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Research into hippocampal self-regulation abilities may help determine the clinical significance of hippocampal hyperactivity

throughout the pathophysiological continuum of Alzheimer’s disease. In this study, we aimed to identify the effects of amyloid-b

peptide 42 (amyloid-b42) and phosphorylated tau on the patterns of functional connectomics involved in hippocampal downregulation.

We identified 48 cognitively unimpaired participants (22 with elevated CSF amyloid-b peptide 42 levels, 15 with elevated CSF

phosphorylated tau levels, mean age of 62.705 � 4.628 years), from the population-based ‘Alzheimer’s and Families’ study, with

baseline MRI, CSF biomarkers, APOE genotyping and neuropsychological evaluation. We developed a closed-loop, real-time

functional MRI neurofeedback task with virtual reality and tailored it for training downregulation of hippocampal subfield

cornu ammonis 1 (CA1). Neurofeedback performance score, cognitive reserve score, hippocampal volume, number of apolipopro-

tein e4 alleles and sex were controlled for as confounds in all cross-sectional analyses. First, using voxel-wise multiple regression

analysis and controlling for CSF biomarkers, we identified the effect of healthy ageing on eigenvector centrality, a measure of each

voxel’s overall influence based on iterative whole-brain connectomics, during hippocampal CA1 downregulation. Then, controlling

for age, we identified the effects of abnormal CSF amyloid-b42 and phosphorylated tau levels on eigenvector centrality during

hippocampal CA1 downregulation. Across subjects, our main findings during hippocampal downregulation were: (i) in the absence

of abnormal biomarkers, age correlated with eigenvector centrality negatively in the insula and midcingulate cortex, and positively

in the inferior temporal gyrus; (ii) abnormal CSF amyloid-b42 (51098) correlated negatively with eigenvector centrality in the

anterior cingulate cortex and primary motor cortex; and (iii) abnormal CSF phosphorylated tau levels (419.2) correlated with

eigenvector centrality positively in the ventral striatum, anterior cingulate and somatosensory cortex, and negatively in the pre-

cuneus and orbitofrontal cortex. During resting state functional MRI, similar eigenvector centrality patterns in the cingulate had

previously been associated to CSF biomarkers in mild cognitive impairment and dementia patients. Using the developed closed-loop

paradigm, we observed such patterns, which are characteristic of advanced disease stages, during a much earlier presymptomatic

phase. In the absence of CSF biomarkers, our non-invasive, interactive, adaptive and gamified neuroimaging procedure may

provide important information for clinical prognosis and monitoring of therapeutic efficacy. We have released the developed

paradigm and analysis pipeline as open-source software to facilitate replication studies.
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Introduction
Alzheimer’s disease poses a global threat to millions of lives

and the sustainability of public healthcare (Prince et al.,

2015). Recent progress is shifting the mainstream dual

clinic-pathological concept of Alzheimer’s disease towards

a pathophysiological ‘continuum’, with progression being

monitored in vivo through the study of CSF and PET bio-

markers (Jack et al., 2018). The study of the brain alter-

ations associated with the presence of abnormal levels of

biomarkers in unimpaired individuals may shed light on

factors and mechanisms associated with cerebral resilience

or vulnerability to early Alzheimer’s disease pathology.

According to the ‘compensation-related utilization of

neural circuits hypothesis’ (CRUNCH; Reuter-Lorenz and

Cappell, 2008) and the ‘network-based degeneration’

theory (Seeley et al., 2009), functional alterations such as

hippocampal hyperactivity during the preclinical stage are

likely to be initially compensated by specific changes in

functional connectomics (Jacobs et al., 2013). In network

science, eigenvector centrality (EC) is one of the most

advanced connectomic metrics (Bonacich, 1972; Langville

and Meyer, 2006) that is designed to reflect the influence of

each node on the overall connectomic patterns of a net-

work (Borgatti, 2005; Lohmann et al., 2010; Wink et al.,

2012). For example, when applied to social interactions,

EC can determine the members of a social network exerting

the most influence (Bonacich, 1972) and EC is also the

metric subserving the most successful internet search

engine (Langville and Meyer, 2006). In functional neuro-

imaging, eigenvector centrality mapping (ECM) is an

assumption-free, data-driven procedure that can be per-

formed in high image resolution, for each participant,

using the time series from every individual voxel while

accounting for global brain patterns of functional connect-

ivity. ECM derives estimates of relative influence on whole

brain connectomics, per voxel or cluster of voxels

(Lohmann et al., 2010; Wink et al., 2012). Importantly,

EC values can be processed to meet parametric assump-

tions, enabling group-level regression with biomarker cov-

ariates to be performed. These features make ECM

particularly promising for the investigation of changes

along disease continuums such as the pathophysiological

continuum of Alzheimer’s disease (Skouras et al., 2019a).

Previous studies have shown that EC reveals similar pat-

terns to fluorodeoxyglucose (FDG)-PET when comparing pa-

tients with Alzheimer’s disease to healthy controls

(Adriaanse et al., 2016), and that patients with Alzheimer’s

disease present significant differences in EC, in the anterior

cingulate cortex (ACC), paracingulate gyrus, cuneus and oc-

cipital cortex (Binnewijzend et al., 2014). An independent

study found that increased EC in the cingulate cortex and

thalamus is related to compensatory mechanisms across the

pathophysiological continuum of Alzheimer’s disease, and

evidenced a relation of these EC patterns to reduced func-

tional connectivity between the midcingulate cortex and the

left hippocampus during the preclinical phase of Alzheimer’s

disease (Skouras et al., 2019a). The latter finding suggested

that EC changes may comprise a sensitive indicator of pre-

clinical changes in functional connectomics related to hippo-

campal function. However, all previous investigations of EC

in Alzheimer’s disease have been limited to task-free (i.e.

resting state) functional MRI, even though EC is particularly

suited for the explorative investigation of differences in task-

related connectivity with functional MRI designs featuring

long, continuous experimental conditions (Koelsch and

Skouras, 2014; Alnæs et al., 2015). Recent evidence suggests

that functional tasks that engage specific brain regions af-

fected by a disease lead to stronger effects and consequently

to higher discriminative power between patients and controls

(Finn et al., 2017; Greene et al., 2018). In the present study,

we aimed to investigate preclinical differences of EC related
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to hippocampal function, by harnessing the sensitivity of

CSF biomarkers.

Across Alzheimer’s disease patient studies and healthy

memory studies, the hippocampus has been established to

be the single brain region with the most important role

(Schwindt and Black, 2009; Kim, 2011). Hippocampal sub-

field CA1 in particular, appears to be a region that is in-

tegral to contextual episodic memory (Mizumori et al.,

1999; Leutgeb et al., 2004; Vazdarjanova and Guzowski,

2004; Penner and Mizumori, 2012). CA1 presents atrophy

linked to Alzheimer’s disease pathology but no volume loss

related to normal ageing (Wilson et al., 2004; Frisoni et al.,

2008; Yushkevich et al., 2015). Here, we focus on hippo-

campal subfield CA1 because we reasoned that if preclinical

alterations in brain function indeed occur prior to neuro-

degeneration as has been suggested (Pihlajamäki and

Sperling, 2008; Teipel et al., 2015), it is probable that

they are most prominent in areas that later undergo atro-

phy due to Alzheimer’s disease. Hippocampal hyperactivity

appears to precede amyloid accumulation (Leal et al.,

2017), which is accepted as the earliest sign of preclinical

Alzheimer’s disease (Jack et al., 2018). Hippocampal hyper-

activity also appears to be more prominent in subjects at

genetic risk for Alzheimer’s disease (Tran et al., 2017). The

lack of concurrent neurodegeneration or decline in cogni-

tive performance (Leal et al., 2017; Tran et al., 2017)

implies: (i) that hippocampal hyperactivity is the result of

compromised neural efficiency, as defined in the context of

neural reserve (Barulli and Stern, 2013; Stern et al., 2018);

and (ii) a potential link between hippocampal hyperactivity

and compromised hippocampal downregulation abilities. In

this context, developing a standard framework for the in-

vestigation of the ability to downregulate hippocampal ac-

tivation may bring us a step closer to detecting Alzheimer’s

disease-specific signs earlier along the pathophysiological

continuum of Alzheimer’s disease.

Real-time neurofeedback enables focusing investigations

on specific brain regions and their self-regulation during

interactive functional tasks (Sitaram et al., 2017).

Neurofeedback with real-time functional MRI (rt-fMRI) is

particularly suited to study hippocampal downregulation

due to the spatiotemporal resolution of functional MRI

and the deep-brain location of the hippocampus. In a pre-

vious rt-fMRI neurofeedback study of healthy young

adults, memory performance correlated with downregula-

tion, but not upregulation, of the parahippocampal forma-

tion (Weiskopf et al., 2004). Moreover, a recent study has

demonstrated that rt-fMRI neurofeedback is suitable for

the downregulation of deep-brain structures (e.g. the amyg-

dala that is adjacent to the hippocampus), as well as a link

between amygdala downregulation and clinical symptoms

(Nicholson et al., 2017). In addition, neurofeedback tasks

can be combined with virtual reality (VR). VR has shown

promise for the development of immersive experimental

tasks with increased ecological validity (Krokos et al.,

2018), which have revealed significant insights regarding

hippocampal function (Duarte et al., 2014; Igloi et al.,

2014; Dimsdale-Zucker et al., 2018). Furthermore, VR

promotes participants’ experimental compliance, through

perceptual immersion in engaging tasks (Chirico et al.,

2017) that in turn can result in higher engagement

(Torner et al., 2019) and improved performance (Krokos

et al., 2018). The increased engagement and compliance

afforded by VR tasks, facilitates focused participation in

long functional tasks. Combined with closed-loop neuro-

feedback paradigms, long tasks enable the acquisition of

continuous whole-brain datasets that are optimal for the

reliable estimation of functional connectomics (Gonzalez-

Castillo et al., 2014; Finn et al., 2015), including EC.

Here, we fused state-of-the-art, disruptive technologies

(i.e. fully automated electrochemiluminescence immuno-

assay, real-time functional neuroimaging and VR), aiming

to create an interactive and entertaining task to investigate

the neural correlates of hippocampal downregulation, asso-

ciated with core Alzheimer’s disease CSF biomarkers and

healthy ageing, in a sample of cognitively unimpaired par-

ticipants at risk for Alzheimer’s disease. We hypothesized

that: (i) to downregulate hippocampal activation, partici-

pants with hippocampal hyperactivity engage their brain

differently or more strongly than healthy agers and that

such differences can be captured by EC during hippocam-

pal downregulation; and (ii) we may identify patterns of

functional connectomics during hippocampal downregula-

tion that resemble those found during resting state at

advanced Alzheimer’s disease stages. Specifically, we ex-

pected to find measurable differences of EC in the occipital

cortex (Binnewijzend et al., 2014), the inferior parietal

lobule, the thalamus and the cingulate cortex

(Binnewijzend et al., 2014; Skouras et al., 2019a).

Materials and methods

Participants

Participants comprised 48 adult volunteers with complete
data [mean age = 62.705 years; standard deviation (SD) =
4.628] from the ongoing ALFA (Alzheimer’s and Families)
project and related substudies, many of them descendants of
patients with Alzheimer’s disease and APOE e4 allele carriers,
hence presenting increased risk for Alzheimer’s disease
(Molinuevo et al., 2016). All data were acquired at the
Barcelonabeta Brain Research Center, from 2016–18.
Researchers were blind to biomarker levels and cognitive per-
formance during data acquisition. All participants were highly
functional and without neurological or psychiatric history at
the time of scanning, as assessed in the medical baseline ses-
sion of their ongoing ALFA-related study within the previous
12 months (time between baseline ALFA and rt-fMRI scan-
ning: mean = 6.4 months, SD = 2.5). The cognitively unim-
paired status of participants was also assessed as an inclusion
criterion in the cognitive testing session of their ongoing
ALFA-related study within the previous 12 months (mean =
6.4 months, SD = 2.5), according to their scores on the
Clinical Dementia Rating scale (CDR = 0; Hughes et al.,
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1982; Morris, 1993) and the Mini-Mental State Examination
(MMSE 5 27; Folstein et al., 1975; Blesa et al., 2001). During
that cognitive testing session, participants also completed the
Free and Cued Selective Reminding Test (FCSRT; Grober
et al., 2009), the Subjective Cognitive Decline Questionnaire
(SCD-Q; Rami et al., 2014) and the Visual Puzzles test
included in the Wechsler Adult Intelligence Scale IV (WAIS
IV; Weschler, 2013); all scores are summarized in Table 1.
The FCSRT is an internationally standardized research instru-
ment recommended for the assessment of episodic memory
and diagnosis of prodromal Alzheimer’s disease (Dubois
et al., 2007, 2014). The SCD-Q is a useful tool to measure
self-perceived cognitive decline, independently of a partici-
pant’s objective neuropsychological assessment. According to
their SCD-Q responses, four participants had a subjective im-
pression of cognitive or memory decline, while their cognition
was preserved based on objective cognitive testing (see
‘Discussion’ section). The Visual Puzzles test measures non-
verbal reasoning and the ability to analyse and synthesize ab-
stract visual stimuli. It is related to visual perception, general
visuospatial intelligence, fluid intelligence, simultaneous pro-
cessing, visualization and spatial manipulation, as well as the
ability to anticipate relationships between constituent parts of
a whole. Within a given time limit (either 20 or 30 s, depend-
ing on the complexity of a puzzle), the participant was in-
structed to select the three pieces necessary for the
reconstruction of the presented puzzle. Each item is scored
with 0 or 1 and the testing is suspended after three consecutive
scores of 0. The test consists of 26 items and the estimated
administration time is �10 min. At inclusion of participants in
the ALFA project, they had also completed the Cognitive
Reserve Questionnaire (CRQ; Supplementary Table 1); a ques-
tionnaire comprising eight questions whose total score serves
as a proxy for cognitive reserve (Rami et al., 2011). To assess
core Alzheimer’s disease biomarker levels in CSF, participants
underwent lumbar puncture within the preceding 10 months
(time between lumbar puncture and rt-fMRI scanning: mean =
5.23 months, SD = 2.49). Eighteen participants presented
normal CSF biomarkers (amyloid-b42 levels 4 1098 pg/ml
and p-tau levels 5 19.2 pg/ml), 22 participants presented
CSF amyloid-b42 levels 5 1098 pg/ml, 15 participants pre-
sented CSF p-tau levels 4 19.2 pg/ml and seven of the latter
met both criteria. Participants did not differ significantly with
regards to any cognitive or neuroimaging variables, regardless
of grouping based on CSF amyloid-b42 and p-tau levels
(Table 1). Thorough quality control was applied in advance,
to exclude five datasets with410% invalid functional volumes
due to movement, as well as seven datasets with rt-fMRI ac-
quisitions during which technological complications occurred
and six datasets with rt-fMRI acquisitions during which fa-
tigue, discomfort or sleep had occurred. The local ethics com-
mittee ‘CEIC-Parc de Salut Mar’ reviewed and approved the
study protocol and informed consent form, in accordance with
current legislation.

CSF sampling

CSF was collected by lumbar puncture between 9 and 12 am
in polypropylene tubes. Samples were processed within 1 h
and centrifuged at 4�C for 10 min at 2000g, stored in poly-
propylene tubes and frozen at –80�C. Core Alzheimer’s disease

CSF biomarkers (namely amyloid-b42 and p-tau) were deter-
mined using cobas Elecsys� assays (Hansson et al., 2018).

APOE genotyping

Proteinase K digestion and subsequent alcohol precipitation
was used to obtain DNA from the blood cellular fraction.
Samples were genotyped for two single nucleotide polymorph-
isms (rs429358 and rs7412) and the number of APOE e4
alleles was determined for each participant (Molinuevo et al.,
2016). Results are displayed in Table 2.

Image acquisition

All scanning was performed in a single 3 T Philips Ingenia CX
MRI scanner (2015 model). Pre-neurofeedback scanning com-
prised a 3D T1-weighted sequence of 240 sagittal slices with
voxel resolution = 0.75 � 0.75 � 0.75 mm3, repetition time =
9.90 ms, echo time = 4.60 ms, flip angle = 8; and a diffusion-
weighted sequence of 66 axial slices with voxel resolution =
2.05 � 2.05 � 2.20 mm3, repetition time = 9000 ms, echo
time = 90 ms, flip angle = 90, featuring 72 non-collinear dir-
ections (b = 1300 s/mm2) and one non-gradient volume (b = 0
s/mm2). During neurofeedback, echo planar imaging was used
with voxel resolution = 3 � 3 � 3 mm3, repetition time =
3000 ms, echo time = 35 ms, matrix size = 80 � 80 voxels,
field of view = 240 mm and interleaved slice acquisition with
an interslice gap of 0.2 mm (45 slices, whole brain coverage).
In total, 610 functional volumes were acquired.

Structural image processing

The standard FreeSurfer pipeline was applied on T1-weighted
images to estimate each participant’s normalized hippocampal
brain volume, as a proxy of brain reserve, by dividing total
hippocampal volume by total intracranial volume (Cavedo
et al., 2012). Using the Advanced Normalization Tools
(Avants et al., 2009) (ANTs v2.x; RRID: SCR_004757), the
N4 non-parametric non-uniform intensity normalization bias
correction function (Tustison et al., 2010; Tustison and
Avants, 2013) was applied on all T1 images, followed by an
optimized blockwise non-local means denoising filter (Coupé
et al., 2008). Multi-atlas segmentation with joint label fusion
(Wang et al., 2013) segmented hippocampal subfields to derive
probabilistic maps for CA1, which were thresholded at P = 0.9
to create the neurofeedback target region of interest masks.

Experimental paradigm

The design of the VR paradigm was guided by the following
objectives: (i) we used VR to make the task immersive, enga-
ging and entertaining, which in turn; (ii) enabled us to extend
the task to 30 min to maximize first-level statistical power; (iii)
we used sliding-window closed-loop neurofeedback to achieve
an optimal design for analysis of functional connectomics; and
(iv) we narrowed the neurofeedback target region of interest to
hippocampal subfield CA1, which presents atrophy in
Alzheimer’s disease but not in healthy ageing (Wilson et al.,
2004; Frisoni et al., 2008; Yushkevich et al., 2015), while also
being consistently implicated in memory encoding (Kim, 2011)
and differing in activity in patients (Schwindt and Black,
2009). Prior to the acquisition of CSF biomarkers, the task
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Table 1 Descriptive and comparative statistics, across groupings based on CSF amyloid-b42 and p-tau levels

Entire sample Controls Amyloid-b42 5 1098 p-tau 4 19.2 PreAD

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

n; M / F 48; 21 / 27 18; 7 / 11 22; 10 / 12 15; 8 / 7 7; 4 / 3

Age 62.705 (4.628) 62.143 (4.690) 62.143 (5.171) 65.051 (2.306) 64.919 (3.202)

t = –0.099 t = 2.070 t = 1.352

P = 0.921 P = 0.046� P = 0.193

Ab42 1186.200 (424.678) 1492.111 (232.529) 795.123 (232.529) 1189.60 (454.94) 771.06 (190.47)

t = –9.677 t = –2.423 t = –7.636

P 5 0.001��� P = 0.022� P 5 0.001���

p-Tau 18.233 (9.007) 14.735 (3.046) 16.645 (8.190) 28.624 (8.819) 26.513 (6.554)

t = 0.936 t = 6.265 t = 6.221

P = 0.367 P 5 0.001��� P 5 0.001���

t-Tau 220.273 (86.623) 1.906 (37.090) 1984.318 (73.441) 318.133 (81.981) 285.071 (55.774)

t = 0.410 t = 5.925 t = 4.959

P = 0.687 P 5 0.001��� P 5 0.001���

p-Tau / Ab42 0.017 (0.010) 0.010 (0.002) 0.023 (0.012) 0.027 (0.011) 0.035 (0.009)

t = 4.584 t = 6.460 t = 12.051

P 5 0.001��� P 5 0.001��� P 5 0.001���

FCSRT Total recall 44.292 (3.989) 43 (5.053) 45.091 (3.054) 45 (2.619) 45 (2.082)

t = 1.616 t = 1.384 t = 1.004

P = 0.117 P = 0.192 P = 0.348

FCSRT Retention Index 0.980 (0.066) 0.980 (0.077) 0.981 (0.055) 0.976 (0.058) 0.973 (0.033)

t = 0.036 t = –0.171 t = –0.219

P = 0.959 P = 0.871 P = 0.833

FCSRT Delayed cued recall 3.708 (1.675) 3.667 (1.910) 3.454 (1.683) 3.867 (1.552) 3.429 (1.902)

t = –0.373 t = 0.325 t = –0.280

P = 0.725 P = 0.768 P = 0.818

FCSRT Delayed free recall 11.479 (1.935) 11.222 (2.315) 12 (1.746) 11.467 (1.652 12 (2)

t = 1.211 t = 0.343 t = 0.780

P = 0.246 P = 0.796 P = 0.491

FCSRT Total free recall 28.562 (5.379) 27.889 (6.173) 29.545 (5.466)

t = 0.900

P = –0.388

28.267 (4.448)

t = 0.198

P = 0.851

26.857 (5.014)

t = –0.393

P = 0.709
FCSRT Total cued recall 15.729 (4.409) 15.111 (4.071) 15.545 (4.426) 16.733 (4.061 18.143 (4.413)

t = 0.320 t = 1.141 t = 1.635

P = 0.767 P = 0.270 P = 0.122

FCSRT Total delayed recall 15.187 (1.214 14.889 (1.323) 15.454 (0.800) 15.333 (0.816) 15.429 (0.534)
t = 1.669 t = –0.298 t = 1.035

P = 0.109 P = –1.132 P = 0.378

WAIS IV Visual Puzzles Total Score 13.083 (4.297 13.222 (4.023) 12.818 (4.837)

t = –0.283

P = 0.804

12.867 (4.103)

t = –0.250

P = 0.830

12.143 (4.670)

t = –0.577

P = 0.604
CRQ score 16.479 (3.724) 15.778 (4.427) 16.454 (3.188)

t = 0.561

P = 0.587

16.867 (3.623)

t = 0.763

P = 0.471

15.429 (3.690)

t = –0.185

P = 0.878
Years of education 13.750 (3.778 ) 13.444 (3.959) 13.727 (3.588) 13.800 (3.950) 13.000 (3.697)

t = 0.237 t = 0.830 t = –0.256

P = 0.832 P = 0.257 P = 0.819

Hippocampal volume / TIV 0.005 (0.001) 0.005 (0.001) 0.005 (0.001) 0.005 (0.001) 0.005 (0.001)

t = 0.444 t = 0.555 t = –0.1865

P = 0.665 P = 0.587 P = 0.854

Hippocampal downregulation NF score –0.038 (0.462) –0.098 (0.437) –0.049 (0.473) 0.0475 (0.524) –0.043 (0.568)

t = 0.334 t = 0.871 t = 0.259

P = 0.743 P = 0.386 P = 0.796

Mean EC in CA1 0.282 (0.040) 0.290 (0.037) 0.272 (0.043) 0.283 (0.043) 0.277 (0.054)

t = –1.383 t = –0.497 t = –0.717

P = 0.178 P = 0.622 P = 0.486

Ab42 = amyloid-b42; CRQ = Cognitive Reserve Questionnaire; F = Female; FSCRT = Free and Cued Selective Reminding Test; M = male; NF = neurofeedback; PreAD = preclinical

Alzheimer’s disease; t = average t-statistic from 10 000 non-parametric permutation tests, comparing each category to controls; TIV = total intracranial volume.

Asterisks denote uncorrected significance at conventional alpha levels.
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was validated in a larger partly independent sample (77%
overlap), by showing that hippocampal downregulation was
associated with genetic predisposition to Alzheimer’s disease,
neurodevelopmental processes and bilateral cohesion of hippo-
campal function (Skouras et al., 2019b).

The VR environment had been developed in the game-
engine Unity (Unity Technologies ApS, San Francisco, USA)
(Fig. 1). During a 30-min long scanning session, participants
were immersed in the VR environment and could run in a
fixed, circular path. The experimental task was to explore
different mental strategies, aiming to achieve the maximum
velocity and to traverse the maximum distance possible, while
at the same time attending to features of the VR environment,
remembering them and considering whether they changed be-
tween each lap of the environment. Debriefing interviews re-
vealed that most participants tried similar simple strategies,
such as internal self-motivational speech, imagining that they
were on a speeding vehicle, or focusing their sight on a spe-
cific point in the field of view. The first 30 functional volumes
of the session served to establish a baseline of hippocampal
activity, for each participant. Subsequently, with every repe-
tition time, the most recent shift in hippocampal CA1 activity
was compared to reference measures of change derived from
the preceding 90 s (30 functional volumes; see ‘Online func-
tional image processing and neurofeedback’ section). A 5%
decrease of VR velocity was triggered by increases in hippo-
campal activity and a 5% increase of velocity was triggered
by decreases in hippocampal activity. At any given moment,
the current velocity was displayed as a percentage of the
maximum velocity possible and a green or red signal was
superimposed on a coronal brain view, reflecting the direction
of the most recent change (Fig. 1). Every 30 volumes, the
velocity was reset to 50%, resulting in 19 trials per session.
The trials were not related to the experimental design from a
statistical perspective, because computing EC requires hun-
dreds of continuous functional volumes; however, having dis-
tinct trials served three important purposes. First, by resetting
the speed every 90 s, all participants had a similar gamified
experience, regardless of their actual performance. This was
important from an ethical perspective because participants
were aware that the gamified task, even though experimental,
could be reflecting aspects of their brain function and health.
It was therefore important that all participants would exit
from the scanning session with an overall positive experience
(and without any reason to worry) and this was also a sec-
ondary motivation to implement an online analysis pipeline
with adaptive difficulty, based on a sliding-window baseline
(see ‘Online functional image processing and neurofeedback’
section). Second, by resetting the speed and adapting the dif-
ficulty of the task, all participants had a similar overall sen-
sory and perceptual experience. This was important to
control for the effects of potential confounding factors such
as individual differences in visual cortex activity during the
scanning sessions. Third, resetting the speed enabled the de-
veloped paradigm to utilize effectively the basic principles of
operant conditioning and sensory-aided learning. Because in
the context of the gamified goal accelerations are perceived to
be of positive valence and decelerations are perceived to be of
negative valence, the 570 neurofeedback signals that occurred
during each 30-min scanning session acted as positive and
negative reinforcers, respectively. Thus, resetting the speed
at regular intervals was necessary to avoid ceiling or floor

effects that could compromise the number of reinforcers pro-
duced in a particular session.

Online functional image processing
and neurofeedback

In each rt-fMRI session, EPI (echo planar imaging) images of
whole-brain activity were acquired, reconstructed and ex-
ported every 3 s. The first 10 functional volumes were dis-
carded to allow for gradient and tissue excitation levels to
stabilize (Soares et al., 2016). Online movement correction
through rigid-body registration was performed relative to an
initial reference volume. To remove low frequency drifts in the
functional MRI time series, temporal high-pass filltering with a
cut-off frequency of 1/200 Hz (Tarvainen et al., 2002) was
applied in real-time. An initial baseline mean and standard
deviation were computed based on the first 30 processed func-
tional volumes, during which the VR movement velocity re-
mained constant at 0.5. Subsequently, voxel-efficiency
weighting (Stoeckel et al., 2014) was performed by normal-
izing new images based on the mean and standard deviation
of the preceding 30 observations in each voxel, according to
Equation 1:

zt ¼
Xt�X t�30�1ð Þ:ðt�1Þ

� t�30�1ð Þ:ðt�1Þ
ð1Þ

where, at time t;Xt represents the filtered value of a single
voxel, X t�30�1ð Þ:ðt�1Þ represents the mean of that voxel’s time
series within a time-window of 30 volumes up to time ðt � 1Þ,
� t�30�1ð Þ: t�1ð Þ represents the corresponding standard deviation
and zt represents the efficiency-weighted value of the voxel.
The length of the sliding window was set to 30 as a trade-
off between the speed of adaptation and the reliability of the
mean estimates, in accordance with generic statistical guide-
lines and the central limit theorem (Hogg et al., 1977). For
each acquired functional volume, an outcome variable was
instantiated for the activity measured within each participant’s
hippocampal CA1 region of interest, in native space, based on
the following computations. At any given time point t0, a
voxel-wise expected data vector Y was computed according
to Equation 2.

Y t0ð Þ ¼
Xt0�1

t¼ðt0�30�1Þ

ZðtÞ

30
ð2Þ

where Z tÞð represents the voxel-wise observed data vector
composed of the output of Equation 1 for all voxels within
the region of interest at time t. A non-linear metric neurofeed-
back metric (NF) was computed for each new volume, in real-
time, according to Equation 3.

NF ¼ Z t0ð Þ � Y t0ð Þ ð3Þ

With every repetition time, if the average expected signal sur-
passed the average observed signal in the hippocampal CA1
region of interest, the velocity v in the VR environment
increased by 5% according to Equation 4; in the opposite
case, the velocity decreased by 5% according to Equation 5,
where v represents the VR movement velocity in the range
{0.1, 1}.

NF50! �v ¼ 0:05 ð4Þ
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NF40! �v ¼ �0:05 ð5Þ

Offline functional image processing

Raw images were processed and examined using a well-con-
trolled combination of highly specialized functions from
open-source neuroimaging software. To maximize cortical seg-
mentation accuracy, T1 images were subjected to the N4 non-
parametric non-uniform intensity normalization bias correction
function (Tustison et al., 2010, 2013) of the Advanced
Normalization Tools (ANTs; version 2.x, committed in
January 2016; Avants et al., 2009) and to an optimized
blockwise non-local means denoising filter (Coupé et al.,
2008). SPM12 (Statistical Parametric Mapping, RRID:
SCR_007037) together with VBM8 (VBM toolbox, RRID:
SCR_014196), were used to segment each anatomical image

into grey matter, white matter and CSF. Whole-brain images
with removed cranium were also derived and used for normal-
ization. Neuroanatomically-plausible symmetric diffeomorphic
matrices were computed to transform each subject’s anatom-
ical data to a custom template derived from the same popula-
tion (Skouras et al., 2019a) and subsequently to MNI space
(Avants et al., 2011; Tustison and Avants, 2013) as defined by
the robust, high-definition ICBM (International Consortium
for Brain Mapping) brain template (Fonov et al., 2011), also
with removed cranium. All transformation matrices were con-
catenated and applied to the CA1 region of interest masks and
functional MRI datasets in a single step to ensure optimal
normalization while avoiding multiple interpolations, in ac-
cordance with best image processing practices.

Using SPM12 and the MIT connectivity toolbox
(Connectivity Toolbox, RRID: SCR_009550), functional data
were subjected to standard preprocessing, consisting of

Table 2 Assessment of non-collinearity between measured variables

Age Amyloid-b42 p-tau T-tau p-tau/amyloid-b42

Age – R = 0.129 R = 0.369 R = 0.373 R = 0.224

P = 0.382 P = 0.010�� P = 0.009�� P = 0.126

Amyloid-b42 R = 0.129 – R = 0.195 R = 0.276 R = –0.580

P = 0.382 P = 0.184 P = 0.057 P 5 0.001���

P-tau R = 0.369 R = 0.195 – R = 0.987 R = 0.625

P = 0.010� P = 0.184 P 5 0.001��� P 5 0.001���

T-tau R = 0.373 R = 0.276 R = 0.987 – R = 0.553

P = 0.009�� P = 0.057 P 5 0.001��� P 5 0.001���

P-tau / amyloid-b42 R = 0.224 R = –0.580 R = 0.625 R = 0.553 –

P = 0.126 P 5 0.001��� P 5 0.001��� P 5 0.001���

APOE e4 allele carrier status R = –0.699 R = –0.325 R = –0.288 R = –0.290 R = 0.025

P 5 0.001��� P = 0.024� P = 0.047� P = 0.046� P = 0.864

FCSRT Total recall R = –0.177 R = –0.202 R = 0.004 R = 0.014 R = 0.125

P = 0.227 P = 0.168 P = 0.976 P = 0.921 P = 0.398

FCSRT Retention Index R = 0.088 R = 0.065 R = –0.046 R = –0.015 R = –0.083

P = 0.554 P = 0.658 P = 0.756 P = 0.921 P = 0.576

FCSRT Delayed cued recall R = 0.250 R = –0.026 R = 0.143 R = 0.107 R = 0.156

P = 0.087 P = 0.861 P = 0.331 P = 0.468 P = 0.291

FCSRT Delayed free recall R = –0.217 R = –0.087 R = –0.129 R = –0.090 R = –0.073

P = 0.138 P = 0.558 P = 0.383 P = 0.543 P = 0.621

FCSRT Total free recall R = –0.307 R = 0.016 R = –0.128 R = –0.089 R = –0.137

P = 0.033 P = 0.913 P = 0.387 P = 0.547 P = 0.353

FCSRT Total cued recall R = 0.239 R = –0.219 R = 0.175 R = 0.133 R = 0.305

P = 0.101 P = 0.134 P = 0.233 P = 0.369 P = 0.035�

FCSRT Total delayed recall R = 0.004 R = –0.197 R = –0.005 R = 0.008 R = 0.114

P = 0.978 P = 0.180 P = 0.974 P = 0.956 P = 0.439

WAIS IV Visual Puzzles Total Score R = –0.397 R = 0.092 R = –0.112 R = –0.106 R = –0.190

P = 0.005 P = 0.535 P = 0.447 P = 0.475 P = 0.196

CRQ score R = –0.012 R = 0.046 R = 0.013 R = 0.025 R = –0.081
P = 0.935 P = 0.755 P = 0.927 P = 0.868 P = 0.582

Years of education R = –0.208 R = –0.018 R = –0.137 R = –0.118 R = –0.091

P = 0.156 P = 0.901 P = 0.354 P = 0.424 P = 0.540

Hippocampal volume / TIV R = –0.026 R = –0.012 R = 0.044 R = 0.068 R = –0.025

P = 0.859 P = 0.933 P = 0.764 P = 0.645 P = 0.864

Hippocampal downregulation NF score R = 0.219 R = 0.087 R = 0.215 R = 0.198 R = 0.115

P = 0.135 R = 0.557 P = 0.143 P = 0.176 P = 0.434

Mean EC in CA1 R = 0.164 R = 0.219 R = –0.019 R = 0.017 R = –0.172
P = 0.264 P = 0.135 P = 0.898 P = 0.908 P = 0.242

CRQ = Cognitive Reserve Questionnaire; FSCRT = Free and Cued Selective Reminding Test; NF = neurofeedback; TIV = total intracranial volume.

Asterisks denote uncorrected significance at conventional alpha levels.
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slice-time correction, realignment and reslicing of functional vol-

umes, denoising via regression of average white matter timeseries,
average CSF timeseries, 24 Volterra expansion movement param-

eters and scan-nulling regressors (Lemieux et al., 2007) produced

by the Artifact Detection Tools (ART; RRID: SCR_005994).

Each subject’s functional data were masked by the grey matter
of their equivalent anatomical datasets using FSL and then

normalized to MNI space in accordance with their respective

diffeomorphic matrices using ANTs. Temporal high-pass filtering
with a cut-off frequency of 1/90 Hz and spatial smoothing using

a 3D Gaussian kernel and a filter size of 6 mm full-width at half-

maximum, were performed using the Leipzig Image Processing

and Statistical Inference Algorithms (LIPSIA v2.2.7, 2011,
RRID: SCR_009595; Lohmann et al., 2000).

Figure 1 VR environment and neuroimaging pipeline. The VR neurofeedback paradigm developed for the study used principles of

passive, sensory-aided, operant conditioning and featured 570 neurofeedback signals per session. To maintain a balanced perceptual experience

across participants, task difficulty adapted to individual performance dynamically, aiming to drive CA1 activity in each participant to the minimum

possible. Using previously acquired anatomical images, multi-atlas hippocampal subfield segmentation localized and segmented hippocampal

subfield CA1, prior to real-time scanning. With every real-time functional volume, moment-to-moment changes in hippocampal CA1 activation

effected inverse changes of velocity in VR. Offline statistical modelling was used to derive a measure of neurofeedback regulation performance and

to perform EC mapping (i.e. to estimate how much influence each voxel exerts during hippocampal CA1 downregulation with neurofeedback).

APOE = apolipoprotein genotype; Ab42 = amyloid-b42; BrainRes = brain reserve; CA1 = cornu ammonis 1; CogRes = cognitive reserve; fMRI =

functional MRI; GLM = general linear model; NF = neurofeedback; p-tau = phosphorylated tau; ROI = region of interest; TIV = total intracranial

volume.
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EC was computed for every voxel, based on the LIPSIA im-
plementation of ECM (vecm command), with previously pub-
lished detailed mathematical specification (Lohmann et al.,
2010). In effect, the ECM procedure begins by computing a
correlation coefficient between every possible pair of voxels
within the computational volume (e.g. grey matter mask),
based on their time series. It then assigns to each voxel an
initial centrality value that is computed as the sum of all cor-
relation coefficients that exist between that voxel and all other
voxels (a value equivalent to degree centrality). Subsequently,
ECM updates the centrality value in each voxel iteratively,
each time by a weighted sum of its correlation coefficients
with other voxels, using weights that correspond to each
paired voxel’s centrality value from the previous iteration.
The iterations repeat until the values stabilize and there is no
further change from one iteration to the next. Importantly, we
limited the similarity matrix to positive correlations between
grey matter voxels, similarly to our previous Alzheimer’s dis-
ease study with EC (Skouras et al., 2019a). EC values were
Gaussianized voxel-wise across all subjects to enable second-
level parametric inference, using a general transformation de-
signed to optimize the reliability of arbitrary distributions
(Albada and Robinson, 2007). The resulting whole-brain
images entered second level statistical modelling and voxel-
wise multiple regression analyses (see ‘Statistical analysis’
section).

Statistical analysis

For standard type I and II error rates (� = 0.05, b = 0.20), a
priori computations of required sample size were performed
using statistical power estimation software (G�Power v 3.1;
RRID: SCR_013726; Faul et al., 2007, 2009). The computa-
tions suggested that to enable sufficient statistical power for
effects of medium size (f2 4 0.15), using multiple regression
with up to seven predictor variables, a minimum sample size of
43 subjects would be required. Pearson’s r was used as a
metric of similarity in first-level general linear model (GLM)
to quantify neurofeedback performance per participant. A
linear vector coding continuous downregulation, as the target
performance for neurofeedback, was compared to neurofeed-
back moment-to-moment regulation, measured by the re-
aligned average CA1 time series, to produce a measure of
neurofeedback performance for each participant similar to a
previous study (Skouras and Scharnowski, 2019). First, we
investigated whether the unique variance associated with CSF
amyloid-b42 levels was reflected in EC during the neurofeed-
back task. For consistency, CSF amyloid-b42 values were mul-
tiplied by –1 during modelling, to align results and colour
maps with the direction of the pathophysiological continuum
of Alzheimer’s disease. CSF amyloid-b42 values were orthogo-
nalized to potential confounding variables; specifically sex,
age, number of APOE e4 alleles, hippocampal volume, cogni-
tive reserve and neurofeedback performance. This resulted in
an orthogonal second-level design matrix that was used for
GLM of the unique effect of amyloid-b42 on EC during VR
neurofeedback. The resulting whole-brain z-map was corrected
for multiple comparisons using 10 000 iterations of Monte
Carlo simulations, with a pre-threshold of z 4 2.326 (P 5
0.01) and a corrected significance level of P 5 0.05.
Similarly, we investigated for a possible correlation between
p-tau and EC, controlling for the same confounding variables.

Finally, we investigated the effect of healthy ageing on EC
during VR neurofeedback, by orthogonalizing age to all po-
tential confounding factors, including the CSF p-tau by amyl-
oid-b42 ratio (Maddalena et al., 2003). All second-level
neuroimaging analyses featured data from the entire sample.
All scale variables were normalized prior to orthogonalization
via the recursive Gram-Schmidt orthogonalization of SPM12
(SPM, RRID: SCR_007037). For quality control, we confirmed
that each variable of interest was completely orthogonal to all
covariates in its respective design matrix, as well as to all ori-
ginal vector data, while remaining in high correlation with its
own original vector. This ensured investigating meaningful ob-
servations and effects due to the unique variance in each vari-
able of interest.

Code and data availability

The VR environment and the analysis software developed for
the experiment, are publicly available as open-source software
via the ‘VR_multipurpose_v1.0’ and the ‘HippDownReg_exp1’
repositories (GitHub; RRID: SCR_002630), respectively. Data
used can been made available to researchers for non-commer-
cial purposes, following agreement and approval by the
Barcelonabeta Brain Research Center’s Data and Publications
Committee.

Results

Amyloid-b42

Controlling for the effects of age, sex, number of APOE e4
alleles, hippocampal volume, cognitive reserve and neuro-

feedback performance, CSF amyloid-b42 levels showed a

significant positive correlation with EC in the ACC

[Brodmann area (BA)24, BA32] and primary motor

cortex (BA4) (Fig. 2 and Table 3). Note that amyloid-b42

levels in CSF are inversely proportional to the extent of

amyloid-b plaque accumulation in the brain (Strozyk

et al., 2003; Grothe et al., 2017); i.e. abnormal amyloid-

b42 biomarkers were related to low EC in the ACC and

BA4.

Phosphorylated-tau

Controlling for the effects of age, sex, number of APOE e4
alleles, hippocampal volume, cognitive reserve and neuro-

feedback performance, p-tau levels in CSF showed a signifi-

cant positive correlation with EC in the ACC (BA32, BA10)

ventral striatum (caudate, nucleus accumbens, putamen)

and left primary somatosensory cortex (BA2). CSF p-tau

levels, also showed a significant negative correlation with

EC in the posterior cingulate cortex, precuneus, cuneus and

left frontal pole (BA9) (Fig. 3 and Table 3).

Healthy ageing

Controlling for the effects of sex, number of APOE e4
alleles, hippocampal volume, cognitive reserve,
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neurofeedback performance and the CSF p-tau by amyloid-

b42 ratio (Maddalena et al., 2003), age presented a signifi-

cant negative correlation with EC in the midcingulate

cortex, insula, primary somatosensory cortex (BA2) and

inferior parietal lobule (BA40). Age also presented a signifi-

cant positive correlation with EC in the inferior temporal

gyri (Fig. 4 and Table 3).

Discussion
Adding to our knowledge, this is the first real-time neuro-

feedback study using CSF biomarker data. The results in

cognitively unimpaired participants at risk for Alzheimer’s

disease corroborate that differences of EC in the cingulate

cortex play an important role in the pathophysiological

continuum of Alzheimer’s disease and show for the first

time that such differences may begin at a very early patho-

physiological stage. The latter finding suggests that hippo-

campal self-regulation tasks, enabling functional

connectomic analyses, can be of benefit in revealing infor-

mation of clinical relevance to Alzheimer’s disease

progression.

During hippocampal downregulation, the decreased EC

in the ACC and primary motor cortex, which is associated

with abnormally decreased CSF amyloid-b42 levels and, by

extension, to increased amyloid-b plaque deposition in the

brain, stands out as a potential neural correlate of elevated

amyloid deposition, particularly because the ACC is among

the first regions where amyloid deposition can be detected

with PET imaging (Grothe et al., 2017). Because of the

characteristics of our sample (Tables 1 and 2), these find-

ings represent early pathophysiological alterations, without

objectively measurable impact on overall memory perform-

ance, that relate to the brain network involved in the regu-

lation of hippocampal hyperactivity. They suggest that in

subjects with abnormal amyloid-b42 deposition, the ACC is

less influential in regulating hippocampal CA1 (adjusted for

risk factors and task performance). According to current

models, the ACC, together with the anterior insula, as

well as parts of the prefrontal cortex, parietal lobule, ven-

tral striatum and thalamus, comprise the brain network

that is primarily responsible for learning to voluntarily

regulate other brain areas through neurofeedback training

(Sitaram et al., 2017). The perspective provide a mechan-

istic explanation for the reason most of these areas, specif-

ically, are engaged by the present VR neurofeedback

paradigm, leading to enhanced sensitivity in relation to

early alterations of their connectivity and systemic network

function.

With elevated CSF p-tau levels, EC decreases in the pre-

frontal cortex and the posterior cingulate cortex, while EC

increases in the ACC and ventral striatum; i.e. during early

stages, amyloid-b42 accumulation in the brain and tau

Figure 2 Correlation between eigenvector centrality during hippocampal downregulation and amyloid-b deposition. The effects

of age, sex, number of APOE e4 alleles, hippocampal volume, cognitive reserve and neurofeedback performance, were modelled and controlled

(z42.326, P50.05 whole-brain corrected, 95% confidence interval). Note that CSF amyloid-b42 levels are inversely proportional to the extent of

amyloid-b plaque deposition in the brain.
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phosphorylation seem to have opposite effects on EC in the

ACC. The ACC is also involved in the brain signature of

cognitive resilience, which is related to its metabolic cap-

acity (Arenaza-Urquijo et al., 2019). The possibility of EC

in the ACC initially decreasing and later on increasing, in

early response to the subsequent steps of a pathophysio-

logical cascade, resembles the concurrent pattern of default

mode network (DMN) connectivity, which increases pro-

portionally to CSF amyloid-b42 levels within the range of

normal amyloid values, but decreases proportionally to

CSF amyloid-b42 levels within the elevated range of abnor-

mal amyloid accumulation (Palmqvist et al., 2017). This is

supported by the decrease of EC in the posterior cingulate

cortex/precuneus/cuneus that comprises the main DMN

hub (Smith et al., 2009; Andrews-Hanna et al., 2010;

Spreng and Grady, 2010). Moreover, recent evidence sug-

gests that baseline EC in the posterior cingulate cortex/pre-

cuneus region is predictive of first-session DMN

neurofeedback regulation learning (Skouras and

Scharnowski, 2019). Overall, the EC differences associated

with increased CSF p-tau levels and by extension to the

formation of neurofibrillary tangles in the brain, resemble

results found in advanced patients with Alzheimer’s disease

with dementia, in the ACC and occipital cortex

(Binnewijzend et al., 2014). In this context, the present re-

sults corroborate the most relevant literature and support

shifting the timeframe for the detection of aberrant func-

tional alterations, earlier than previously evidenced, to the

presymptomatic stage of Alzheimer’s disease. Of particular

importance, the present findings suggest that aberrant EC

initially precedes neurodegeneration, rather than resulting

from it. This is supported by complementary evidence

showing minimal overlap between the ACC cluster and re-

gions with grey matter reductions in patients with

Alzheimer’s disease (Binnewijzend et al., 2014).

Left BA8, the cluster presenting decreased EC in the left

prefrontal cortex, is one of the main loci of autobiograph-

ical memory (Janata, 2009) and appears to be suitable as

an accessible target region for non-invasive neurostimula-

tion intervention studies (Reinhart and Nguyen, 2019).

Following the interpretational framework proposed by

recent work with resting-state EC and Alzheimer’s disease

CSF biomarkers (Skouras et al., 2019a), given the involve-

ment of the ACC, PFC and ventral striatum in the neuro-

feedback learning network (Sitaram et al., 2017), it is

feasible that the decreasing EC of the PFC is being com-

pensated by increasing EC in the ACC and ventral stri-

atum; the latter of which is affected by amyloid

deposition only at a relatively advanced stage (Grothe

et al., 2017). Considering the crucial roles of the hippocam-

pus, ventral striatum and cingulate in affective processing

(Dalgleish, 2004), these findings support proposing that

Table 3 Results of ECM in relation to CSF biomarkers and age, corrected for whole-brain multiple comparisons

(P50.05)

Brain regions MNI coordinates, x y z Cluster size, mm3 z-value, max (mean)

Amyloid-b correlation with EC during CA1 downregulation

ACC, BA24, BA32 3 24 28 405 –3.34 (–2.65)

L BA4 –21 –27 70 405 –2.73 (–2.49)

R BA4 18 –33 61 594 –2.91 (–2.56)

P-tau correlation with EC during CA1 downregulation

ACC, BA32 (BA10) 12 42 13 513 3.31 ( 2.66)

R Caudate, NAc, Putamen 15 21 –2 513 3.53 ( 2.86)

L Caudate, NAc, Putamen –12 18 –5 756 3.84 ( 2.87)

L BA2 –57 –24 43 297 3.54 ( 2.79)

PCC, PCu, R Cu 21 –66 22 1674 –3.36 (–2.69)

L Frontal pole, BA9 –27 51 43 297 –4.00 (–2.68)

Age correlation with EC during CA1 downregulation

R ITG 57 –54 –23 1539 4.62 (3.01)

R ITG 57 –21 –32 837 3.94 (2.83)

L ITG –63 –45 –20 999 3.38 (2.77)

L ITG –57 –18 –29 459 2.98 (2.65)

MCC, BA24, BA31 –6 –21 43 1593 –4.10 (–2.94)

R BA40, BA2 57 –24 37 2565 –4.26 (–2.83)

L BA40, BA2 –54 –30 28 675 –3.92 (–2.89)

R Insula, BA13 42 6 –5 297 –3.15 (–2.75)

L Insula, BA13 –36 3 –2 648 –3.35 (–2.60)

The fourth column indicates the maximal z-value of voxels within a cluster (with the mean z-value of all voxels within a cluster in parentheses). CSF amyloid-b42 and p-tau levels were

orthogonalized to age, sex, number of APOE e4 alleles, cognitive reserve, brain reserve and hippocampal downregulation performance. For consistency, CSF amyloid-b42 values were

multiplied by –1 during modelling, to align results and colour maps with the direction of the pathophysiological continuum of Alzheimer’s disease. Age was orthogonalized to the CSF

p-tau by amyloid-b42 ratio, sex, number of APOE e4 alleles, cognitive reserve, brain reserve and hippocampal downregulation performance. BA = Brodmann area; Cu = cuneus; L =

left; MCC = midcingulate cortex; MNI = Montreal Neurological Institute; NAc = nucleus accumbens; PCC = posterior cingulate cortex; PCu = precuneus; p-tau = phosphorylated

tau; R = right.
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some of the earliest effects along the pathophysiological

continuum of Alzheimer’s disease are related to dysfunc-

tions of affective processing, similar to almost all neuro-

psychiatric pathologies (Connan et al., 2003; Leppänen,

2006; Hoekert et al., 2007; Mannie et al., 2007; Kang

et al., 2012). Additionally, in a mouse model of

Alzheimer’s disease, selective neurodegeneration in the ven-

tral tegmental area (VTA) at pre-plaque stages, resulted in

lower dopamine outflow in the hippocampus and nucleus

accumbens and correlated with impairments of synaptic

plasticity in CA1, as well as memory deficits and dysfunc-

tion of reward processing (Nobili et al., 2017). The VTA is

particularly responsive to neurofeedback training

(Macinnes et al., 2016) and outgoing fibres from the

VTA connect directly to the hippocampus (Gasbarri

et al., 1994; Penner and Mizumori, 2012). Thereby, it is

also feasible that the increased EC in the dopaminergic

ventral striatum compensates for early aberrancies in

VTA function that are undetectable with 3 T whole-brain

functional MRI. In addition, a contemporary model pro-

poses that the hippocampus, the prefrontal cortex and the

VTA, form the most crucial components of the long-term

memory network (Penner and Mizumori, 2012).

As hypothesized, during hippocampal downregulation,

cognitively unimpaired subjects with elevated CSF p-tau

levels, exhibit a similar increase in EC, as the one present

during resting state in patients with Alzheimer’s disease

(Binnewijzend et al., 2014), despite important improve-

ments in normalization methods across studies (Avants

et al., 2008; Klein et al., 2009). This corroborates a

Figure 3 Correlation between eigenvector centrality during hippocampal downregulation and CSF p-tau levels. The effects of

age, sex, number of APOE e4 alleles, hippocampal volume, cognitive reserve and neurofeedback performance were modelled and controlled

(z4 2.326, P5 0.05 whole-brain corrected, 95% confidence interval). Note that CSF p-tau levels are proportional to the presence of neuro-

fibrillary tangles in the brain. These results suggest that Alzheimer’s disease-characteristic EC differences in the ACC may occur earlier than

previously believed.
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replicable resting-state finding that was previously only

measurable when investigating across control subjects

and patients with dementia due to Alzheimer’s disease

(Binnewijzend et al., 2014; Skouras et al., 2019a). This

observation suggests that the developed VR neurofeed-

back task may indeed be hypersensitive to preclinical al-

terations in brain function. In contrast, an important

effect of healthy ageing is decreased EC in the cingulate

cortex, during hippocampal downregulation. This corrob-

orates previous evidence from task-free functional MRI,

showing that healthy older adults (mean age = 63, SD =

7) present significantly lower EC in the cingulate than

healthy younger adults (mean age = 24, SD = 4;

Antonenko et al., 2018). Overall, the effect of healthy

ageing on EC across the cingulate cortex (Fig. 4) is op-

posite to that of elevated CSF p-tau levels (Fig. 3), clinical

symptoms (Binnewijzend et al., 2014), and Alzheimer’s

disease progression (Skouras et al., 2019a). Thereby, cur-

rent evidence suggests that the cingulate decreases in cen-

trality in healthy ageing and increases in centrality in

Alzheimer’s disease, with noticeable differences even in

a very early phase. The effect of healthy ageing on EC

in the inferior temporal gyrus, points to the possibility

that in healthy ageing, increasing resources are being

devoted to semantic memory (Binney et al., 2010). To

our knowledge, there is no previous evidence of EC cor-

relation with age in the inferior temporal gyrus; however,

no previous ECM ageing study controlled for the effect of

any CSF biomarkers. Moreover, recent evidence suggests

cognitive decline may emerge from functional decoupling

within a neural circuit composed of temporal and frontal

regions, which is integral to monitoring real-world

Figure 4 Correlation between eigenvector centrality during hippocampal downregulation and age. The effects of sex, number of

APOE e4 alleles, hippocampal volume, cognitive reserve, neurofeedback performance, CSF amyloid-b42 and p-tau levels were modelled and

controlled (z42.326, P50.05 whole-brain corrected, 95% confidence interval). In relation to Fig. 3, these results show that EC in the cingulate

and BA2 present the opposite patterns in healthy ageing.
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information and storing it into memory (Reinhart and

Nguyen, 2019).

In general, the EC findings could be different using a

hippocampal upregulation task, because upregulation and

downregulation learning can be negatively correlated

(Skouras and Scharnowski, 2019). It is important to deter-

mine the specificity of the present findings to hippocampal

downregulation tasks and to replicate them in longitudinal

studies that include both downregulation and upregulation,

as well as sham neurofeedback conditions. It is equally

important to validate the tentative interpretations offered

here, using the same self-regulation paradigm in studies

involving patients with mild cognitive impairment. With

these aims, we have made the developed VR environment

publicly available as open-source software, to enable repli-

cation studies and multicentre investigations within a stand-

ard framework (see ‘Code and data availability’ section).

The latter might enable the aggregation of sufficient data-

sets to derive accurate functional neuroimaging-based diag-

nostic models using machine learning algorithms.

As noted, four participants had a subjective impression

of cognitive or memory decline, while their cognition was

preserved based on objective cognitive testing. These par-

ticipants did not present a consistently distinctive profile

with regards to cognitive scores, hippocampal volume,

genetics or CSF biomarkers. One participant was an

APOE e4 heterozygote with normal biomarkers, one was

an APOE e4 non-carrier with abnormal amyloid-b42 level

but normal p-tau level, one was an APOE e4 non-carrier

with normal amyloid-b42 level but abnormal p-tau level,

and one was an APOE e4 heterozygote with abnormal

amyloid-b42 level and abnormal p-tau level. However, all

four participants were female, with a relatively high level

of education or a relatively high hippocampal downregula-

tion neurofeedback score. Descriptive statistics for these

four participants, in relation to control and preclinical

Alzheimer’s disease participants are provided in

Supplementary Table 2. Based on CSF data from a larger

sample (n = 261) from the ALFA cohort, a subjective im-

pression of cognitive or memory decline is relatively unin-

formative in the context of the present study. Therefore,

we have considered the influence of the four described

participants identically to that of the other participants,

as ordinary instances within the biological and cognitive

variability that exists in the healthy to preclinical range of

the Alzheimer’s disease continuum.

We have demonstrated that amyloid deposition results in

aberrancy with regards to the functional brain network

used to downregulate hippocampal subfield CA1. Further,

significant differences in EC associated with CSF bio-

markers in clinical Alzheimer’s disease, are also measurable

in presymptomatic stages. Moreover, we provide a stand-

ard paradigm to replicate and extend this work on a global

level. This opens new avenues for further research applica-

tions, which quantify and monitor disease progression, by

identifying early alterations in the self-regulation of brain

function, with potential for non-invasive prognostic

screening.
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JE, et al. Functional connectivity indicates differential roles for the

intraparietal sulcus and the superior parietal lobule in multiple

object tracking. Neuroimage 2015; 123: 129–37.
Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL.

Functional-anatomic fractionation of the brain’s default network.

Neuron 2010; 65: 550–62.
Antonenko D, Nierhaus T, Meinzer M, Prehn K, Thielscher A,

Ittermann B, et al. Age-dependent effects of brain stimulation on

network centrality. Neuroimage 2018; 176: 71–82.
Arenaza-Urquijo EM, Przybelski SA, Lesnick TL, Graff-Radford J,

Machulda MM, Knopman DS, et al. The metabolic brain signature

of cognitive resilience in the 80 + : beyond Alzheimer pathologies.

Brain 2019; 142: 1134–47.

Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeo-

morphic image registration with cross-correlation: evaluating auto-

mated labeling of elderly and neurodegenerative brain. Med Image

Anal 2008; 12: 26–41.

Avants BB, Tustison N, Song G. Advanced normalization tools

(ANTS). Insight 2009; 2: 1–35.

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A re-

producible evaluation of ANTs similarity metric performance in

brain image registration. Neuroimage 2011; 54: 2033–44.

Barulli D, Stern Y. Efficiency, capacity, compensation, maintenance,

plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci

2013; 17: 502–9.

Binnewijzend M, Adriaanse S, Flier W, Teunissen C, Munck J, Stam

C, et al. Brain network alterations in Alzheimer’s disease measured

by Eigenvector centrality in fMRI are related to cognition and CSF

biomarkers. Hum Brain Mapp 2014; 35: 2383–93.
Binney RJ, Embleton KV, Jefferies E, Parker GJM, Lambon R,

Matthew A. The ventral and inferolateral aspects of the anterior

temporal lobe are crucial in semantic memory: evidence from a

novel direct comparison of distortion-corrected fMRI, rTMS, and

semantic dementia. Cereb Cortex 2010; 20: 2728–38.

Blesa R, Pujol M, Aguilar M, Santacruz P, Bertran-Serra I, Hernandez

G, et al. Clinical validity of the ‘mini-mental state’ for Spanish

speaking communities. Neuropsychologia 2001; 39: 1150–7.

Bonacich P. Technique for analyzing overlapping memberships. Sociol

Methodol 1972; 4: 176–85.

Borgatti SP. Centrality and network flow. Soc Netw 2005; 27: 55–71.
Cavedo E, Galluzzi S, Pievani M, Boccardi M, Frisoni GB. Norms for

imaging markers of brain reserve. J Alzheimers Dis 2012; 31: 623–33.
Chirico A, Cipresso P, Yaden DB, Biassoni F, Riva G, Gaggioli A.

Effectiveness of immersive videos in inducing awe: an experimental

study. Sci Rep 2017; 7: 1218.
Connan F, Campbell I, Katzman M, Lightman S, Treasure J. A neu-

rodevelopmental model for anorexia nervosa. Physiol Behav 2003;

79: 13–24.
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