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ABSTRACT

Motivation: Numerous annotations are available that functionally
characterize genes and proteins with regard to molecular process,
cellular localization, tissue expression, protein domain composition,
protein interaction, disease association and other properties.
Searching this steadily growing amount of information can lead
to the discovery of new biological relationships between genes
and proteins. To facilitate the searches, methods are required that
measure the annotation similarity of genes and proteins. However,
most current similarity methods are focused only on annotations from
the Gene Ontology (GO) and do not take other annotation sources
into account.
Results: We introduce the new method BioSim that incorporates
multiple sources of annotations to quantify the functional similarity
of genes and proteins. We compared the performance of our
method with four other well-known methods adapted to use multiple
annotation sources. We evaluated the methods by searching for
known functional relationships using annotations based only on GO
or on our large data warehouse BioMyn. This warehouse integrates
many diverse annotation sources of human genes and proteins. We
observed that the search performance improved substantially for
almost all methods when multiple annotation sources were included.
In particular, our method outperformed the other methods in terms
of recall and average precision.
Contact: mario.albrecht@mpi-inf.mpg.de
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Similarity search plays an important role in biological,
pharmaceutical and medical investigations. For instance, the
introduction of the BLAST algorithm by Altschul et al. (1990)
to search for similar sequences has been considered a milestone
in genomics (Bahcall, 2007). Other similarity search methods
to mine databases of 3D molecule conformations have been
important for drug discovery (Willett et al., 1998). In addition,
the growing availability of annotations that characterize genes and
proteins (Reeves et al., 2008) opens the new possibility to find
biological relationships by similarity searches based on function,
domain composition, disease association, tissue expression, etc.
For example, the identification of similarly annotated genes and
proteins can reveal new gene–disease associations (Aerts et al.,
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2006), suggest novel protein functions (Friedberg, 2006) and
indicate new drug targets (Chan et al., 2010).

In general, similarity searches compute pairwise similarities
of a query with the entities in a database to obtain a ranked
list of high-scoring similarities. In particular, a number of
methods have been proposed for the quantification of pairwise
similarities of gene and protein annotations. Most of those
functional similarity methods are based on Gene Ontology (GO)
annotations (Benabderrahmane et al., 2010; Chabalier et al., 2007;
del Pozo et al., 2008; Lerman and Shakhnovich, 2007; Lord et al.,
2003; Mistry and Pavlidis, 2008; Pesquita et al., 2008; Popescu
et al., 2006; Schlicker et al., 2006; Sevilla et al., 2005; Speer
et al., 2004). However, the last years have shown a dramatic
growth in datasets that result from high-throughput experiments
and computational work and yield annotation sources that provide
manifold information about, for instance, protein interactions,
signaling circuits, metabolic pathways, cellular localization, tissue
expression, disease associations and protein domain architecture.
Currently, only one similarity search method explicitly takes
multiple annotation sources into account, namely, the kappa
coefficient used by the DAVID Gene Functional Classification
Tool (Huang et al., 2007). In contrast, the integration of multiple
annotation sources into a network structure is often applied in the
context of gene function prediction (Huttenhower et al., 2009; Wang
and Marcotte, 2010; Warde-Farley et al., 2010).

When developing efficient methods for searching through gene
and protein annotation data, a particular task is the construction of
data structures that represent the annotations. Most methods rely
on the graph structure of GO to estimate quantitative semantic
relationships among the gene/protein annotations (Pesquita et al.,
2009). However, the GO structure limits the inclusions of non-
ontological (i.e. non-GO) annotations into methods. A flattened
representation of the GO hierarchy solves this problem and stores
the annotations as Boolean arrays in which the presence and absence
of annotations is recorded (Huang et al., 2007). This representation
implicitly contains the ontological relations and allows the inclusion
of non-ontological annotations as part of the array. This avoids
the inference of relationships through the hierarchical structure of
GO. GO-based similarity methods that use this data structure are
COS (Chabalier et al., 2007), simGIC (Pesquita et al., 2008) and
TO (Mistry and Pavlidis, 2008). Although these methods do not
consider annotation sources other than GO, they achieve better
performance than methods such as those by Resnik (1999) and Lin
(1998) that depend on the GO graph structure.

In the following, we will introduce the new method BioSim for
similarity searches based on diverse annotation sources of gene and
protein function and extend the existing methods cosine similarity,
kappa coefficient, simGIC and TO to utilize annotations not only
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from GO, but also from 22 major biological databases for human
genes and proteins. We will also compare the performance of BioSim
with the other methods in different benchmarks.

2 MATERIALS AND METHODS

2.1 Annotation sources
Twenty-two publicly available annotation sources for human genes and
proteins were integrated into our data warehouse BioMyn. These include
functional annotations from all three GO categories (MF, molecular function;
BP, biological process; CC, cellular component) (Camon et al., 2004) and
from the UniProtKB controlled vocabulary of keywords (Consortium, 2010).
The data warehouse also contains clusters of similar sequences from Ensembl
protein families (Flicek et al., 2008) and from UniRef90 (Suzek et al.,
2007); protein domain architectures from Pfam (Finn et al., 2008) and
InterPro (Hunter et al., 2009); metabolic and signaling pathways from
HumanCyc (Romero et al., 2005), KEGG (Kanehisa et al., 2008), and
Reactome (Matthews et al., 2009); protein–protein interactions and protein
complexes from CORUM (Ruepp et al., 2008), DIP (Salwinski et al., 2004),
HiMAP (Rhodes et al., 2005), HPRD (Prasad et al., 2009), IntAct (Kerrien
et al., 2007), MINT (Chatr-Aryamontri et al., 2007), PDB (Berman et al.,
2003; Velankar et al., 2005) and STRING (Jensen et al., 2009); disease
associations from OMIM (Amberger et al., 2009); enzyme classifications
from the Enzyme nomenclature database (Bairoch, 2000); gene expression
data for different tissues and cell lines from the Novartis Gene Atlas (Su
et al., 2002); Mammalian Phenotype Ontology annotations of human genes as
provided by the Mouse Genome Database (Blake et al., 2011); and orthologs
of protein sequences from OrthoMCL (Chen et al., 2006).

From the annotation sources, the functionally relevant features associated
with individual genes and proteins were extracted. In the following, we
refer to these features as annotation terms, which correspond, for example,
to the specific molecular function (e.g. oxidoreductase activity) or domain
(e.g. SH2) or pathway (e.g. glycolysis) annotated to genes and proteins.
The different gene and protein identifiers used in the annotation sources
were unified by mapping them to Entrez Gene ID and UniProtKB accession
numbers. In total, our data warehouse contains 24 586 human Entrez Gene
entries and 70 767 human UniProtKB protein entries (including 20 177
manually reviewed proteins in UniProtKB release 15.5, see Supplementary
Material for further details). To enable comparisons between functional
similarity methods using multiple annotation sources and those using only
GO annotations, proteins with no available GO annotation were excluded.
This resulted in a list of 18 076 protein entries out of 20 177 manually
reviewed proteins in UniProtKB release 15.5.

2.2 Functional similarity methods
In the following, AX and AY denote the sets of annotation terms associated
with the gene products X and Y , respectively. Annotations available for genes
are transferred to the encoded proteins.

BioSim: Our novel functional similarity method BioSim is defined as follows:

BioSim(X,Y )=
∏

t∈{AX ∩AY }
p(t)

Here, t ∈{AX ∩AY } is the set of annotation terms shared by X and Y , and p(t)
is the probability that both AX and AY contain the same term t by chance.
Since BioSim is the product of the probabilities p(t), a score of zero represents
the highest similarity and a score of one the lowest. This is in contrast to
other methods described below, except TO. The probability p(t) is estimated
using the cumulative hypergeometric distribution:

p(t)=
D∑

k=2

(Nt
k

)(N−Nt
D−k

)
(N

D

)

N is the number of proteins in our database, and Nt is the number of proteins
annotated with term t. D is the sum of |AX | and |AY |, that is, the total number

of annotation terms for X and Y. Therefore, the resulting probability p(t)
depends not only on the frequency Nt , and thus on the specificity, of the
annotation term t, but also on D. This is an important property of BioSim
and accounts for the annotation bias of intensively studied genes and proteins.
A pair of proteins associated with many annotations terms (large D) has an
increased probability p(t) to share the annotation term t (i.e. a decreased
functional similarity) in comparison to a pair of proteins associated with few
annotations terms (small D).

Term overlap length (TO): TO represents the number of annotations terms
shared by two proteins X and Y (Mistry and Pavlidis, 2008):

TO(X,Y )=|{AX ∩AY }|
Kappa coefficient (KC): This method is used in the well-known DAVID
Gene Functional Classification Tool (Huang et al., 2007). It computes a
normalized difference of the observed number of annotation terms O(X,Y )
shared by two proteins X and Y , and the expected number E(X,Y ) of shared
annotation terms that are randomly chosen (Huang et al., 2007). It is defined
as follows:

KC(X,Y )= O(X,Y )−E(X,Y )

1−E(X,Y )
In the following, we describe the two methods simGIC and COS. Unlike
the previous methods, both methods incorporate term weights based on the
information content (IC) of a term t (Resnik, 1995):

IC(t)=−log
Nt

N

Here, Nt is the number of proteins annotated with term t and N the total
number of proteins in our study.

simGIC: This method introduced in Pesquita et al. (2008) includes the
summed information contents of shared versus all annotated terms for two
proteins X and Y :

simGIC(X,Y )=
∑

∀t∈{AX ∩AY } IC(t)
∑

∀t∈{AX ∪AY } IC(t)

Cosine similarity (COS): This classical method is defined as follows (Salton
et al., 1975):

COS(X,Y )= �AX · �AY

|�AX ||�AY |
Here, �AX and �AY are the annotation vectors of two proteins X and Y ,

respectively. In each vector, the absence of an annotation term is represented
by 0 and the presence by IC(t). This method was first used in the context of
functional similarity by Chabalier et al. (2007).

2.3 Evaluation methods
Gold standard: To evaluate the performance of the functional similarity
methods, we collected a gold standard dataset composed of groups of proteins
that are assumed to be functionally related (to a certain extent) and contained
in the list of 18 076 proteins with at least one available GO annotation (as
described above). The protein groups in the dataset were obtained from four
benchmark categories that we limited to at most 400 groups per category:
(i) 400 groups from protein complexes (selected randomly from a total
of 2030 complexes in CORUM); (ii) 88 groups from sequence clusters of
related protein sequences based on UniRef90 clusters (sequences of at least
90% identity) and thus with putatively similar functions; (iii) 355 groups
from reliable protein–protein interactions (here, an interaction is regarded
as reliable if it is reported in at least three different publications); and
(iv) 400 groups from metabolic and signaling pathways (selected randomly
from a total of 424 pathways in KEGG and Reactome). Groups of more than
20 proteins were excluded as being too general. The average group size was
6.7 proteins and the overall standard deviation 4.3. In total, the gold standard
consisted of 1243 groups that covered 8150 proteins overall (some proteins
were shared by different groups). In the following, we will refer to those
groups as validation groups.
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Benchmarking procedures: From each validation group, a query protein
was randomly selected and the remaining group members were regarded as
gold standard positives. To obtain ranked lists, pairwise functional similarity
scores were computed between the query protein and all other 18 076 protein
entries used in our study. The same evaluations were carried out using either
only GO annotations or all aforementioned annotation sources (excluding
the respective annotation source of the benchmark category). For baseline
comparison, a dataset of 10 000 protein pairs was randomly created. To
compute a background distribution of BLAST bit scores (NCBI blastp
version 2.2.22), 100 000 protein pairs were randomly drawn from the list
of studied proteins. Since the bit score of a protein pair is not symmetric, the
average bit score of the pair was used (Pesquita et al., 2008).

Performance measures: The recall at a rank k is the number of positives in
the k top ranks of the computed ranking list divided by the total number of
positives, i.e. the members of the respective validation group. The average
precision is the mean of the precisions obtained for the ranks of all positives
in the ranking list (Buckley and Voorhees, 2000). For example, in case of
three positives found at ranks 2, 5 and 10, the average precision would
be (1/2+2/5+3/10)/3=0.4. The Precision at a rank k is the number of
positives in the k top ranks divided by k. The first relevant rank (FRR) is the
best rank of a positive in some ranking list.

Score cut-offs for the functional similarity methods: Using the ranking lists
obtained for each validation group, we identified the functional similarity
score that yielded 50 false positives. This number is a reasonable threshold
suggested by Gribskov and Robinson (1996) for their ROC50 method. By
averaging these functional similarity scores, suitable score cut-offs were
obtained for every similarity method. We refer to these score cut-offs as SC50.
The performance curves were generated using the ROCR package (Sing
et al., 2005).

3 RESULTS AND DISCUSSION

3.1 Evaluating the performance of functional
similarity methods

The performance of BioSim in identifying known functional
similarities was compared with that of four other methods: TO, KC,
simGIC and COS. The results were averaged over all validation
groups. While all methods showed similar performance when
using only GO annotations, the performance was improved when
considering multiple annotation sources (Fig. 1). Notably, BioSim
achieved better performance than the other methods. For instance,

A B

Fig. 1. Performance of functional similarity methods. Average recall
is plotted for different top ranks k using either multiple annotations
sources (A) or only GO annotations (B). The average values were obtained
from benchmarking with 1243 validation groups. See Supplementary Fig. S3
for details on the performance of the methods in each of the four benchmark
categories.

the top 20 hits of BioSim had an average recall of 0.58. The second
best method, COS, had an average recall of 0.44 (Fig. 1A). The
average precision of BioSim was 0.39, which was significantly
higher than that of the other methods (P<0.01, Wilcoxon signed-
rank test). Likewise, BioSim had a median value of 2 for the FRR,
surpassing the other methods (Table 1).

The overall performance of the methods varied for each
benchmark category. It was lower for all methods when using
the protein–protein interaction category and higher when using the
sequence cluster category (Supplementary Fig. S3A and Table S1).
The combined average recall for all methods was more than one-
third lower in the protein–protein interactions category than in the
sequence cluster category (the respective recalls were 0.29 and
0.75). The observed high performance when using the sequence
clusters category is due to the tendency of the methods to rank
similar sequences at the top. This can be explained, to some extent,
by annotation transfer between homologous protein sequences, by
gene annotations that are transferred to all encoded proteins and by
domain annotations that are almost identical for similar sequences.
Therefore, the tendency to rank similar sequences at the top reduces
the performance of the methods when using benchmark categories
different from sequence clusters because gold standard positives are
displaced to lower ranks.

3.2 Including multiple annotation sources improves
performance

The use of multiple annotation sources improved the performance
of four of the five methods although they were not originally
developed to handle multiple annotations (in contrast to BioSim).
Much of this increase seems to be attributable to the availability of
more annotation terms per protein. The number of terms annotated
to each protein increased from a median of 7.5 GO terms to a
median of 15.0 annotation terms when all annotation sources were
included (Supplementary Figs S4Aand S5A). The TO method, which
counts the number of common terms, but does not account for term
specificity, improved its average precision from 0.17 to 0.24 when
all annotations were used.

Notably, the use of multiple annotation sources does not only
increase the number of annotation terms per protein, but also
improves the specificity of the annotations. While GO terms
annotated to at most four proteins were available for 8096 proteins,
this number doubled to 16 649 proteins in case of multiple annotation

Table 1. Performance comparison of functional similarity methods using
multiple annotation sources versus using only GO annotations, over all 1243
validation groups

Method Multiple sources Only GO

Avg. precision FRR Avg. precision FRR

BioSim 0.39 2 0.22 7
COS 0.28 3 0.22 7
KC 0.21 5 0.20 5
simGIC 0.28 3 0.22 5
TO 0.24 3 0.17 11

See Supplementary Table S1 for details on the performance of the methods in each of
the four benchmark categories. avg. precision: average precision.
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sources when not only using GO (Supplementary Figs S4B
and S5B). The positive effect of the increased annotation specificity
on the performance can be observed with the three functional
similarity methods COS, simGIC and BioSim. All three methods
weight annotation terms and showed the strongest performance
improvement when multiple annotation sources were included.

In particular, BioSim was best able to take advantage of the
increased number and improved specificity of annotations terms,
as shown by the near doubling of its average precision (Table 1).
In the case of BioSim, as explained in Section 2, the functional
similarity between two proteins increases if both are annotated
with specific terms (terms that are annotated to few proteins)
because the corresponding probabilities of the terms are low.
Additionally, since BioSim computes the product of the probabilities
of all terms shared by two proteins, a certain number of even
less specific terms still increases the overall functional similarity.
Annotations from protein–protein interactions, sequence clusters,
pathways and disease associations are normally the most specific and
least abundant ones, annotated to no more than a hundred proteins.
In contrast, annotations as from cellular localization and tissue
expression frequently cover thousands of proteins; and annotations
from GO, UniProtKB keywords and protein domains span the whole
range from just a few proteins to thousands (Supplementary Fig. S2).

As an example, we looked in detail at one known SNARE
protein complex formed by the proteins VAMP2, SNAP25,
STX1a and CPLX1. These four proteins are involved in the
fusion of neurotransmitter-containing vesicles with the pre-synaptic
membrane (McMahon et al., 1995). When BioSim was applied using
multiple annotation sources to compute the functional similarity
of VAMP2 with each of the 18 076 human proteins in our study,
SNAP25 achieved the top rank 1 with the strongest functional
similarity. The other two complex members STX1a and CPLX1
were found at ranks 3 and 5, respectively. At rank 2 we found
PRKD3, a protein that interacts directly with VAMP2, and at
rank 4 we found VAMP1 who shares the Synaptobrevin domain
with VAMP2. In contrast, when BioSim made use of only GO
annotations, the rankings of SNAP25, STX1a and CPLX1 decreased
to 25, 187 and 805, respectively. Specific annotations, which led to
the identification of SNAP25 as functionally similar to VAMP2,
included both four experimental results that reported the interaction
between VAMP2 and STXa1 and several shared pathways in
Reactome such as the proteolytic cleavage of SNARE complex
proteins. Less specific annotations were a shared coiled-coil domain
and a similar tissue expression profile. When only GO annotations
were taken into account, ICA69 was the protein functionally most
similar to VAMP2, primarily, because both proteins are annotated
with the term secretory granule membrane. This term covers only
25 other proteins, none of which is SNAP25, STX1a or CPLX1.
The current knowledge about ICA69 is very limited. It might play a
functional role in the transport regulation of insulin secretory granule
proteins (Buffa et al., 2008) as well as in neurotransmitter transport
as inferred by sequence similarity in UniProtKB. However, ICA69
has not been associated with the fusion of pre-synaptic vesicles.

In general, although GO annotations are expected to improve over
time as more information is added, the use of other annotation
sources helps to bridge the time until new data is incorporated.
Furthermore, useful annotations to derive functional similarities
such as protein–protein interactions and disease associations are not
part of GO. Moreover, the use of multiple annotation sources can

also reduce the impact of incorrect annotations found in biological
databases (Schnoes et al., 2009).

3.3 BioSim scoring versus other methods
BioSim distinguished functional relationships of gold standard
positives from those of randomly paired proteins better than the
other methods. Gold standard positives consistently received a
BioSim score close to 0, while random pairs obtained a score
close to 1 (Fig. 2A). In particular, we plotted precision and
recall averages from our benchmark results for every method at
different score cut-offs (Fig. 2B). We also computed a score cut-
off (SC50) that resulted in 50 false negatives on average. The
obtained SC50 score cut-offs, along with the score range of each
method from lowest to highest functional similarity, were as follows:
BioSim: ≤1.18×10−9 (range [1;0]), TO: ≥115 (range [0;∞)),
KC: ≥0.360 (range [0;1]), simGIC: ≥0.096 (range [0;1]), and
COS: ≥0.101 (range [0;1]). For COS and simGIC, the second and
third best methods, the SC50 score cut-offs were very close to zero,
their non-similarity score; the recall at the respective SC50 cut-off
had a median of 0.50 and a distribution covering the whole range
(Fig. 2B). In other words, for both methods, the same SC50 cut-
off resulted in a different recall. The KC and TO methods had a
recall median below 0.5 for their respective SC50 score cut-offs.
In comparison, the recall for BioSim at the SC50 score cut-off
had the highest median (0.82) and the corresponding distribution
concentrated around high values.

The limited consistency of the scores of COS, KC, simGIC and
TO is probably caused by annotation bias toward better studied
molecules (Rhee et al., 2008) as these methods appear to be best
suited for unbiased data (Wang et al., 2010). In our data warehouse,
a handful of proteins have over thousand annotations, while the
majority has less than 10 annotations. A similar pattern can be
observed when considering only GO annotations (Supplementary
Figs S4 and S5). About 16% of all proteins are annotated only with
less specific terms such as the UniProtKB keyword ‘Receptor’ or
the GO term ‘protein binding’. The functional similarity of any two
proteins sharing such terms is overestimated by the COS, KC and
simGIC methods, which yield the highest score of 1. This misleading
result is undistinguishable from a genuine functional similarity based
on several shared annotation terms.

Furthermore, the same methods tend to underestimate the genuine
similarity of any two proteins that are annotated with numerous
terms and do not share a large proportion of their annotation terms.
For example, the cellular tumor antigen TP53 (with 1642 annotation
terms including 332 literature-curated protein interactions) shares
about 19% of its annotation terms with the closely related E3
ubiquitin-protein ligase MDM2, which is known to bind and inhibit
TP53 (Vassilev et al., 2004). Relevant terms indicate common
metabolic and signaling pathways, disease associations and protein
interactions. However, the remaining 81% of TP53 annotation terms
that are not shared with MDM2 lead to the following low functional
similarity scores: COS=0.097, KC=0.120 and simGIC=0.056.
These functional similarity scores are even below the SC50 cut-offs
for the respective methods. This means that low functional similarity
scores are often obtained for truly functionally related proteins. Such
low similarity scores are also obtained when only GO annotations
are considered: COS=0.206, KC=0.379, simGIC=0.142.
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Fig. 2. Comparison of functional similarity methods. (A) Histograms of the functional similarity scores that were obtained for 6907 pairs of gold standard
positives and for 10 000 random pairs. (B) Precision (straight lines) and recalls (dashed lines) are averaged at different cut-offs. The vertical red lines highlight
the SC50 score cut-offs that yield, on average, 50 false positives. The box plot to the left of the y-axis shows the distribution of recalls at this cut-off. BioSim
scores are in logarithmic scale for better visualization. (C) Functional similarity and sequence similarity scores are compared based on 100 000 random pairs
of proteins. Sequence similarity is measured as ln(bit score). Green lines depict the average functional similarity. Red lines illustrate the standard deviation.
In each plot, the background contains a scatter plot where darker colors indicate a higher density of dots.

The TO method, which is simply the count of annotation terms
shared by two proteins, avoids some of the described shortcomings
by focusing only on the shared annotations. However, it cannot
distinguish those annotations that occur by accident because it
judges an event of two proteins sharing a rather unspecific, frequent
annotation term (e.g. ‘protein binding’) as likely as an event of two
proteins sharing a very specific, rare annotation term (e.g. ‘actin
filament binding’).

3.4 Comparing functional similarity with sequence
similarity

The correlation between the functional similarity of two proteins
and their sequence similarity is often used to evaluate functional
similarity methods (Lord et al., 2003; Pesquita et al., 2008). In our
results, rank correlations for all methods were close to 0.1 when
comparing BLAST bit scores and functional similarity scores for
100 000 random pairs of proteins. This low correlation is likely due
to many protein pairs with almost no sequence similarity, but some
functional similarity (Fig. 2C). To filter out protein pairs with low
sequence similarity, we discarded all pairs having a ln(bit score)
below 3.3. This threshold was chosen after observing that, for all
methods, the averaged functional similarity scores increases above
this value. In total, 631 (0.63%) of the random pairs had a ln(bit
score) of at least 3.3. The rank correlations for these pairs were
COS: 0.77, KC: 0.67, BioSim: 0.69, simGIC: 0.73, TO: 0.48.

Since BioSim showed a slightly lower correlation than COS and
simGIC, we additionally analyzed some interesting cases manually.
Supplementary Table S2 summarizes the manual inspection of

annotations shared by the 15 pairs of proteins with the highest
sequence similarity bit score. Seven protein pairs do not share
specific annotation terms to infer a clear functional relationship.
Accordingly, the low BioSim scores of those pairs are above the
previously determined SC50 score cut-off of 1.18×10−9, which
indicates a weak functional similarity. In contrast, a true functional
relationship between the remaining eight protein pairs is more
evident due to several shared specific annotations terms. This agrees
well with BioSim scores below or very close to the SC50 cut-
off, which suggests a considerable certainty of a real functional
similarity. However, in contrast to BioSim, the scores from the
other methods do not allow a clear-cut distinction in those cases
as explained in the preceding Section 3.3. For example, the 2nd and
15th rows in Supplementary Table S2 are cases of low functional
similarity scores for COS, KC and simGIC in contrast to BioSim
although the respective proteins share numerous annotations. This
suggests that a meaningful comparison of scoring methods based
on the correlation of functional similarity and sequence similarity
is limited by the available annotation datasets and their overall
characteristics and quality, which can also be affected by annotation
bias and incompleteness. Since BioSim is particularly designed to be
more sensitive to the number and specificity of annotation terms in
contrast to the other methods, its overall performance depends more
on the annotation datasets and the individual annotation terms.

3.5 Finding disease-associated genes
Genes associated with the same disease phenotype tend to be
functionally related (Schlicker et al., 2010; Vidal et al., 2011).
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Table 2. Disease genes recently added to OMIM and identified by the BioSim method

New
Phenotype # genes gene Gene description Rank GO rank Shared annotations

Familial glioma of brain 7 BRCA2 Breast cancer 2, early onset 1 102 Direct and indirect PPIs; same disease, GO and
pathway annotation

Epidermolytic palmoplantar
keratoderma

2 KRT1 Keratin 1 2 26 Direct and indirect PPIs; same disease, domain and
GO annotation

Antley–Bixler syndrome 1 FGFR1 Fibroblast growth factor
receptor 1

2 1 Indirect PPI; same disease, domain, GO and
pathway annotation

Cardiofaciocutaneous
syndrome

3 MAP2K1 Mitogen-activated protein
kinase kinase 1

2 16 Direct and indirect PPIs; same pathway annotation

Folate-sensitive neural tube
defects

3 MTHFR 5,10-
methylenetetrahydrofolate
reductase (NADPH)

2 3 Indirect PPI; same GO and pathway annotation.

Obesity 17 POMC Proopiomelanocortin 3 83 Direct and indirect PPIs; same GO, pathway and
UniProtKB keyword annotation

Autosomal recessive
deafness-1A

1 GJB6 Gap junction protein, beta 6,
30 kD

3 6 Same disease, domain and GO annotation

Autosomal idiopathic short
stature

3 GHR Growth hormone receptor 3 182 Direct PPI; same GO annotation

Hypogonadotropic
hypogonadism

3 FGFR1 Fibroblast growth factor
receptor 1

3 1183 Direct PPI; same GO and UniProtKB keyword
annotation

Non-insulin-dependent
diabetes mellitus

25 PPARG Peroxisome
proliferator-activated
receptor gamma

4 31 Direct and indirect PPIs; same disease, domain and
GO annotation

Susceptibility to atypical
hemolytic uremic
syndrome-1

2 CFI Complement factor I 4 14 Indirect PPI; same GO, pathway and UniProtKB
keyword annotation

Non-insulin-dependent
diabetes mellitus

25 SLC2A4 Solute carrier family 2
(facilitated glucose
transporter), member 4

6 424 Indirect PPI; same GO, pathway and UniProtKB
keyword annotation

The table lists 12 new disease gene associations found between ranks 1 and 6. The table column ‘# genes’ gives the number of known genes associated with the disease phenotype
before January 1, 2009. The column ‘New gene’ contains the symbol of the gene that was added to the phenotype between January and October 2009 and correctly identified
by BioSim. The columns ‘Rank’ and ‘GO rank’ give the position of the new gene in the ranking list if all annotations were used or only GO, respectively. The column ‘Shared
annotations’ contains a summary of the most specific annotation terms shared by the known genes and the new gene. The detailed list of shared annotations can be found in
Supplementary Tables S3–S26. Gene symbols and descriptions correspond to the official nomenclature from HGNC (Seal et al., 2011). Indirect PPI refer to all direct interaction
partners of the same protein.

Using BioSim, we ranked genes based on their functional similarity
to genes known to be associated with a particular OMIM disease
phenotype (Amberger et al., 2009). To this end, for each gene not
associated with a disease phenotype, we averaged the computed
scores of its functional similarity to the previously known disease
genes. The functional similarity scores were computed using a
snapshot of our data warehouse that contained only gene annotations
from before January 1, 2009. We then compared our results with
an updated version of OMIM from October 31, 2009. This update
contained 54 new gene associations for 46 diseases. In our results,
11 of the new genes were found at the top four ranks and 12 others
between ranks 6 and 54 (Table 2 and Supplementary Tables S3–S26).
The median rank of the new genes was 9.5. This is a drastic
improvement due to the use of multiple annotation sources in
contrast to the ranks obtained when using only GO annotations with
a resultant median of 133.5.

Figure 3 highlights two disease phenotypes: obesity, which had 17
associated genes known before January 2009, and familial glioma
of brain, which had seven associated genes. The new gene POMC,
which was added to the obesity phenotype in the updated version
of OMIM, was found on the third rank. Annotations shared by
POMC and the other known disease genes included protein–protein

interactions (with AGRP, ENPP1, GHRL, MC3R and MC4R) and
the annotation term ‘obesity’ from UniProtKB keywords, which
covers POMC and 10 other obesity genes (Supplementary Table S9).
The genes ranked first and second, LEP (leptin) and INS (insulin),
are also related to obesity (Spiegelman and Flier, 2001) even if they
are not among the genes of the specific obesity phenotype in OMIM.

BRCA2, the new gene included into the updated version of OMIM
for the glioma of brain phenotype, achieved the first rank of genes
functionally related to the disease. BRCA2 showed strong BioSim
functional similarity to five of the seven previously known genes
for glioma of brain. Some of the annotations shared by BRCA2
and the five disease genes are protein–protein interactions (with
ERBB2, MSH2 and PTEN), the joint disease association of BRCA2
and DMBT1 to medulloblastoma as well as of BRCA2 and PTEN
to prostate cancer in OMIM and a number of GO and pathway
annotations (Supplementary Table S3).

4 CONCLUSION
We presented the novel method BioSim to compute and search
for functional similarities of genes and proteins based on diverse
annotations such as protein interactions, domain architectures,
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Fig. 3. Disease-associated genes and their 10 most functionally similar
genes. Our BioSim method was used to identify related genes for obesity
(left) and the familial glioma of brain (right). The black frames highlight
the new genes POMC and BRCA2 found by using BioSim. The vertical
axis alphabetically lists the previously known disease genes. The horizontal
axis ranks the most similar genes from left (most similar) to right. The colors
indicate the strength of the functional similarity scores between the respective
genes as computed by BioSim; lower scores indicate stronger similarity, see
depicted color bar.

biological pathways and disease associations. BioSim was evaluated
together with four other published methods. All methods are fast to
compute and just depend on the number of available annotation
terms; thus they can scale well to larger datasets.

In our benchmarks, the use of multiple annotation sources
resulted in improved performance of most methods than the use
of solely GO annotations. BioSim achieved the best performance
by consistently ranking functionally related proteins among the top
two out of over 18 000 human gene products. BioSim in contrast
to other scoring methods might be particular useful for applications
based on functional similarity when consistent scores are especially
desirable, for example, for the quality assessment of protein–protein
interactions (Ramírez et al., 2007) and for the clustering of genes
or proteins by function (Huang et al., 2007). We also showed how
BioSim can be applied to discover potential disease genes.
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