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Functional antibodies as immunological endpoints to evaluate protective immunity
against Shigella
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ABSTRACT
The development, clinical advancement and licensure of vaccines, and monitoring of vaccine effectiveness
could be expedited and simplified by the ability to measure immunological endpoints that can predict
a favorable clinical outcome. Antigen-specific and functional antibodies have been described in the context
of naturally acquired immunity and vaccination against Shigella, and their presence in serum has been
associated with reduced risk of disease in human subjects. The relevance of these antibodies as correlates of
protective immunity, their mechanistic contribution to protection (e.g. target antigens, interference with
pathogenesis, and participation in microbial clearance), and factors that influence their magnitude and
makeup (e.g. host age, health condition, and environment) are important considerations that need to be
explored. In addition to facilitating vaccine evaluation, immunological correlates of protection could be
useful for identifying groups at risk and advancing immune therapies. Herein we discuss the precedent and
value of functional antibodies as immunological endpoints to predict vaccine efficacy and the relevance of
functional antibody activity to evaluate protective immunity against shigellosis.
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Shigella disease burden and the need for a vaccine

Diarrheal diseases are the second leading cause of death world-
wide, resulting in the loss of about 500,000 children’s lives under
the age of 5 per year, primarily in the developing world.1,2 The
contribution of Shigella to the global burden of diarrheal morbid-
ity and mortality in this age group has been emphasized by
estimates from the Global Enteric Multicenter Study (GEMS),3

the Malnutrition and Enteric Disease (MAL-ED) birth cohort
study,4 and the Global Burden of Disease, Injuries, and Risk
Factors Study (GBD 2016).5 Frequent and repeated episodes of
diarrhea in children living in these resource-poor areas have been
associated not only with increased mortality but also with severe
and lifelong health impairment, which compromises growth and
cognitive ability.6,7 Current prophylaxis to treat acute diarrheal
episodes includes oral rehydration and antibiotics. While
improved sanitation and access to clean water are certainly effec-
tive primary control measures, vaccination might be a more rapid
and efficient preventive intervention. The success of this approach
is exemplified by the rotavirus vaccine introduction, which
resulted in substantial reduction in diarrhea-related hospital visits,
admissions8-10 and death9,11-13 in children less than 5 years of age
globally. Shigella has also been associated with diarrhea across all
adult age groups, with increased incidence in the elderly.5 Shigella
and Enterotoxigenic Escherichia coli (ETEC) are the main causes
of diarrhea in travelers and military personnel. The development
and clinical advancement of a Shigella vaccine are seen as an
equitable, cost-effective prevention tool that could be deployed
with existing vaccination programs for effective disease control.14

Naturally acquired immunity against shigellosis and
the relevance of antibodies

It is known from observational epidemiological and human chal-
lenge studies that subjects repeatedly infectedwith Shigella acquire
a natural immunity that prevents or reduces illness following
subsequent infection.15-17 In endemic regions, disease incidence
diminishes in older children and adults, and pathogen-specific
host defenses, lacking in early infancy, progressively increase with
age.17-19 This naturally acquired protective immunity tends to be
serotype-specific and directed to the O-polysaccharide (OPS).15,16

Early studies involving Israeli soldiers reported associations
between LPS-specific serum IgG and reduced illness during
Shigella outbreaks.15,16,20 On the basis of this premise, OPS is
the main antigen targeted by current vaccine approaches. Serum
antibodies against plasmid-encoded antigens have been detected
in individuals living in Shigella-endemic regions; these antibodies
increase during convalescence and have been implicated in pro-
tective immunity.18,19,21 The magnitude of serum antibodies spe-
cific for virulence factors such as the invasion plasmid antigen
(Ipa) proteins A, B, and C, and VirG at the time of challenge was
found to be associated with reduced incidence of disease in US
adult volunteers in a controlled infection study.22,23 Similarly, the
frequency of IpaB-specificmemory B cells in these individuals was
linked to lower risk of infection.24 In addition to serum antibodies,
antibody-secreting cells (ASC) and antibody in lymphocyte super-
natants (ALS) measured in circulating peripheral blood mono-
nuclear cells (PBMC) 7–10 days following exposure to Shigella are
used as indicators of robust mucosal immunity.25,26
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Vaccine-induced immunity and the relevance of
antibodies

There is no approved vaccine to prevent shigellosis. A variety
of Shigella vaccine concepts have been proposed and tested
mainly for safety and immunogenicity in clinical studies
(Reviewed in ref.27). Modeling natural infection, oral Shigella
vaccines are among the leading candidates tested in human
clinical trials during the past decade. These include the whole
cell inactivated S. flexneri 2a Sf2aWC,28 and the live attenu-
ated S. flexneri 2a CVD 1208S,29 S. flexneri 2a SC602,30 and
S. sonnei WRSs2 and WRSs3.31 Orally delivered whole cell
organisms generally elicit high levels of LPS-specific serum
IgG and IgA as well as fecal IgA, and are potent inducers of
LPS-specific IgA ASC. Shigella OPS-protein conjugate vac-
cines have gained interest and support in recent years due to
the record of safety and ability to elicit potent systemic
immunity. The concept of a Shigella conjugate vaccine was
pioneered by John Robbins and colleagues at the Eunice
Kennedy Shriver National Institute of Child Health and
Human Development (NICHD) in the early 1990s.
A candidate vaccine produced by this group consisting of
OPS from S. sonnei covalently bound to recombinant exopro-
tein A of Pseudomonas aeruginosa (rEPA) had an efficacy of
about 70% in young adults in the Israeli military32 and in
3–4-year-old children in a Phase 3 clinical trial.33 Protection
was associated with the presence of high levels of serum IgG
against the O-antigen. Unfortunately, the vaccine had no
effect in 1–2-year olds, who would be primary targets for
immunization. It remains unclear whether the protection
seen in adults and in older children derived solely from
vaccination or from boosting of pre-existing immunity
acquired through natural exposure. A newer Shigella conju-
gate, Flexyn2a, was engineered based on the same principle,
except this time using an elegant and simpler in vivo biocon-
jugation of the S. flexneri 2a OPS to rEPA. Flexyn2a elicited
strong serum antibody and ALS responses in young adult
volunteers, and up to 50% protection against severe shigellosis
in an experimental human challenge.34,35 Another glycocon-
jugate vaccine candidate, SF2a-TT15, featuring repeating units
of synthetic O-antigen from S. flexneri 2a conjugated to teta-
nus toxoid, has been shown to be safe and strongly immuno-
genic in a Phase 1 study.36 An immunogenicity and efficacy
study of SF2a-TT15 is ongoing at the University of Maryland
in collaboration with Institut Pasteur, University of Tel Aviv,
and The Walter Reed Army Institute of Research (WRAIR).

Shigella vaccine candidates that leverage the potential to
offer broad protection have also advanced into clinical evalua-
tion. One promising strategy is the Generalized Modules for
Membrane Antigen (GMMA), which contain the O-antigen
(and can be engineered to express O-antigen from multiple
Shigella serotypes) plus outer membrane and periplasmic pro-
teins. The S. sonnei prototype, GSK 1790GAHB, has been
shown to be safe and immunogenic in clinical trials in naïve
adult populations from France and the United Kingdom37 and
in adults living in Kenya, where Shigella is endemic.38 The
efficacy of this vaccine is under evaluation in a controlled
human challenge study in adult volunteers sponsored by
GlaxoSmithKline (NCT035227173). Another example is the

macromolecular complex Invaplex, which consists of the
native lipopolysaccharide (LPS) and invasion plasmid antigen
(Ipa) proteins B and C. The broad spectrum of this vaccine
relies on immunity against the Ipa proteins, which are highly
conserved among Shigella serotypes. Invaplex has been found
to be safe and immunogenic in humans.39 A Phase 1 dose-
escalating study of detoxified S. flexneri 2a artificial complex
(Invaplex AR-DETOX) administered intramuscularly to adult
volunteers is being conducted at WRAIR (NCT03869333).

The inflow of new vaccine concepts and clinical studies,
including refined, controlled human infection models
(CHIM), and the strategic support of stakeholders have created
unprecedented momentum, making this an exciting and hope-
ful time for a Shigella vaccine to finally materialize.40,41 The
upcoming vaccine and challenge studies, in particular, offer an
extraordinary opportunity to dissect host responses and
mechanisms of protective immunity in the context of different
immunization strategies. Specific ways in which antibodies
deploy anti-microbial function to prevent Shigella infection as
well as the potential of functional antibodies to predict protec-
tive immunity against shigellosis are discussed below.

Functional antibodies as immunological correlates of
protection

Understanding the mechanisms harnessed by the host immune
system to prevent infection and avert pathogenicity is essential
to identify correlates of protective immunity.42 Establishing the
antimicrobial capacity of vaccine-induced antibodies is impor-
tant to confirm that these antibodies can operate in such
a manner in vivo. Impairment of antibody function (e.g. due
to age, immune adaptation, underlying health conditions, or
vaccine failure) cannot be discerned by traditional serological
methods (such as ELISA) that rely only on antibody binding to
an immobilized antigen. In contrast, functional assays appraise
not only the magnitude of an antibody response but also the
operative anti-microbial activity. A functional outcome may
reflect the contribution of multiple antibody specificities as
opposed to antibody titers directed to a single, independent
antigen, and therefore may be more informative of the breadth
of host immunity, and potentially a more robust tool to predict
vaccine-induced protection. The production of functional anti-
bodies requires, and therefore indirectly reflects, strong under-
lying T-cell immunity, which is more difficult to determine and
is an impractical primary/secondary clinical trial endpoint.

There aremultiple examples for the use of functional antibodies
as immune correlates of protection against mucosal bacterial
pathogens. Based on evidence that clearance of Streptococcus
pneumoniae in the lungs is primarily achieved by
opsonophagocytosis,43 opsonophagocytic antibodies have been
the primary immunogenicity readout of pneumococcal polysac-
charide vaccines.44,45 Bactericidal antibody activity has been asso-
ciated with protection against meningococcal infection.46,47

Vibriocidal antibodies are indicators of protective immunity
against Vibrio cholerae.48,49 These correlates have helped advance
vaccine candidates through the regulatory pathway. The assess-
ment of functional antibody responses post-vaccination, when
assays are available, is recommended by the World Health
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Organization (WHO) Expert Committee on Biological
Standardization.50 The following sections discuss the relevance of
functional antibody to Shigella immunity.

Antibody function relevant to Shigella immunity

Classical studies demonstrated the capacity of serum antibodies
from patients with shigellosis to activate complement and pro-
mote bactericidal activity.51-53 Immune sera from convalescent
individuals were reported to mediate phagocytosis by
K-lymphocytes, monocytes, and granulocytes present in
circulation.53-55 Bactericidal antibody activity against endemic
Shigella strains has been demonstrated in the context of natural
infection in adults living in Israel32 and Bangladesh.53,56 Our
group reported associations between elevated serum bactericidal
antibody (SBA) and opsonophagocytic killing antibody (OPKA)
titers at the time of challenge and protection from moderate to
severe disease in a challenge study of North American
volunteers.22 Shigella SBA activity has been attributed primarily
to antibodies specific for the OPS,57 although this may not be the
only target of antibody and complement-mediated killing.22

That may also be the case for antibodies mediating opsonopha-
gocytic killing, since both SBA and OPKA tend to follow the
same response pattern.22 Adult volunteers immunized with the
conjugate vaccine candidates SF2a-TT15 and Flexyn2a had
robust SBA titers34,36 and, incidentally, Flexyn2a had >50%
efficacy in a subsequent challenge study.35 Detailed analysis of
antibody function and clinical outcomes emerging from these
and other well-controlled CHIM studies will provide critical
insights into the value of functional serological readouts as
predictors of vaccine efficacy.

Given that Shigella is an enteric pathogen, protective
immune effectors likely operate within the gut. Antibodies, as
primary humoral effector molecules, may be produced locally
or transported via circulation. We reported the presence of
bactericidal and opsonophagocytic killing antibody activity in
ALS from human volunteers immunized orally with whole cell
inactivated and live attenuated Shigella vaccines.58 ASC are
considered robust markers of Shigella-specific B cells (plasma-
blasts) that originate in and migrate back to the gut,59 and ALS
represent the antibodies produced in vitro by transiently circu-
lating ASC.26 It is therefore plausible that antibody-mediated,
complement-dependent killing may represent a local (gut
mucosal) mechanism of bacterial clearance. Such function
would have to be mediated by IgG (or IgM), since IgA does
not fix complement. An OPS IgG-mediated local bactericidal
and phagocytic killing could explain the protective capacity of
the Shigella conjugate vaccine approach. In the early 1990s,
John Robbins proposed that IgG could transudate into the
intestinal lumen and kill Shigella through complement-
mediated lysis at the epithelial cell surface.60,61 We would
argue that a combination of vaccine-induced IgG as well as
IgM produced shortly after infection (both potent opsonin and
complement fixing antibodies) are likely responsible for anti-
body-mediated protection against Shigella in vivo.

An important and often overlooked study conducted by
Carol Tacket in the early 1990s showed that oral administration
of bovine colostrum concentrate containing high levels of
Shigella LPS-specific immunoglobulin protected adult

volunteers against shigellosis, thus providing direct in vivo
evidence of IgG functional activity in the gut.62 We have
detected LPS-IgG and antibody-mediated complement-
dependent Shigella-cidal activity in maternal milk from
mothers living in Malawi.63 Together, these observations sup-
port a protective role of IgG (and possibly IgM) in mucosal
secretions.

What then would be the role for IgA, and is it dispensable
in Shigella immunity? A combination of protective effects has
been attributed to LPS-specific agglutinating secretory IgA
(SIgA), including reduced bacterial attachment to intestinal
epithelial cell monolayers, maintenance of tight junction and
cell morphology, and inhibition of pro-inflammatory path-
ways – all in the absence of other immune components.64

Intestinal IgA produced by oral vaccines65 may be an adjunct
mode of bacterial immobilization and exclusion that helps
preserve barrier integrity.

IgA against Shigella LPS and Ipa proteins have been found in
breast milk.66-68 The formation of immune complexes could, like-
wise, be an effective mechanism of protection in the gut of the
breastfeeding infant. The interaction between antibodies and cells
in breastmilk is an important area that deserves investigation.One
study reported that leukocytes isolated from colostrum of healthy
mothers and used as effector cells in phagocytic/bactericidal assays
were able to kill Shigella in the presence of antibodies.69

Antibodies targeting Shigella antigens other than LPS likely
deploy additional effector functions. Antibodies directed to
the Ipa proteins would be expected to inhibit TTSS protein
translocation70 and prevent invasion of epithelial cells.71 We
have shown that combined murine IpaB and IpaD antibodies
did not exhibit complement-mediated killing activity, but they
inhibited Shigella-induced macrophage toxicity.72 Antibodies
against VirG (IcsA) could be important for inhibition of
bacterial adhesion73 or cell-to-cell spread.74 Blocking Shigella
invasion in this way conceivably averts the release of proin-
flammatory cytokines and the recruitment of neutrophils,
which exacerbates the damage of the intestinal epithelium.
The exact operative mechanisms of antibodies against the
multiple Shigella antigens (antibody type, interacting cells,
and other contributing molecules) and their contribution to
protection in vivo remain to be elucidated.

Functional antibodies as immunological correlates of
protection against shigellosis and protective
thresholds

From the perspective of vaccine development, evaluation and
licensure, it would be important and advantageous to identify
an immunological endpoint or immune signature that corre-
lates with clinical protection against shigellosis. These
immune effectors might be mediators of protection them-
selves or indirectly reflect other components or determinants
of protective immunity.

An immune correlate of protection requires a well-defined
cutoff value, or threshold, that could be used to reliably infer
vaccine effectiveness, alleviating the need for human challenge
or efficacy studies.75 Ideally, a correlate of protection should
be established as early as possible in the process of vaccine
development. Such a threshold would allow differentiating
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individuals with adequate immunity from those at risk of
contracting disease. It may be an absolute number above
which protection is denoted, or relative, meaning that protec-
tion increases with higher threshold values.76 As an example,
to evaluate group B meningococcal vaccines with an SBA
assay that employs baby rabbit complement, a titer ≥1:8 was
established as a protective threshold.46 In the case of
S. pneumoniae, establishment of an opsonophagocytic thresh-
old titer of ≥1:8 allows the use of non-inferiority trials to
assess subsequent vaccines, and was the basis for the licensure
of the 13-valent pneumococcal conjugate vaccine (PCV-13).77

Important aspects in the definition of a protective thresh-
old include: differences in populations, age dependency, and
vaccine compositions.

Differences in population and pre-existing immunity

Shigella vaccine efficacy traditionally studied in industrialized
nations cannot be extrapolated to other geographical settings.
Individuals living in endemic regions and repeatedly infected
with Shigella acquire natural immunity that includes high levels
of antibodies (Figure 1(a)) as well as mucosal and systemic T and
B cell-mediated immunity. An initial infection prompts an IgM
and modest IgG response, while subsequent infections trigger
recall immunity with rapid increases in serum IgG in repeating

cycles, as illustrated in Figure 1(a). An SBA response originally
mediated by IgM is later supplemented and eventually replaced
by an overwhelming IgG-mediated bactericidal activity, as has
been shown for V. cholerae.78 In agreement with this model, an
increase in the length of exposure to Shigella has been shown to
improve protection in field settings.79

In contrast, populations living in industrialized regions (North
America or Europe) are immunologically naïve and highly sus-
ceptible to infection (Figure 1(b)).38,80 These individuals typically
respond vigorously to vaccine candidates. Ideally, a safe and effec-
tive vaccine given to naïve individuals should induce a strong and
effective IgG immune response resulting in serum antibody levels
above a protective threshold and comparable to, or better than,
those found in naturally immune individuals with few required
boosters (Figure 1(a,b)). Unfortunately, this was not achieved with
previous oral candidates forwhich immunogenicity and efficacy in
an industrialized region could not be reproduced in endemic
areas.30,81 The microbiome or other pathogens within the gut
microenvironment in these settings might have played a role in
diminishing the immune response. The gut microbiome and
enteric host factors that may directly affect oral immunization
are not expected to influence immune responses induced by the
new parenteral OPS conjugate formulations.

Another important consideration in the evaluation of Shigella
vaccines, inherent to specific populations, is the blunting of

Figure 1. Protective immunity and threshold of protection. Schematic representation of IgM, IgG, and serum bactericidal antibody responses measured
following (a) infection and multiple re-infections in an endemic population, and (b) initial vaccination and booster dose administered to a naïve population.
Black dashed line represents threshold of protection.
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responses by preexisting immunity. This is a complex phenom-
enon that affects not only responses to Shigella but to other
vaccines as well (i.e. measles, pertussis). A variety of possible
mechanisms (antibody level, type of antigen administered, B cell
receptor interaction, etc.) have been proposed.82 How exactly
and why pre-existing immunity precludes further Shigella vac-
cine responses is not well understood. In recent clinical studies,
volunteers have been screened prior to enrollment to exclude
those with high levels of serum LPS-IgG, the rationale being that
this scenario better represents non-immune vaccine target
groups (i.e. young children). Interestingly, immune blunting
does not appear to affect in the same way (or to the same extent)
individuals from endemic areas who experience multiple cycles
of infection that gradually boost immunity (Figure 1(a)). One
possibility is the higher stringency of infection compared to
vaccination, and the fact that (a more potent) infection may
override effectors or responses that prevent vaccine-induced
immune activation. For potent vaccines, this may not be an
issue. The type of vaccine and route of administration may also
influence the outcome. Understanding the influence of pre-
existing immunity in immunological priming against Shigella
will be critical for the success of any vaccine. The effects of prior
immunological exposure on vaccine take (when immune blunt-
ing occurs, why it occurs, and who is affected) is therefore
a fundamental topic that warrants further investigation.

Differences in age groups

Host susceptibility, immune development, and competence
are different for children and adults. Therefore, antibody
effector functions and even threshold levels that determine
protective immunity in adults may not be the same as those
required in young children. Infants and toddlers up to about 2
years of age are more susceptible to Shigella than older chil-
dren and adults17 and their responses to vaccines are also
lower than that of adults.33

Back-tracking to early infancy, Shigella-specific antibodies
seem to be efficiently transferred from mothers to infants, as
shown by the levels detected in cord blood at birth.83

However, the functionality of these antibodies remains to be
investigated. In a study of maternal-infant transfer of func-
tional antibodies against E. coli and Salmonella, Gitlin and
colleagues found that unlike the paired maternal sera, most of
the cord blood antibodies lacked bactericidal antibody activ-
ity – this functionality was contained primarily in the mater-
nal IgM fraction and therefore not transferred through the
placenta.84 For newborns who did exhibit serum bactericidal
activity, this was found to be IgG-specific and correlated with
IgG-mediated functional antibody activity in maternal
blood.84 Systemic placentally acquired antibodies wean at
about 4 months of age at which time infants rely on passive
protection through immune components in maternal milk.
Vaccination within this time frame would have the highest
impact in preventing disease. The efficacy of this approach
would have to be answered by studies in the field.

Because young children lack other potentially enhancing
mechanisms such as robust T and B cells, innate immunity,
and cross-reactive adaptive immunity, more stringent require-
ments than those defined for adults may be in order. This has

been proposed for seasonal influenza: while a hemagglutination
inhibition (HAI) titer of >40 appears sufficient to protect adults
against seasonal influenza, young (unprimed) children may
require an HAI titer of >330.85,86 Establishing what constitutes
protective immunity against shigellosis in young children and
identifying thresholds of protection for vaccine target age
groups are challenges for the immediate future.

Vaccine composition

Because of the differences in vaccine platforms, antigenic
composition, and/or mode of delivery, an immune correlate
of protection identified for one vaccine may not be applicable
to another. For example, SBA and OPKA may be appropriate
to assess OPS-based vaccine efficacy but would not be suitable
for protein-based subunits. Mucosal responses induced by
oral vaccines (ASC, ALS, fecal antibodies) may not be relevant
to conjugate vaccines given parenterally. Different function-
ality, antibody specificity or even type of immunological read-
out may be necessary to properly assess some of the new
vaccine concepts. A combination of end-points reflecting the
contribution of multiple antigens may be necessary to accom-
modate multivalent (e.g. broadly protective) formulations.

Composite antibody measurements and immune
signatures

Instead of a single readout, establishing an immune correlate
comprised of an aggregate (or composite) of antibody mea-
surements would be a more robust approach to define pro-
tective status. Such composite could include serum antibodies
(levels, function, and avidity) and/or mucosal antibodies (ALS
levels, function, and avidity). A recent microarray analysis
identified the Shigella conserved proteins IpaA, IpaB, and
IpaC as an immune signature associated with protection
from severe disease.23 Mathematical models87 and machine
learning88 tools have the potential to probe complex datasets
consisting of multiple parameters across multiple studies to
predict measurements that correlate with protective immu-
nity. However, the value of these models is dependent on the
breadth and quality of data available. The input from upcom-
ing prospective CHIM studies can break new ground in the
field. Systems serology, a new technology that combines the
analysis of biophysical features of antibodies and their broad
functional capacity using bioinformatic analyses, would be
useful to investigate and establish antibody features and
novel cell-associated activities relevant for protection against
shigellosis. This method was used to interrogate and compare
Fc-mediated immune responses from multiple vaccine trials;
it allowed successful identification of an “Fc fingerprint”
associated with protective immunity against HIV,89 and dis-
crimination of antibody function in latent versus active TB.90

Going forward

What constitutes an effective (protective) response against shigel-
losis through a “serological lens” remains to be defined. A careful
serological analysis of sick versus healthy individuals during case-
control and/or household contact studies could yield threshold
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values to distinguish immune from at-risk individuals. Thresholds
of protective immunity can also be established through CHIM.
This method, however, traditionally involves a different (non-
target) population and an artificial setting (dose, interval between
vaccination and challenge, administration of antibiotics post-
challenge). Mechanistic analyses are necessary to delineate the
contribution of antibodies in promoting bacterial clearance and
preventing Shigella infection in the gut mucosa. It will be impor-
tant to know the antigenic targets and type of antibodies (i.e. IgG
subclasses) involved, the intrinsic properties of functional antibo-
dies (e.g. structure, glycan profile), and their interactions with
innate immune cells and other host cells. Investigating the capa-
city of antibodies to interfere with different steps of Shigella
pathogenesis and methods that can reliably quantify such anti-
bodies will expand the assay repertoire to facilitate vaccine devel-
opment and evaluation. Selection, optimization, and
harmonization of assays will enable comparative analysis of results
derived frommultiple studies. The identification and utilization of
calibrated reagents (i.e. antigens, standard sera) would be neces-
sary to define and implement a reliable protective threshold or
serological cutoff.91 High throughput technologies, including
automation, multiplexing,44 and luminescence-based assays92

will facilitate and simplify the implementation of functional
assays. A recently reported S. flexneri 2a, S. flexneri 3a, and
S. sonnei SBA qualification and demonstration of interlaboratory
agreement is a step towards wider adoption of functional assays.93

A consortium sponsored by Bill and Melinda Gates Foundation
and coordinated by the National Institute for Biological Standards
and Control (NIBSC), with the participation of WRAIR,
University of Maryland, University of Tel Aviv, GSK Vaccines
Institute for Global Health (GVGH), and Johns Hopkins
University is working toward a harmonized LPS IgG assay and
the creation of a standard control. Similar efforts would facilitate
rigorous and standardized measurement of functional antibodies.

Concluding remarks

There is precedent for the use of functional antibodies as corre-
lates of protection and promise for their use as predictors of
protective immunity to Shigella infection. The induction of high
levels of antibodies with a defined anti-bacterial effect is indica-
tive of more complex and robust responses that involve T cell
activation and B cell expansion in response to infection and
vaccination. Functional antibody assays can be performed rig-
orously in laboratories that conduct low complexity tests and are
simple and reliable tools to evaluate vaccine-induced and natural
immunity. Upcoming CHIM and field efficacy studies will offer
the opportunity to carefully examine markers and thresholds of
protection in different settings, including endemic populations.
The ultimate goal would be to identify a robust serological
correlate of protection in young children, who would benefit
the most from a Shigella vaccine.
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