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Abstract
Non-Hodgkin B-cell lymphomas (B-NHLs) are a highly heterogeneous group of mature B-cell malignancies. Their
classification thus requires skillful evaluation by expert hematopathologists, but the risk of error remains higher in
these tumors than in many other areas of pathology. To facilitate diagnosis, we have thus developed a gene
expression assay able to discriminate the seven most frequent B-cell NHL categories. This assay relies on the
combination of ligation-dependent RT-PCR and next-generation sequencing, and addresses the expression of more
than 130 genetic markers. It was designed to retrieve the main gene expression signatures of B-NHL cells and their
microenvironment. The classification is handled by a random forest algorithm which we trained and validated on a
large cohort of more than 400 annotated cases of different histology. Its clinical relevance was verified through its
capacity to prevent important misclassification in low grade lymphomas and to retrieve clinically important
characteristics in high grade lymphomas including the cell-of-origin signatures and the MYC and BCL2 expression
levels. This accurate pan-B-NHL predictor, which allows a systematic evaluation of numerous diagnostic and
prognostic markers, could thus be proposed as a complement to conventional histology to guide the management of
patients and facilitate their stratification into clinical trials.

Introduction
Non-Hodgkin B-cell lymphomas (B-NHLs) are a group of

mature B-cell malignancies that tend to mimic the various
normal stages of B cells differentiation. These tumors show a
high degree of heterogeneity and their classification requires
skillful histological examination, usually completed by ancil-
lary methods like immunohistochemical studies (IHC),
immunoglobulin clonality assessment, flow cytometry, con-
ventional cytogenetics, fluorescence in situ hybridization or

next-generation DNA sequencing1–4. However, the risk of
error in diagnosis remains higher in these tumors than in
many other areas of pathology, supporting the need for
expert secondary review.
Recently, low throughput quantitative RNA assays have

proven their routine applicability in high grade B-NHLs
classification5–7. These approaches circumvent the com-
plexity of pan-genomic gene expression profiling, which is
hardly applicable in a routine diagnostic setting, by
focusing on limited sets of genes associated to well
defined gene expression signatures. However, these assays
only address a small part of the complexity of B-NHLs,
limiting their application in clinical practice.
Here, to evaluate further the potential of such methods

for lymphoma classification, we have addressed the
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capacity of a middle throughput gene expression signature
to differentiate the seven major histological subtypes of B-
NHLs. To facilitate the interpretation of the data we
purposefully included many markers identified in the
WHO classification of lymphoid tumors for their capacity
to differentiate these pathologies8. We also overcome the
difficulty of multiclass classification by implementing an
artificial intelligence algorithm that we trained and vali-
dated using more than 400 cases annotated by experts
hemato-pathologists. Together, our data illustrate how the
combination of middle throughput gene expression pro-
filing and machine learning could assist pathologists for
the diagnosis of these complex tumors.

Materials and methods
Patients
Five hundred ten B-NHL biopsies were analyzed in this

study, including 325 diffuse large B-cell lymphomas
(DLBCL), 43 primary mediastinal B-cell lymphomas
(PMBL), 55 follicular lymphomas (FL), 31 mantle cell
lymphomas (MCL), 17 small lymphocytic lymphoma
(SLL), 20 nodal or splenic marginal zone lymphomas
(MZL), 11 extranodal marginal zone lymphomas of
mucosa-associated lymphoid tissue (MALT) and 8 lym-
phoplasmacytic lymphomas (LPL). Three hundred sixty-
six patients were diagnosed at a single institution (Centre
Henri Becquerel, Rouen, France). Additional patients
were recruited from the SENIOR (n= 96) (clinicaltrial.
gov=NCT02128061) and RT3 (n= 48) (clinicaltrial.
gov=NCT03104478) clinical trials. Sample list is available
in Supplemental Table 1. All diagnoses were established
according to the 2016 World Health Organization criteria
by a panel of expert pathologists from the LYSA8. For all
patients, from the LYSA clinical trials and from the
Centre Henri Becquerel, written consents were obtained
before analysis of their biopsy samples.

RNA extraction
For CHB biopsies, RNA was extracted from FFPE

samples using the Maxwell 16 system (Promega, Man-
heim, Germany) or, when available, from frozen tissues
using the RNA NOW kit (Biogentex, Seabrook, TX). For
the samples from the RT3 and SENIOR trials, RNAs were
extracted from FFPE biopsies using the Siemens TPS and
Versant reagents kit (Siemens Health Care Diagnostics,
Erlangen, Germany).

Gene selection
A panel of 137 gene expression markers was designed

for this study, to address the expression of B-cell differ-
entiation markers, therapeutic targets, and prognostic
markers. We also included T cell and macrophage mar-
kers, along with genes involved in the anti-tumor
immune response to analyze the contribution of the

microenvironment. For each marker, a pair of RT-MLPA
probes was designed across one exon-exon junction to
avoid unspecific amplification of genomic DNA. Two
pairs were designed for AICDA, BCL6, MYC, and BCL2
to increase the accuracy of the assay. Additional probes
were designed to evaluate the expression of various IGH
transcripts, to detect some recurrent somatic point
mutations, and to evaluate some virus infection status
(Table 1).

Assay design and data processing
The RT-MLPSeq assay combines RT-MLPA and next-

generation sequencing (NGS), as previously described9.
Briefly, total RNAs, extracted from fresh or FFPE biopsies
are quantified using a Qubit fluorometer (Thermo Fisher
Scientific, Waltham, Massachusetts). Samples, with con-
centrations below 20 ng/µl, are excluded. Next,
50–200 ng RNA are converted into cDNA by reverse
transcription using a M-MLV Reverse transcriptase and
random hexamers to avoid 3’ end bias (Invitrogen,
Carlsbad, CA). cDNA are incubated 1 h at 60 °C with a
mix of ligation dependent PCR oligonucleotides probes,
including universal adaptor sequences and random
sequences of 7 nucleotides as unique molecular identi-
fiers (UMI) in 1× SALSA MLPA buffer (MRC Holland,
Amsterdam, the Netherlands), ligated using the ther-
mostable SALSA DNA ligase (MRC Holland, Amster-
dam, the Netherlands), and amplified by PCR using
barcoded primers containing P5 and P7 adaptor
sequences with the Q5 hotstart high fidelity master mix
(NEB, Ipswich, MA). Amplification products are next
purified using AMPure XP beads (Beckman Coulter,
Brea, CA) and analyzed using a MiSeq sequencer (Illu-
mina, San Diego, CA). Sequencing reads are de-
multiplexed using the index sequences introduced dur-
ing PCR amplification, aligned with the sequences of the
probes and counted. All results are normalized according
to the UMI sequences to avoid PCR amplification bias.
Results are considered interpretable when at least 5000
different UMI (corresponding to the sum of all the UMI,
for all the markers) are detected, allowing the evaluation
of an average range of 1–40 for each marker.

Statistical analysis
Correlations between immunohistochemical stainings

and gene expression levels were evaluated using the Wil-
coxon rank-sum test (two-sided). Differences in patient
characteristics were evaluated using the χ2 or Fisher’s exact
tests (two-sided) according to class size. Principal com-
ponents analyses (PCAs) were built using the PCA func-
tion of FactomineR package in R software (http://www.r-
project.org/). Genes that were significantly up- or down-
regulated between different conditions were analyzed
using Welch’s unequal variances t-test procedure and
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visualized in volcano plots, plotting the significance versus
log2-fold change on the y and x axes, respectively. Fold
changes were computed as the base 2 logarithm of the
mean change in the expression level of each gene between
the two conditions. Genes with an absolute log2-fold
change >1 and a significant FDR (<0.05) were plotted.
Graphical representations were created using R software.

Training of the machine learning algorithm
The training set was constructed using annotated B-NHL

samples with one of the 7 following B-NHL subtypes: ABC
DLBCL, GCB DLBCL, PMBL, FL, MCL, SLL, and MZL
(regrouping MZL, MALT, and LPL). The random forest
algorithm was next trained using the scikit-learn library for
the Python programming language (Python Software

Table 1 Markers included in the RT-MIS assay.

ABC markers GCB markers PMBL markers Double Expressors Other markers
TACI CD10 IL4I1 BCL2 #1 (exon1-2) EBER1

FOXP1 LMO2 CD23 BCL2 #2 (exon2-3) HTLV1
LIMD1 ASB13 CD30 MYC #1 (exon1-2) KI67

IRF4 NEK6 MAL MYC #2 (exon2-3) CD68
PIM2 MYBL1 CD95 CD163

CCDC50 MAML3 CD71 T cell CCND1
CREB3L2 ITPKB FGFR1 TCRα CCND2
CYB5R2 SERPINA9 JAK2 TCR β ZAP70
SH3BP5 S1PR2 TRAF1 TCRγ ANXA1
RAB7L1 BCL6#1 (exon1-2) STAT6 TCR δ CRBN

BCL6#2 (exon3-4) PD-L1 CD3 STAT6
PD-L2 CD5 APRIL

CD4 BAFF
B cell Ig genes Gene fusions CD8 BCMA
CD19 Iα-Cα BCL6-C α TBET CCR4

MS4A1 (CD20) Iα-Cε BCL6-C ε INF γ CCR7
CD22 Iα-Cγ BCL6-C γ GRB CD56
CD27 Iα-Cμ BCL6-C μ PRF CD70
CD38 Iε-Cα Iγ-BCL6 CD45RO DUSP22

CD138 Iε-Cε Iε-BCL6 CXCR5 MEF2B
CD86 Iε-Cγ Iα-BCL6 CXCL13 PRDM1
CD80 Iε-Cμ Iμ-BCL6 GATA3 XBP1
CTLA4 Iγ-Cα JH-BCL6 CD28 CARD11
B2M Iγ-Cε ICOS TCL1A

Iγ-Cγ FOXP3 BANK
CSR / SHM Iγ-Cμ Muta�ons PD1

AID#1 (exon2-3) IGHD XPO1 E571K LAG3
AID#2 (exon4-5) IGHM MYD88 L265P ALK

CD40 Iμ-Cα BRAF V600E
CD40L#1 (exon2-3) Iμ-Cε IDH2 R172K
CD40L#2 (exon4-5) Iμ-Cγ RHOA G17V

Iμ-Cμ MYD88 (exon3-4)
JH-Cα XPOWT
JH-Cε
JH-Cγ
JH-Cμ

All 137 markers included in the assay are listed and bundled by groups. The panel includes B cell genes, Immunoglobulin genes, T cell genes, detection of recurrent
somatic mutations, double expressors genes, ABC discriminating genes are labeled in blue, GCB genes in orange, PMBL genes in red and various other genes.
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Fig. 1 (See legend on next page.)
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Foundation, https://www.python.org/) using standard para-
meters (Gini index attribute selection criteria; max_depth,
and min_samples_split set to 20, and 4, respectively). The
obtained prediction model, which relies on 5000 different
decision trees outputting the most likely B-NHL subtype was
next applied to the independent validation sample set.

Survival analyses
The survival of the 104 patients with DLBCL who were

treated with a combination of rituximab and che-
motherapy between 2000 and 2017 at the Centre Henri
Becquerel was analyzed considering a risk of 5% as a
significance threshold. Overall survival (OS) was com-
puted from the day of treatment to death from any cause
or right-censored at 5 years or the last follow-up.
Progression-free survival (PFS) was computed from the
day of treatment to disease progression, relapse, or death
from any cause, or right-censored at 5 years or the last
follow-up. Survival rates were estimated with the
Kaplan–Meier method that provides 95% CIs, and sig-
nificant differences between groups were assessed using
the log-rank test. Different thresholds were tested to
determine the ones that led to the most significant seg-
mentation of patients and to evaluate the prognostic value
of MYC, BCL2, and other markers. Those thresholds were
subsequently combined to define the MYC+/BCL2+
double expression group. All analyses were performed
using the Python survival package version 2.37.4.

Results
Technical validation
For validation, we first compared our method, which

evaluate the expression of 137 genetic markers, with the
Nanostring Lymph2Cx assay. As shown in Supplemental
Fig. 1, linear correlations were observed for the 15 genes
evaluated using the two methods applied to the 96 FFPE
biopsy samples from the SENIOR clinical trial. Sig-
nificant correlations with immunochemical staining was
also obtained for the 48 DLBCL samples from the RT3
clinical trial (CD10, BCL6, MUM1, MYC, BCL2, and

Ki67, reviewed by a panel of expert pathologists from
the LYSA) (Supplemental Fig. 2), indicating excellent
technical concordances.

DLBCL COO assignment
We next addressed the ability of the panel of markers to

discriminate the different subtypes of B-cell NHLs. We
first tested capacity of the assay to recapitulate the COO
classification of DLBCLs. As shown in Fig. 1, an unsu-
pervised principal component analysis (PCA) and differ-
ential gene expression analysis (DGEA, volcano plot) of
the 125 ABC and 127 GCB DLBCL cases from our cohort
efficiently distinguished these two lymphoma subtypes
(Fig. 1a), retrieving the expected gene expression sig-
natures (Fig. 1b, Supplemental Table 2–3 and Supple-
mental Fig. 3). Interestingly, this analysis also identified a
COO-independent T cell component (CD28, BAFF, CD3,
GATA3, CD8 and PRF) that probably reflects various
levels of T cell infiltration in these tumors.
We next tested the capacity of the assay to discriminate

PMBLs from other DLBCLs. The first components of the
PMBL vs ABC and PMBL vs GCB PCA maps retrieved
the three expected signatures (Fig. 1c, e). As shown in
Fig. 1g, our results confirmed that the CD30 and CD23
markers, which are often evaluated using immunochem-
istry in the clinics for diagnostic purposes, were over-
expressed at the RNA level in these samples. Our data
were also consistent with the high expression of PDL1,
PDL2, and JAK2 and the downregulation of BANK,
CARD11, and TCL1A reported in these tumors by
Rosenwald et al.10.

DLBCL/Small cell lymphoma classification
We next addressed the classification ability of the markers

expressed by cells in the microenvironment. We first
compared GCB DLBCLs and FLs, two lymphomas that
develop from germinal center B-cells11. As shown in Fig. 2a,
the first dimensions of the PCA map identified three major
components. The first, which is associated with GCB
DLBCLs, essentially regrouped GCB markers (CD10,

(see figure on previous page)
Fig. 1 Transcriptomic expression analysis of diffuse large B-cell lymphoma. a Two-dimensional principal component analysis map computed
on activated B-cell (ABC) DLBCL (blue) and germinal center B-cell (GCB) DLBCL (gold) cases for the 137 markers included in the panel. The expression
of the 40 most discriminatory markers is plotted. b Volcano plots computed on ABC DLBCL (blue) and GCB DLBCL (gold) cases for the 137 markers
included in the panel showing up- or downregulated genes between these 2 conditions (absolute log2-fold change >1 and a significant FDR
(<0.05)). c Two-dimensional principal component analysis map computed on PMBL (red) and ABC DLBCL (blue) cases for the 137 markers included in
the panel. The expression of the 40 most discriminatory markers is plotted. d Volcano plots computed on PMBL (red) and ABC DLBCL (blue) cases for
the 137 markers included in the panel showing up- or downregulation between these 2 conditions (absolute log2-fold change >1 and a significant
FDR (<0.05)). e Two-dimensional principal component analysis map computed on PMBL (red) and GCB DLBCL (gold) cases for the 137 markers
included in the panel. The expression of the 40 most discriminatory markers is plotted. f Volcano plots computed on PMBL (red) and GCB DLBCL
(gold) cases for the 137 markers included in the panel showing up- or downregulation between these two conditions (absolute log2-fold change >1
and a significant FDR (<0.05)). g Differential expression of a selection of markers of interest that is useful for distinguishing PMBL from ABC and GCB
DLBCL. ****p < 10−4 and NS: not significant according to the Wilcoxon test.
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MYBL1, NEK6, and BCL6), probably reflecting the higher
percentage of malignant cells in these tumors. As shown in
Fig. 2b, c, GCB DLBCLs were also characterized by the
expression of the KI67 proliferation marker, the tumor-
associated macrophage (TAM) marker CD68, and cytotoxic
and immune escape markers (GRB, PD-L1, and PD-L2). As
expected, the second component of this PCA, which is
associated with FLs, regrouped many T cell markers (CD3,
CD5, CD28, CTLA4, GATA3, and CCR4)12. FLs also sig-
nificantly overexpressed the Tfh markers ICOS, CD40L, and
CXCL13, as well as CD23, that can be expressed either by
tumoral cells or by follicular dendritic cells.
As shown in Fig. 2d–f, the same PCA and DGEA

methods applied to the whole cohort of cases revealed
that the high expression of KI67, germinal center-
associated genes (LMO2, BCL6, MAML3, S1PR2, and
CD40), the CD68 and CD163 TAM markers, the GRZB
and PRF cytotoxic markers, and the PD-L1 and PD-L2
immune checkpoints inhibitors were a common char-
acteristic of aggressive lymphomas, regardless of the COO
classification. This observation probably reflects the high
turnover of lymphoma cells within these tumors, together
with the presence of scavenger cells and the existence of
an active anti-tumor immune response13,14. Conversely,
low-grade lymphoma were characterized by the expres-
sion of T cell markers (CD3, CD5, the beta chain of the
TCR, ICOS, and CD40L) and a follicular dendritic cell
marker (CD23), probably reflecting the crosstalk between
lymphoma cells and their environment for survival and
proliferation12.

Small B-cell lymphoma classification
We next addressed the capacity of the assay to dis-

criminate the different subtypes of small cell B-NHLs. As
shown in Fig. 3a, the first dimensions of the PCA map
restricted to low grade B-NHLs identified two major com-
ponents. The first, which is associated with FLs, regrouped
GCB (BCL6, MYBL1, CD10, and LMO2) and T cells mar-
kers (CD28, ICOS). The second regrouped many activated
B-cell markers (LIMD1, TACI, SH3BP5, CCDC50, IRF4,
and FOXP1), consistent with the late GC or memory B-cell
origin of others small B-cell lymphomas11.

We next addressed the capacity of the assay to retrieve
the main characteristics used in the clinics for the classi-
fication of these tumors (Fig. 3c). The CD5pos, CD23pos,
CD10neg phenotype of SLLs was correctly identified15.
Interestingly, these tumors also expressed CD27, con-
sistent with their mature B-cell origin, JAK2, suggesting
the activation of the JAK/STAT pathway16, and down-
regulated SH3BP5, indicating a possible negative reg-
ulatory effect on Bruton’s tyrosine kinase activity17. In
MCLs, our assay retrieved the expected CCND1high,
CD5high, and BCL2high phenotype, together with the
expected downregulation of CD10 and CD23. Interest-
ingly, TCL1A and CCDC50, both of which are associated
with survival in patients with this pathology18,19, and the
B-cell chemokine receptor CXCR5, which is involved in
dissemination20, were overexpressed in these tumors
compared to other small B-cell NHLs. Finally, the MZL
group showed the expected CD5neg, CD10neg, CD23neg
phenotype, together with high expression of CD138 and
low expression of Ki67.

IGH transcripts participate in the classification of B-NHLs
In addition to their cellular origin and the composition

of their microenvironment, B-cell NHLs also differ in the
configurations of their immunoglobulin genes. As shown
in Fig. 4, MCL and SLL can be distinguished from other
B-NHLs based on the expression of the IGHD gene. Two
groups of tumors can also be defined according to the
expression of the IGHM gene. The first corresponds to
the IGHM-positive tumors with an activated or memory
B-cell origin (most ABC DLBCLs, MCL, MZL, and SLL).
The second corresponds to the tumors of GCB origin
(particularly, GCB DLBCLs and FL), which often undergo
isotype switching, and PMBLs, which usually lack
immunoglobulin expression. Interestingly, our data also
confirmed the existence of a class switch recombination
(CSR) defect in ABC DLBCLs. As previously reported, our
data confirmed that a majority of ABC DLBCLs para-
doxically express the IGHM gene along with AICDA, a
direct activator of immunoglobulin isotype switching21,22.
We evaluated the expression of the immunoglobulin
sterile transcripts required for CSR activation to clarify

(see figure on previous page)
Fig. 2 Differential transcriptomic analysis of diffuse large B-cell lymphoma and small cell lymphoma. a Two-dimensional principal
component analysis map computed on GCB DLBCL (gold) and follicular lymphoma (orange) cases for the 137 markers included in the panel. The
expression of the 40 most discriminatory markers is plotted. b Volcano plots computed on GCB DLBCL (gold) and follicular lymphoma (orange) cases
for the 137 markers included in the panel showing up- or downregulation between these two conditions (absolute log2-fold change >1 and a
significant FDR (<0.05)). c Differential expression of Ki67, the macrophage marker CD68, GRB, immune escape marker PD-L2, and Tfh markers in GCB
DLBCL and FL samples. ****p < 10−4 by the Wilcoxon test. d Two-dimensional principal component analysis map computed on DLBCL (green) and
small cell lymphoma (blue) cases for the 137 markers included in the panel. The expression of the 40 most discriminatory markers is plotted.
e Volcano plots computed on DLBCL (green) and small cell lymphoma (blue) cases for the 137 markers included in the panel showing up- or
downregulation between these two conditions (absolute log2-fold change >1 and a significant FDR (<0.05)). f Differential expression of a selection
of markers involved in proliferation and the immune response between DLBCL and small cell lymphomas. ****p < 10−4 by the Wilcoxon test.
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this issue and observed that the expression of AICDA and
the Iμ-Cμ transcript, which controls the accessibility of
the switch µ region to the CSR machinery, are specifically
desynchronized in these tumors. This Iμ-Cμ transcript is
expressed by a majority of IgM-positive NHLs (SLLs,

MZLs, and MCLs), which do not express AICDA, but is
downregulated in ABC DLBCLs, probably preventing
isotype switching despite of AICDA expression. Surpris-
ingly, we also observed that the Iγ-Cγ sterile transcript is
expressed at a high level in SLL and MCL, two
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nongerminal center-derived lymphomas, and the Iε-Cε
transcript is almost exclusively expressed in FLs con-
stituting one of the most discriminatory markers for this
pathology in our assay.

Development of a random forest pan-B NHL classifier
We next trained a random forest (RF) classifier to

discriminate the 7 principal subtypes of B-cell NHLs.
DLBCLs with an ambiguous classification (inconclusive
cell-of-origin classification by RT-MLPA and/or Nano-
string Lymph2Cx), EBV-positive DLBCLs, and grade 3B
FLs were excluded from the training. The 429 remaining
cases were randomly assigned to a training cohort of 283
cases (two-thirds) and to a validation cohort of 146 cases
(one-third). The training cohort comprised 190 DLBCLs
(76 ABC, 86 GCB and 28 PMBL cases) that were pre-
viously classified by IHC and/or RT-MLPA, 35 FLs
(grade 1–3 A), 21 MCLs, 12 SLLs, and 25 cases in the
MZL category (13 MZLs, 8 MALT lymphomas and 4
LPLs). The validation series comprised the 90 DLBCLs
from the SENIOR trial classified as GCB (41 cases) or
ABC (49 cases) DLBCLs by the Nanostring Lymph2Cx
assay, 15 PMBLs, 12 grade 1–3 A FLs, 10 MCLs, 5 SLLs,
and 14 MZLs (7 MZL, 3 MALT, and 4 LPL). A sche-
matic overview of these cohorts is presented in Sup-
plemental Fig. 4.

The RF algorithm classified all 283 cases of the training
series into the expected subtype. As shown in Fig. 5a, the
distributions of the probabilities that the tumor belonged
to one of the 7 subclasses indicated a very good capacity
of the algorithm to discriminate these lymphomas. The
RF predictor also classified 138/146 (94.5%) of the sam-
ples in the independent validation cohort into the
expected subtype, showing a very good generalization
capacity (Fig. 5b). For the ABC and GCB DLBCLs, the
concordance with the Lymph2Cx assay in the validation
cohort was 94.3%. Our method agreed with the Lym-
pho2Cx assay for 49/49 (100%) ABC DLBCLs and 36/41
(87.8%) GCB DLBCLs. Two cases classified as GCB
DLBCLs by the Lymph2Cx assay were classified as PMBL
by the RF predictor. Further analyses of these two cases
identified genomic mutations compatible with the PMBL
diagnosis, which is not addressed by the Lymph2Cx assay
(B2M, TNFRSF14, SOX11, and CIITA mutations for one
case; STAT6, B2M, CD58, CIITA, and CARD11 mutations
for the other)23. The three other discordant cases were
classified as ABC by the RF predictor, but no COO-
specific mutations were detected in these samples. Nota-
bly, 14/15 PMBLs (93.3%) and 39/41 (95.1%) small cell
lymphomas in the validation cohort were accurately
classified, including all MCLs and SLLs. One MZL was
classified as a FL, probably due to its preeminent GCB

Fig. 4 Analysis of immunoglobulin transcripts in B-NHLs. a Schematic of the regulation of immunoglobulin transcripts. Mature B-cells
constitutively transcribe VDJ, Cµ, and Cδ encoding IgM and IgD. In the presence of specific sets of activation signals, B-cells initiate class switch
recombination through the germline transcription of downstream Cγ, Cα or Cε genes. The expression of sterile transcripts required for class switching
after AICDA-induced genetic instability is also displayed for different subtypes. b Differential expression of the immunoglobulin transcripts IGHM and
IGHD and the expression of AICDA in the global cohort are plotted, showing an overexpression of IGHM in tumor cells from patients with SLL, MZL,
MCL, and ABC DLBCL. c Differential expression of immunoglobulin sterile transcripts required for class switching are plotted, showing a high
expression of Iµ-Cµ transcript in IGHM-positive tumors, for except ABC DLBCL, despite AICDA expression. The sterile transcript Iε-Cε is consistently and
almost exclusively expressed in FL samples.
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signature, and one FL was classified as a GCB DLBCL. For
this patient, who presented with a stage IV lymphoma and
a leukemic presentation, the examination of the gene
expression values showed that the genes of the GCB sig-
nature and BCL2 were highly expressed in the tumor,
suggesting a high tumor/microenvironment ratio and
further pointing to the need for a rigorous initial histo-
logical evaluation for classification. Interestingly, 5 of the
8 FL3B tumors, which we had excluded from the model
building, were classified as DLBCLs by the RF predictor (3
GCB and 2 ABC cases), while 3 were classified as FLs.
Otherwise, 5 of the 6 DLBCLs defined as unclassified by
the Lymph2Cx assay were classified as ABC DLBCLs,
including two samples harboring a CD79B mutation,
which is usually associated with the ABC signature, and
the last case was classified as GCB DLBCL, without COO-
specific mutations detected (ARID1A and CDKN2A).

DLBCL survival analyses
We next focused on the 104 patients with DLBCL who

were treated with a combination of rituximab and che-
motherapy at the Centre Henri Becquerel to further eval-
uate the clinical value of the assay. In this cohort, the ABC/
GCB COO was associated with OS (p= 0.0236), but only a
trend was observed with PFS (p= 0.0699) (Fig. 6a and
Supplemental Fig. 5). As shown in Fig. 6b–d, IPI status,

MYC expression, and BCL2 expression were associated with
poorer PFS and OS. The combination of a high expression
of MYC and BCL2 identified a group of double-positive
cases (24% of patients) with a particularly poor outcome
(PFS, p < 10–4 and OS, p < 10−4) (Fig. 6e). This observation
was confirmed with a multivariable model adjusted for the
IPI score and cell-of-origin classification for both OS (HR,
2.08, 95%CI, 1.34–3.25, p < 5 × 10−3) and PFS (HR, 2.04,
95%CI, 1.35–3.12, p < 5 × 10−3), independent of the IPI (OS
HR, 2.20, 95%CI, 1.41 to 3.41, p < 5 × 10−3; PFS HR, 1.92,
95%CI, 1.27 to 2.89, p < 5 × 10−3) (Table 2). Clinical and
biological characteristics of these patients, presented in
Supplemental Table 4, identified significant correlations
between the MYC/BCL2 double-positive status and higher
age (p= 5 × 10−3), elevated LDH levels (p= 0.04) and ABC
subtype (p < 10−4), in accordance with previous studies24,25.
As shown in Supplemental Fig. 6, the expression of other
genes was also strongly correlated with PFS and OS in this
cohort, including CARD11 (PFS, p < 10−3 and OS, p <
10−4), CREB3L2 (PFS, p < 10−4 and OS, p < 10−4), STAT6
(PFS, p < 10−3 and OS, p < 10−2) and CD30 (PFS, p < 10−2

and OS, p < 10−3).

Discussion
In this study, we developed a robust middle throughput

gene expression assay to classify the seven most frequent
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Fig. 5 Results of the classification of the training and validation cohorts using the random forest algorithm. a Distribution of the random
forest algorithm probabilities that a sample belongs to the expected class is plotted for each subtype in the training (n= 283) cohort, showing a
significantly higher probability in the expected class. b Distribution of the random forest algorithm probabilities in the validation (n= 146) cohort.
c Proportion of cases accurately classified by the random forest algorithm for each B-NHL subtype in the training and validation cohorts. ****p < 10−4

and **p < 0.01 by the Wilcoxon test.
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subtypes of B-cell NHLs defined in the WHO classifica-
tion. Previous studies have shown that these tumors can
be defined according to the gene expression signatures of
the tumoral cells and of their microenvironment, but a
method able to differentiate such a variety of lymphoma
in a single experiment is not yet available.
This assay relies on the evaluation of the RNA expression

of more than 130 markers through a rapid four steps pro-
cedure which requires only very limited laboratory handling
(reverse transcription, hybridization of the probes, ligation,
and PCR amplification). The amplification products are
next purified and loaded on a next-generation sequencer,
alone or together with conventional DNA libraries, and the
results are automatically analyzed using a dedicated bioin-
formatic pipeline which returns the results of the random
forest classification algorithm. The whole procedure thus
does not require any specific platform and could be
implemented in many molecular diagnostic laboratories
which have already adopted next-generation sequencing in
their routine diagnostic workflow.
One limitation of this assay is the need for a rigorous

histological evaluation of the biopsy to distinguish reac-
tive lymph nodes and other pathologies and to verify the
consistency of the classification. However, once the
hypothesis of B-NHL has been drawn, the gene expression
data which are generated provide many relevant infor-
mation through the systematic evaluation of dozens of
diagnostic and prognostic markers. As we deliberately
incorporated most differentiation markers identified in
the WHO classification for their capacity to differentiate
these tumors, the test is able to recognize essential B-
NHLs characteristics, such as the COO gene expression
signatures, together with the different contributions of the
microenvironment. The results also allow direct com-
parisons with other methods already in use in the clinics,
like IHC or flow cytometry, greatly facilitating their
interpretation.
In high grade B-NHLs the clinical value of this assay was

validated by the demonstration of its capacity to capture
essential characteristics associated with the prognosis,
such as the MYC/BCL2 expression levels which can be
complex to address due to the difficulties in the standar-
dization of the IHC procedures. Indeed, the cut-offs values

for MYC and BCL2 positivity evaluated by pathologists are
still a matter of debate, but recent studies reported pre-
valence of double expressor DLBCL cases ranging from 21
to 31%24,26–29. In our cohort, 24% of patients were iden-
tified as double-positive according to their gene expression
profiles and, importantly, were associated with a particu-
larly poor outcome. This result thus suggests that the gene
expression levels which are provided by our assay may
represent a reliable surrogate to IHC as well as a good
indicator of outcome, and help to identify those patients
who may respond to targeted therapies30. Additional
testing by FISH remains however mandatory to address
which of these patients present chromosomal rearrange-
ments of these genes and should be classified into the
high-grade B-cell lymphoma category.
The limited panel of genes we use of course does not

provide an exhaustive picture of the heterogeneity of
these tumors. For example, new molecular subgroups of
DLBCLs have recently been defined by extensive genomic
and transcriptomic analyses which could, in the future,
participate to the development of tailored personalized
medicine. However, if these results undoubtedly provide
important new insights into the biology of these tumors,
their current applicability in the clinics remains a sig-
nificant issue, warranting further investigation in pro-
spective trials. Moreover, their implementation in a
routine diagnosis workflow would also need to resolve
important technical and financial issues, which are not
sustainable by a large majority of diagnostic platforms.
In conclusion, we have developed a complete gene

expression assay that combines ligation-dependent PCR,
NGS, and machine learning to classify B-cell lymphoma
subtypes. We propose that this assay, which does not
require any specific platform and can be applied to FFPE
biopsies, could be used as an independent additional
diagnostic tool to conventional histology and facilitate the
classification of B-cell lymphoma by expert hemato-
pathologist. It might thus result in a significant simplifi-
cation of the diagnostic procedures by reducing the
number of immunostainings. Its coordinate implementa-
tion with next-generation DNA sequencing, which
requires the same platform, might improve precision
diagnosis in these heterogeneous tumors.

Table 2 Multivariate analysis of MYC/BCL2 dual expression, ABC/GCB Cell-of-origin and IPI in local cohort of DLBCL.

Overall survival Progression-free survival

Factor HR 95% CI P HR 95% CI P

MYC/BCL2 Double expressor (n= 25) vs other (n= 79) 2.08 1.34–3.25 <5 × 10−3 2.04 1.35–3.12 <5 × 10−3

ABC (n= 53) vs GCB (n= 51) subtype 1.49 0.95–2.36 0.08 1.32 0.87–2.00 0.19

IPI score 3–5 (n= 71) vs IPI score 0–2 (n= 33) 2.2 1.41–3.41 <5 × 10−3 1.92 1.27–2.89 <5 × 10−3
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