidic hard substrates, sediments

and bacterial mats [3]), taxa and phylogenetic histories do

implicate whale falls as ecological and evolutionary stepping

stones for deep-sea reducing habitats such as vents and

seeps. For example, one northeast Pacific whale fall harbours
10 genera also known from seeps (Annelida, Dorvilleidae:

Paurougia, Ophryotrocha, Schistomeringos, Exallopus; Mollusca,

Mytilidae: Idas; Vesicomyidae: Archivesica, Pliocardia,

Calyptogena; Hyalogyrinidae: Hyalogyrina; Arthropoda,

Isopoda: Illyarachna) and eight genera also known from vents

(Annelida, Dorvilleidae: Parougia, Ophryotrocha, Exallopus;
Polynoidae: Bathykurila; Mollusca, Mytilidae: Idas;

Vesicomyidae: Archivesica, Calyptogena; Hyalogyrinidae:

Hyalogyrina) [12]. Smith & Baco [7] report 10 species found

on northeast Pacific whale falls that also occur at hydrothermal

vents, and 20 species that also occur at seeps. On a whale skel-

eton in the abyssal South Atlantic, Sumida et al. [14] collected

four genera of annelids shared with hydrothermal vents

and/or cold seeps. Many of the genera and species shared

between whale falls, vents and seeps are annelid worms

which constitute a substantial portion of the diversity in

deep-sea chemosynthetic habitats (e.g. [15–17]), suggesting

that a full network analysis of faunal connectivity across

deep-sea chemosynthetic habitats should include the Annelida.

The faunal overlaps across whale falls, vents and seeps,

and the role of whale falls as ecological stepping stones,

may well have been greater before the vast reduction of

whale populations and the loss of whale falls resulting

from human whaling activities [18]. Palaeo-ecological and

phylogenetic studies of taxa associated with deep-sea vents

and seeps also provide evidence for evolutionary connec-

tivity with whale falls (reviewed in Smith et al. [3]),

including the occurrence of basal clades of bathymodiolin

mussels at whale falls [19] and indications of adaptive radi-

ation at whale falls of taxa common at vents and seeps (e.g.

the annelids in Siboglinidae [20] and Dorvilleidae [21,22]).

Because vents, seeps and whale-fall fauna share taxa and

phylogenetic histories, there is a strong need for intensive

sampling of deep-sea whale-fall communities (including the

sediment infauna) in multiple ocean basins to support network

analyses of the type conducted by Kiel [1]. This will allow us to

fully elucidate global connectivity patterns among these deep-

sea reducing habitats, and evaluate the roles that whale falls

have played in supporting biodiversity and maintaining

other ecosystem functions across the global ocean [23].
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