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White matter hyperintensities (WMHs) are associated with cognitive decline. Assessing
the effect of WMH on WM microstructural changes and its relationships with structural
and functional connectivity to multiple cognitive domains are helpful to better understand
the pathophysiological processes of cognitive impairment. 65 participants (49 normal
and 16 MCI subjects, age: 67.4 ± 8.3 years, 44 females) were studied at 3T. The WMHs
and fifty fiber tracts were automatically segmented from the T1/T2-weighted images
and diffusion-weighted images, respectively. Tract-profiles of WMH were compared
with those of apparent fiber density (AFD). The relationship between AFD and tract
connectivity (TC) was assessed. Functional connectivity (FC) between tract ends
obtained from resting-state functional MRI was examined in relation to TC. Tract-specific
relationships of WMH, TC and FC with a multi-domain neuropsychological test battery
and Montreal Cognitive Assessment (MoCA) were also separately assessed by lasso
linear regression. Indirect pathways of TC and FC between WMH and multiple cognitive
measures were tested using the mediation analysis. Higher WMH loads in WM tracts
were locally matched with the reduced AFD, which was related to decrease in TC.
However, no direct relationship was found between TC and FC. Tract-specific changes
on WMH, TC and FC for each cognitive performance may explain that macro- and
microstructural and functional changes are associated differently with each cognitive
domain in a fiber specific manner. In these identified tracts, the differences between
normal and MCI for WMH and TC were increased, and the relationships of WMH, TC
and FC with cognitive outcomes were more significant, compared to the results from all
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tracts. Indirect pathways of two-step (TC-FC) between WMH and all cognitive domains
were significant (p < 0.0083 with Bonferroni correction), while the separated indirect
pathways through TC and through FC were different depending on cognitive domain.
Deterioration in specific cognitive domains may be affected by alterations in a set of
different tracts that are differently associated with macrostructural, microstructural, and
function changes. Thus, assessments of WMH and its associated changes on specific
tracts help for better understanding of the interrelationships of multiple changes in
cognitive impairment.

Keywords: white matter fiber tracts, Alzheimer’s disease, cognitive impairment, aging, white matter
hyperintensity (WMH), white matter lesion (WML), functional connectivity (FC)

INTRODUCTION

White matter lesions appearing as white matter hyperintensities
(WMH) on T2-weighted magnetic resonance imaging (MRI)
are often observed even in the brains of cognitively normal
older adults (Meyer et al., 1992; Ylikoski et al., 1995). However,
as WMH burden increases, it is likely to become associated
with cognitive decline (Debette and Markus, 2010; Prins and
Scheltens, 2015). The WMH may reflect the macrostructural
damage to white matter (WM) and may disrupt microstructural
features in tracts traversing the lesions. They may influence
interconnections among multiple regions of the brain taking
place through WM pathways, and these may be associated
with cognitive changes. Therefore, the effect of WMH on
microstructural WM changes and their relationship with
functional changes should be explained for the assessment of
cognitive impairments.

The WM of the brain consists of bundles of myelinated
fibers, known as fascicles or fiber tracts. The local microstructural
alterations in the tracts associated with WMH can be detrimental
to the connectivity of entire tract, which may interrupt the
cortical to cortical (and/or subcortical) connections that could
result in alterations of brain function (O’Sullivan et al., 2001).
On the other hand, structural disruption does not necessarily
represent functional disconnection (Batista-García-Ramó and
Fernández-Verdecia, 2018). Thus, the direct relationship between
WM connectivity of each individual tract and functional
connectivity of the brain regions connecting that tract is
necessary. In addition, since the mechanisms of structural and
functional changes may be different, they may develop through
different pathways of deterioration with different brain reserve.
Thus, they may manifest differently for cognitive alterations
progress. Therefore, the structural and functional connectivity
could be differently related to various cognitive domains.

The deterioration of certain brain regions may affect certain
cognitive functions, i.e., alterations in specific WM fiber-tracts
may contribute to decreased performance in the specific cognitive
domains (e.g., executive function) (Carnevale et al., 2018). For
example, MD changes in the anterior WM correlated with
selective loss of executive function in the elderly (Carnevale
et al., 2018). Thus, the local microstructural changes due to
WMH can play an important role in a chain of relationships
between regional structural and functional connectivity and

specific cognitive deficits. Identifying the relationships of
these tract-specific characteristics with performance in each
cognitive domain can provide better understanding of the inter-
relationship of the multiple pathological changes that occur in the
elderly leading to cognitive changes.

In this study, the effects of WMH on major WM pathways
were assessed by a tract-based approach. We hypothesized
that the relationships among WMH, fiber density, structural
connectivity and functional connectivity were highly correlated,
and these changes are associated with cognitive performance in
a specific neuropsychological measure. Subsequently, we tested
significances in the causal relationships between WMH and
multiple cognitive measures mediated by microstructural and
functional connectivity.

MATERIALS AND METHODS

Participants
65 participants (ages: 67.4 ± 8.3 years, 44 females), 49 normal
controls and 16 MCIs with comparable age and sex were studied
at 3T Siemens Prisma (Erlangen, Germany) using a 64-channel
head coil. All studies were approved according to the University
of Pittsburgh Institutional Review Board and written informed
consent was obtained from all participants. The individuals
enrolled in the study did not have a self-reported history of
major central nervous system pathology (e.g., epilepsy, tumor,
Huntington’s disease, Parkinson’s disease, multiple sclerosis,
stroke, head injury with loss of consciousness for more than
30 min), major psychiatric disease (e.g., severe major depression,
bipolar disorder, substance abuse), or active cancer. We also
excluded persons who had sensory or motor deficits sufficient
to impair their ability to perform the core neuropsychological
tasks. Individuals taking psychoactive medications at doses that
could affect the neuropsychological testing or brain functional
responses such as benzodiazepines (e.g., lorazepam) or narcotic
analgesics (e.g., acetaminophen/propoxyphene) were likewise
excluded from the study.

Cognitive Assessments
Participants completed a multi-domain neuropsychological test
battery, including tests of memory (Consortium to Establish a
Registry of Alzheimer’s Disease Word List Learning test; modified
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Rey Osterrieth figure recall); language (30-item Boston Naming
Test; verbal fluency); attention (Trail Making Test A; digit
span forward); executive functions (Trail Making Test B; digit
span backward; clock drawing); and visuospatial construction
(modified Block Design; Rey Osterrieth figure copy). The
Montreal Cognitive Assessment (MoCA) was also administered
for a global screening measure.

Magnetic Resonance Imaging Data
Acquisition
MRI data was obtained by using part of the HCP imaging
protocols.1 Anatomical images were acquired using a 3D
T1-weighted magnetization prepared rapid gradient echo
(MPRAGE; TR = 2,400 ms, TE = 2.22 ms, TI = 1,000 ms,
FA = 8◦, voxel size = 0.8 × 0.8 × 0.8 mm3) with the
generalized autocalibrating partially parallel acquisition
(GRAPPA) acceleration factor = 2. 2D T2-weighted fluid
attenuation inversion recovery (FLAIR) images were acquired
with TR = 9,690 ms, TE = 91 ms, TI = 2,500 ms, voxel
size= 0.8× 0.8× 1.6 mm3, number of slices= 104 with no gaps,
and GRAPPA factor= 2.

A total of four runs of diffusion MRI were acquired
using simultaneous multislice (SMS) spin-echo EPI with
TR= 3,230 ms, TE= 89.20 ms, voxel size= 1.5× 1.5× 1.5 mm3,
number of slices = 92 with no gaps, multiband acceleration
factor = 4; both 98 and 99 diffusion-weighted directions were
acquired twice with reversed phase encoding direction (anterior-
posterior (AP) and posterior-anterior (PA)) in order to correct
for the EPI geometric distortion. A monopolar Stejskal-Tanner
diffusion scheme was used with b-values of 0, 1,500, and
3,000 s/mm2 (Stejskal and Tanner, 1965).

Four runs (two sets of opposite phase encoding directions, AP-
PA) of resting-state functional MRI (rs-fMRI) data were obtained
using a 2D single-shot SMS gradient-echo echo-planar imaging
(GE EPI; TR = 800 ms, TE = 37 ms, FOV = 208 × 208
mm2, voxel size = 2 × 2 × 2 mm3, FA = 52◦, multiband
acceleration factor = 8 and 72 slices with 420 volumes). Two
spin-echo EPI acquisitions were acquired with opposite phase-
encoding directions to calculate a spin-echo fieldmap, which
was used for the correction of rs-fMRI geometric distortion.
These spin-echo EPI images have the same geometrical, echo
spacing, and phase encoding direction parameters as the GE-EPI
rs-fMRI scans.

Data Processing
The MRI data was processed using AFNI (v17.2.07),2 FSL (v6),3

and Mrtrix34 programs combined with an in-house Matlab
program (2017b MathWorks, Natick, MA).

White Matter Hyperintensity Segmentation
The T1-weighted images underwent: bias field correction,
removal of gradient non-linearity and readout distortion, and

1https://www.humanconnectome.org/hcp-protocols-ccf-template
2http://afni.nimh.nih.gov/afni/
3http://fsl.fmrib.ox.ac.uk/fsl
4https://www.mrtrix.org/

alignment to the FLAIR images. The WMH regions were
automatically segmented from two different contrasts of FLAIR
and T1-weighted images using a deep learning algorithm based
on deep fully convolutional network [TensorFlow (v1.8) using
Keras] and ensemble models (Li et al., 2018; Kuijf et al.,
2019). The binary WMH masks were transformed to the
Montreal Neurological Institute (MNI) space for each subject.
The summation of the number of voxels detected as WMH
multiplied by voxel dimensions yields the total WMH volume
(units of mm3) for each subject.

Processing Apparent Fiber Density and Tract
Connectivity
The preprocessing of the DWI included: denoising (Veraart
et al., 2016), eddy-current, motion, bias field, and gradient-
non-linearity corrections. Then, the data were registered to the
anatomical images, and then the images and diffusion vectors
were linearly transformed to MNI space. Intensity normalization
was also applied. These were processed by the HCP preprocessing
pipelines.5

The fiber orientation distribution function (fODF) was
obtained by high angular resolution diffusion imaging (HARDI)
to overcome the non-specificity of FA by resolving complex fiber
architecture, especially in WMH region (Jeurissen et al., 2014).
The fiber orientation distribution (FOD) within each voxel was
computed by using multi-shell multi-tissue constrained spherical
deconvolution (CSD) with group-averaged WM/GM/CSF
response functions, which enables the direct comparison of
FOD amplitudes across subjects (Tournier et al., 2004, 2007).
The response functions were acquired from 30 control subjects
using the Dhollander algorithm (Dhollander et al., 2018). We
confirmed that none of the WMH voxels were involved in
the assessment of the WM response function. The absolute
amplitude of each FOD can be directly associated with an
apparent fiber density (AFD), which refers to a specific fiber
population within a voxel containing multiple fiber orientations
(Dell’Acqua and Tournier, 2019). The AFD was computed from
the FOD, and total AFD was calculated by summing the fiber
population within each voxel (Raffelt et al., 2012).

Fifty white matter fiber tracts were automatically determined
by TractSeg (v2.1), which is calculated by a fully convolutional
neural network using extracted FOD peaks that identify distinct
orientation of each voxel (Wasserthal et al., 2018). Segmentations
of the start/end regions of bundles, bundle segmentations, and
tract orientation maps (TOMs) were acquired (Wasserthal et al.,
2018). Bundle-specific tractography was automatically obtained
by probabilistic tracking on the estimated TOMs (Wasserthal
et al., 2019). The fifty tracts are listed in Supplementary Table 1.

To evaluate the AFD values along each tract, profiles were
calculated by averaging the AFD in each segment for 100
equally distant centroid segments/points along the streamline
(Wasserthal et al., 2020). The tract-profile of WMH was
also obtained from the WMH masks along each tract with
the same manner.

5https://www.humanconnectome.org/software/hcp-mr-pipelines
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The connectivity strength of each segmented tract [referred
as tract connectivity (TC)] was quantified as a cross-sectional
area of the bundle that was calculated by the total AFD volume
of the pathway of interest divided by the length of the bundle
(taken as the mean streamline length). Thus, this is independent
of fiber length.

The Comparison of White Matter Hyperintensitie and
Apparent Fiber Density Profiles
To compare local differences in WMH profiles with
corresponding changes in AFD profiles, we divided groups
according to the amount of WMH volume: lower-WMH and
higher-WMH group. The lower and higher WMH groups were
defined as the bottom and top 30% of WMH volume from the
normal controls, respectively (n = 15 in each group). Most
MCI subjects have a large amount of WMH. MCI-WMH group
was selected for MCI subjects with WMH volumes greater
than 5 standard deviations from the mean of the lower-WMH
group (Supplementary Figure 1). The AFD tract-profile of
the lower- and higher-WMH control and MCI-WMH groups
were compared to estimate the WMH effect on AFD in tract.
The t-statistic for each segment/point in the AFD tract-profile
was calculated between lower- and higher-WMH groups and
between lower-WMH and MCI-WMH groups to identify local
changes in the tract.

Note that this group classification is used only for the
comparison of WMH and AFD tract profiles. For all other data
processing, all 65 subjects were used.

Resting-State fMRI Data Processing
We followed the HCP data processing pipelines (Glasser et al.,
2013). Briefly stated, gradient non-linear distortion correction
was performed by the HCP-gradunwarp package using the
scanner’s gradient coefficient file; EPI distortion was corrected
by using FSL’s topup6 with a pair of spin-echo EPIs with
opposite phase encoding directions that result reversed geometric
distortion; motion was corrected by registering fMRI time-series
images to the single-band reference image of the SMS acquisition.
A demeaned and linearly detrended 12 motion parameters
(translation, rotation and their derivatives of x, y, z axes) are
provided as nuisance regression. High-resolution anatomical
images and EPI data were normalized to MNI152 template
space. Four sessions of rs-fMRI studies were concatenated. An
independent component analysis (ICA) was used to find the
spatial and temporal components of the functional networks
(Beckmann et al., 2005) after 2000s FWHM high-pass temporal
filtering for detrending-like behavior. Then, FSL’s FIX was used
to automatically classify ICA components into “good” and
“bad” by training data (HCP_hp2000.RData) (Griffanti et al.,
2014; Salimi-Khorshidi et al., 2014). The bad components were
regressed out from the 4D rs-fMRI data. The segmented terminal
(start/end) regions of bundles were non-linearly registered to
the MNI template. The gray matter (GM) regions containing
these terminal regions of bundles were identified from the

6https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup

segmented GM volumes obtained from T1-weighted anatomical
images using Freesurfer 6.0. The functional connectivity (FC) was
generated based on Pearson correlation between the averaged
rs-fMRI time series signals of the identified GM regions. The
identified GM regions for terminal regions of each bundle are
listed in Supplementary Table 2.

Statistical Analysis and Relationships With Cognitive
Assessments
For all 65 cognitively normal and MCI subjects, the relationships
of the amount of WMH volume, TC and FC with cognitive
outcomes were analyzed by the multiple linear regression,
while adjusting for age, sex, handedness, diagnosis status and
years of education.

The tract-specific relationships of WMH, TC, and FC with
multiple cognitive outcomes (MoCA and neuropsychological
batter tests) were assessed by lasso linear regression. When
performing linear regression with many variables that related
to each other, it is difficult to interpret the model. The lasso
regression provides a simpler model by automatically selecting
important features (most relevant variables) in the model by the
sparsity. In other words, this reduces a risk of detecting spurious
associations. Thus, it is desirable for better interpretation of
model with many variables. The sparsity is determined by the
lasso (L1-norm) constraint. This type of regularization results
in a sparse model by forcing the coefficients of some variables
to be zero. i.e., irrelevant variables are not included in the
final model. In this study, a set of tracts related to a cognitive
outcome was determined.

In lasso regression analysis, independent variables were 50
tracts of WMH volume and covariables (age, sex, handedness,
years of education and diagnosis) and dependent variable was
each cognitive outcome. Thus, a total of 6 models were compared.
The lasso regression analyses of TC and FC were tested with the
same manner. In order to automatically determine the optimal
regularization parameter (λ), i.e., L1-norm constraint, (1) 1,000
logarithmically spaced λ-values between 10−5 and 102 were
created, and the model was fit with these λ-values, (2) the
maximal λ was determined when all coefficients (β) were zero,
(3) the minimal λ was set to 0.001 ∗ λmax, (4) a grid of 100
equally spaced points of λ on the logarithmic scale between the
minimal and maximal λ-values was created, (5) the model was
performed by fivefold cross-validation. This was repeated 1,000
times with randomly chosen training and test dataset. (6) The
cross-validated mean squared error (MSE) was estimated and (7)
MSEs from 1,000 repetitions were averaged. (8) The λ with the
minimum MSE was chosen as the optimal λ. Supplementary
Figure 2 demonstrates automated selection of the regularization
parameter (λ) for the sparsity. Finally, the model was assessed
using the optimal λ. Statistical significance of the identified set of
tracts was determined by 20,000 permutations.

The mediation analysis was performed using Preacher and
Hayes method (Preacher and Hayes, 2008) with the BRAVO
toolbox7 to evaluate the causal relations between WMH

7https://sites.google.com/site/bravotoolbox
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and each cognitive measure through two-step pathway of
TC—FC, through TC, and through FC. The direct pathway
between WMH and each cognition was also assessed after
controlling for the indirect effects. Nuisance variables of age,
sex, handedness, years of education, and diagnosis were adjusted.
The causal relation between WMH and TC through the
pathway of AFD was also assessed. The statistical significance
of the direct and indirect pathways was determined by
20,000 permutations.

RESULTS

Table 1 summarized the demographic and cognitive
characteristics of the study participants. MOCA, attention,
memory, language, and executive function were significantly
different between cognitively normal and MCI subjects
(p < 0.05), while visuospatial function showed no significant
difference.

Figure 1 shows structural MRI data from normal subjects
of a 71-year-old female (Figures 1A–C), and a 68-year-old
female (Figure 1D). Figures 1A–C show the presence of WMH,
while Figure 1D does not. In Figure 1B, we show that the
WMHs were successfully segmented from a FLAIR image
(Figure 1A). The FODs in the WMH regions appeared altered
(Figure 1C) compared to the similar regions in a subject without
WMH (Figure 1D).

Figure 2A shows the WMH segmentations on left and right
fronto-pontine tracts (FPT) overlaid on a T1-weighted image.
The shapes of group-averaged tract-profiles for left and right AFD
were similar (upper profiles in Figures 2B,C). The tract-profiles
of AFD between lower-WMH and higher-WMH groups and
between lower-WMH and MCI-WMH groups were statistically
different mostly at the location of WMH (p < 0.05, blue asterisks
for lower-WMH vs. higher-WMH groups, and red asterisks

TABLE 1 | Demography, cognitive measures, and neuroimaging measures by MRI.

Cognitively normal (n = 49) MCI (n = 16)

Demography

Age (year) 67.1 ± 6.7 68.6 ± 12.2

Sex (fe/male) 35/14 9/7

Handedness (R/L) 48/1 16/0

Education (year) 16.9 ± 2.9 15.1 ± 3.2*

Cognitive measures

MOCAb 27.1 ± 1.7 22.8 ± 2.4**

Attentionw 26.9 ± 8.1 33.2 ± 10.8*

Executivew 63.4 ± 24.7 97.5 ± 42.3**

Memoryb 8.0 ± 1.4 4.5 ± 2.7**

Languageb 22.2 ± 5.7 18.2 ± 5.4*

Visuospatialb 21.1 ± 1.6 20.2 ± 1.7

For neuropsychological battery tests, higher score indicates worse performance for
attention and executive functionsw, while higher score indicates better performance
for other neuropsychological testsb. Statistical difference between cognitively
normal and MCI subjects, *p < 0.05; **p < 0.01.

for lower-WMH vs. MCI-WMH groups in Figures 2B,C). In
order to compare WMH and AFD changes, the tract-profiles
of lower-WMH were subtracted from that of higher-WMH
and MCI-WMH groups, respectively [blue line (= higher-
WMH—lower-WMH) and red line (= MCI-WMH—lower-
WMH) in Figures 2D,E]. WMH profiles were also subtracted
with the same manner. The subtracted AFD profiles were highly
correlated with the subtracted WMH profiles (Figures 2D,E).
It indicates an increase in the local WMH on the tract is
associated with a decrease in AFD. Similar results were observed
in other tracts. Figure 2F shows the correlation coefficient
values between subtracted WMH and AFD profiles against the
amount of WMH on the tract. The correlation value between
the amount of WMH and the AFD was high on tracts with
larger WMHs, while this correlation was, of course, low on
the tracts with smaller WMH because of little AFD changes
due to small WMH.

The relationships among WMH, AFD, TC, and FC were
assessed. Since the values of AFD, TC and FC are intrinsically
different across tracts, these values were normalized (z-scored)
across subjects for each tract. Figure 3A shows the amount of
WMH is inversely related with the normalized AFD (p < 0.001).
Figure 3B shows that AFD is linearly related with TC (p< 0.001).
However, there is no significant relationship between TC and
FC (p = 0.12, Figure 3C). With the mediation analysis, the
indirect pathways of the AFD as a mediator between WMH
and TC was statistically significant (p < 0.0001). Since the
AFD and TC present similar quantities for WM microstructural
changes and TC is more likely the result of AFD change
on tract, we focus on TC for WM microstructure in the
following analysis.

For the average value of the 50 tracts, the amount of WMH
volume was statistically different between normal and MCI
subjects (p < 0.05), while the average values of TC and FC for all
tracts were not statistically different (Figure 4, left). Note that the
amount of WMH shown in Figure 4A is an arbitrary unit because
it is a summation from tract profiles. The absolute WMH volumes
were 2,266 ± 5,472 and 6,729 ± 8,645 mm3 for normal and MCI
subjects, respectively (p < 0.05). The amount of WMH volume
was significantly related to attention and executive functions
[p < 0.0068 (= 0.05/6), with the Bonferroni correction], but
not with memory, language, and visual functions (Table 2). The
average values of TC and FC for all tracts were not statistically
significant with all cognitive outcomes. These results may be
caused by inclusion of tracts unrelated to cognitive change in the
average value of all tracts.

Tract-specific relationships of WMH, TC, and FC with
cognitive measures were analyzed using the lasso linear
regression to find a set of tracts that best related to each
cognitive measure. The regression coefficients of WMH, TC,
and FC for each cognitive measure are shown in Figure 5. For
WMH volume, tracts connected with thalamus [thalamo-parietal
(T-PAR) and thalamo-occipital (T-OCC)], striatum [striato-
fronto-orbital (ST-FO) and striato-premotor (ST-PREM)], and
corpus callosum (CC4, CC6) tracts were mostly associated
with attention and executive functions (Figure 5A). For TC,
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FIGURE 1 | (A) A FLAIR image. (B) WMH was successfully segmented by the automated program. (C) FODs were overlaid on FLAIR with WMH. Altered FODs
demonstrated in the WMH regions, compared to similar regions of a subject without WMH (D).

FIGURE 2 | (A) The segmented fronto-pontine tracts (FPT) are overlaid on T1-weighted images. The tracts are passing through the segmented WMH. Red, Green
and Blue represent the x, y, and z diffusion directions, respectively. (B,C) The group-averaged tract-profiles for right (B) and left FPT (C). The AFD tract profiles
(upper profiles) of higher-WMH (blue) and MCI-WMH (red) groups are statistically different with those of lower-WMH group (dark green) at the location of WMH in
WMH tract profiles (lower profiles: light green color line for lower-WMH, light blue for higher-WMH, and magenta for MCI-WMH groups). Asterisk marks: p < 0.05
(blue for higher-WMH and pink for MCI-WMH groups, compared to lower-WMH group). Left axis (blue): AFD, right axis (red): WMH. Error bars: S.E.M. (D,E) The
subtracted AFD profiles (blue lines) calculated by subtracting the lower-WMH group (green lines in B,C) from the higher-WMH group (blue lines in B,C). The
subtracted AFD profiles between lower-WMH and MCI-WMH groups show as red lines. In the same way, the subtracted WMH profiles (cyan lines in D,E) were
obtained from the lower- (green lines in B,C) and-higher WMH groups (cyan lines in B,C). The magenta lines are subtracted WMH profiles of lower-WMH from those
of MCI-WMH groups. (F) The correlation coefficient values were calculated between subtracted AFD and subtracted WMH profiles, and plotted against the amount
of WMH difference along the tract (1WMH was calculated by subtraction along the WMH profiles between less than 5% (green block on x-axis in D,E) and more
than 50% (red block on x-axis in D,E) of the maximum in the profiles). The subtracted WMH profile were well correlated with subtracted AFD profiles at high 1WMH.
The correlation coefficient values were inverted for display purpose.
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FIGURE 3 | (A) The relationship between the amount of WMH on tractometry and normalized mean of AFD tract-profile (correlation coefficient (cc) = −0.41,
p < 0.0001). (B) The relationship between normalized mean AFD and TC (cc = 0.50, p < 0.0001). (C) The relationship between TC and FC (cc = 0.12, p < 0.0001).
All tracts across subjects are displayed. Each symbol indicates value for each tract of each subject. All 65 subjects are displayed.

corpus callosum (CC4, CC6, CC7), cingulum (CG), and tracts
connected to striatum (ST-FO and ST-PREM) were related
to attention and executive function; arcuate fascicle (AF) and
superior longitudinal fascicle (SLF) were related to MoCA; AF,
CC6, superior cerebellar peduncle (SCP) and superior thalamic
radiation (STR) were related to memory; AF, fronto-pontine
tract (FPT), SCP, and STR were related to language (Figure 5B).
For FC, many identified tracts were related to memory (CC6,
CG, ILF, MCP, PORT, SLF, T-PAR, and ST-FO); ICP, IFO, ILF,
and STR were related to MoCA; CC7 and ST-FO were related
to attention and executive function; ICP, ILF and SLF were
related to language (Figure 5C). No tract was associated with
visuospatial function.

The WMH volume averaging from the identified tracts by
lasso regression (shown in Figure 5A) showed greater differences
between normal and MCI subjects with larger WMH volume
(Figure 4A, right), compared to results from all tracts (Figure 4A,
left). TC of identified tracts showed greater differences compared
to that of all tracts and became statistically different between
normal and MCI subjects (Figure 4B, right, p < 0.05). However,
overall FC strength of identified tracts increased, compared to
that of all tracts, but the differences between normal and MCI
subjects were similar (Figure 4C, right). The overall relationships
of WMH volume, TC, and FC with cognitive measures also
became statistically more significant when the linear regression
was performed by the identified tracts, compared to the results
from all tracts (Table 2). With the identified tracts, TC was
significantly related to executive function and language, and FC
was significantly related to MoCA and language.

Figure 6 shows the results of the mediation analysis, the
statistical significance (p-values) of each pathway between WMH
and multiple cognitive measures. The mediating pathway for
each cognitive measure was different. The indirect pathways
of FC between WMH and attention, and between WMH and
visuospatial function were not significant, while those of TC
between WMH and memory was not significant. Two step
indirect pathways (TC—FC) between WMH and all cognitive
measures were significant.

DISCUSSION

In the present study, higher WMH loads in WM tracts were
locally matched with the reduced AFD, indicating WMH is
associated with the microstructural alteration, which was related
to decrease in TC. The amount of WMH volume in MCI subjects
is larger than that in cognitively normal subjects and WMH is
mostly associated with attention and executive function. TC of
MCI subjects was statistically lower than that of normal subjects
only in the identified tracts that was mostly associated with
executive and language cognitive measures. Contrary to what
we expected, there was no direct relationship between TC and
FC and no difference between normal and MCI subjects in FC.
It is noted that the FC in this study was analyzed for WM
tract-based brain network, unlike cortical-oriented brain network
(e.g., default mode network and dorsal attention network) in
other studies. Tract-specific changes on WMH, TC and FC
for each cognitive performance may explain that macro- and
microstructural and functional changes are associated differently
with each cognitive domain in a fiber specific manner. In
addition, separated indirect pathways through TC and through
FC were different depending on cognitive domain, indicating the
relationship of WMH to each cognition may be associated by
different paths of pathophysiology with a set of tracts.

Advantage of Tract-Profile Approach
Fiber tracts in WM interconnect distant brain regions and play
an essential role in overall brain connectivity. A voxel-level
analysis may find structural changes, but they are not localized
to abnormalities of a specific WM tract. Thus, segmentation
of diffusion properties along a fiber tract provides localized
information within individual’s WM bundles and analyzes
differences in tracts of interest (Goodlett et al., 2009). Moreover,
the tract-profile method suggested quantifying multiple bundle
segments of tissue properties for the major WM connections in
an individual’s brain as a function of arc length along the tract
(Yeatman et al., 2012). The segmented tract-profile approach
facilitates comparing the various shapes of the tracts between
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FIGURE 4 | Comparisons between normal and MCI subjects for the amount
of WMH volume (A), TC (B), and FC (C) on tract. The graphs on the left were
obtained from all tracts, while the graphs on the right were obtained from
selected tracts by the lasso linear regression with cognitive measures (see
Figure 5). Y-axis: arbitrary unit. Error bars: S.E.M. ∗p < 0.05.

individuals as well as simplifying the data dimension. It helps
to extract tissue properties of the major WM pathways from the
areas containing morphological changes in an altered individual’s
brain due to aging or disease progression. Thus, the tract-based
approach has been shown prominent results when performing
group comparison (Chamberland et al., 2019; Versace et al., 2019;
Zhang et al., 2019). In addition, the different length of each fiber
tract is difficult to compare across tracts. The equal segmentation
of the tract is practically useful for comparisons between different
fiber bundles with various lengths. The tract-profile approach
is also not hampered by inconsistency in gyrification patterns
across individuals and atrophy when comparing controls and
disease groups because this method does not require anatomical
information. Thus, it produces less errors in assessments of the
WM properties of the tract.

In this study, we analyzed WM microstructural features
by HARDI-derived measures with multi-shell multi-tissue CSD
approach to overcome the non-specificity of FA in resolving
complex fiber architecture. Despite the fact that diffusion-tensor

metrics have well-characterized the voxel-wise microstructural
features of WMH regions (Jones et al., 1999; Maniega et al.,
2015), these are not well suited to properly characterize
microstructural changes in AD- and aging-related studies (Jones
et al., 2013; Fu et al., 2020). Misleading results from the
diffusion-tensor model were observed in voxels containing
more than one fiber population (e.g., at fiber bundle crossings)
when comparing controls and AD patients (Mito et al., 2018).
This misleading could affect most brain regions because the
proportion of these multi-directional voxels is approximately
70–90% in the WM (Jones et al., 2013; Dell’Acqua and
Tournier, 2019). In addition, the tractography obtained by
FA could falsely start or stop in the WMH regions due to
FA reduction in WMH (Ciccarelli et al., 2008), while the
principal fODF direction is preserved in WMH regions, and
therefore has no impact on the quality of tractography (Theaud
et al., 2017). Thus, compared to the diffusion-tensor method
(Fu et al., 2020), the fODF-derived approach is expected to
better characterize the changes of specific fiber populations
for WMH regions and detecting WMH-induced changes in
WM microstructure.

The Relationships Between
Neuroimaging Measures and Multiple
Cognitive Outcomes
Many studies have been shown that increased WMH volume is
associated with poor cognitive performance. In the present study,
WMH volume was related to attention and executive functions,
but not with memory, language and visuospatial functions. This
cognitive domain-specific variability agrees with previous results;
larger WMH volume was related to executive function, but
not memory (Dong et al., 2015); meta-analyses showed that
among the cognitive domains, attention and executive function
were specifically affected by WMH (Kloppenborg et al., 2014).
In addition, WMH was found to affect both episode memory
and execution, but its effect on episodic memory was mediated
by executive function (Parks et al., 2011). These cognitive
domain-specific variabilities by WMH may be caused by the

TABLE 2 | The relationships of the amount of WMH, TC, and FC with
cognitive outcomes.

WMH TC FC

All Identified All Identified All Identified

MOCA 0.3787 0.3104 0.2090 0.0375 0.0295 0.0001*

Attention 0.0002* 0.0001* 0.1710 0.1070 0.6958 0.2110

Executive 0.0068* 0.0029* 0.0240 0.0049* 0.8696 0.4290

Memory 0.7256 0.7715 0.9493 0.7058 0.4951 0.5555

Language 0.2592 0.0159 3.9 × 10−5* 0.1367 0.0007*

Visuospatial 0.2543 0.3840 0.9890

The p-values for the coefficient of each WMH, TC, and FC from the multiple
linear regression are summarized. (all) The linear regression performed with values
averaging from all tracts and (identified) values averaging from identified tracts.
Blank in the identified column indicates that no tract is identified in the lasso
regression. For identified tracts (see Figure 4). *p < 0.0068.
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FIGURE 5 | The relationships of the amount of WMH volume (A), TC (B), and FC (C) with various cognitive outcomes. The coefficient of WMH, TC, and FC for each
cognitive outcome from the lasso linear regression with adjusting age, sex, handedness, diagnosis status and years of education as covariates. Statistically
significant tracts are displayed (p < 0.0068). Since each cognitive outcome has different units of measurement, the coefficient of each cognitive outcome was
divided by the average value of the cognitive outcome to normalize unit across multiple cognitive outcomes, and converted to absolute value for display purpose. For
each cognitive outcome, the color of bar graph is displayed as blue for MOCA, red for attention, yellow for executive, purple for memory, and green for language. No
tracts were related with visuospatial function. For FC (C), since the bar graph of the execution function is much larger than that of other functions, it is displayed with
a number next to the bar graph. The abbreviations of tract are listed in Supplementary Table 1.

spatial distribution of WMH or the order of different cognitive
domain alteration progression. For example, the frontal WMH
is mainly associated with attention and executive function,
while parietotemporal WMH is related to memory (Burton
et al., 2004; Lampe et al., 2019). Abnormalities in executive
function typically precede deficits in language and spatiotemporal
functions (Albert, 2011).

Both TC and FC averaging from the identified tracts become
more significant with cognitive measures, compared to the
results from all tracts (Table 2). The differences of WMH
and TC between normal and MCI were also increased in the
identified tracts (Figure 5). Thus, it can be explained that
specific tracts are related with cognitive alterations. This agrees
the previous study of rhesus monkeys that degeneration of

myelin sheaths and loss of axons (nerve fibers) in several but
not all fiber bundles were correlated with cognitive decline
(Peters and Kemper, 2012). Subjects from mostly normal and
early stage of cognitive decline conditions in this study may be
another factor for tract-specific results. Since the progression of
cognitive decline occurs slowly over a long period of time, the
severe changes in TC and FC have not yet developed in many
regions of the brain. Local microstructural change of AFD due
to WMH may not be immediately affected to cause disruption
of TC and cascading of further processing of cognitive deficits.
A change above a certain threshold is required to have a causal
effect (Boone et al., 1992), e.g., a certain amount of reduction in
AFD on tract is required to cause a decrease in TC. In addition,
cognitive reserve (e.g., education) may also play a significant role
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FIGURE 6 | Results of mediation analysis are summarized for various cognitive outcomes (p-value for each pathway). Mediation analysis was tested for two step
indirect path between WMH and each cognitive measure via TC—FC (two step), indirect pathway between WMH and each cognitive measure through TC (through
TC), indirect pathway between WMH and each cognitive measure through FC (through FC), and the direct pathway between WMH and each cognition after
controlling for the indirect effects. Nuisance variables of age, sex, handedness, years of education, and diagnosis were adjusted. Statistically significance results
determined by 20,000 permutations are shown in bold (p < 0.0068).

as a buffer in this process, causing high individual variability
(Fernández-Cabello et al., 2016).

Tract-Specific Relationship With
Cognitive Measures
Identified tracts of each WMH, TC and FC were differently
associated with performance in various cognitive domains.
This agrees with the previous reports that tract-specific
microstructures are associated with performance in certain
cognitive domains (Ystad et al., 2011; Salami et al., 2012;
Voineskos et al., 2012; Sasson et al., 2013; Cremers et al., 2016).
The processing speed and executive function are commonly
observed in relation with altered WM microstructural integrity.
Except this, the results of reported tracts and related cognitive
functions are heterogenous across the studies. This may be
caused by discrepancies in the determination of tract extraction,
neuropsychological battery tests, and focus of interest in the
studies (Bolandzadeh et al., 2012). We analyzed different WM
microstructural feature (i.e., TC) compared to the previous
studies (mean or median of FA and MD in tract), thus, the direct
comparisons of our findings with previous results are challenging.
Our results showed that TC of posterior corpus callosum and
tracts connecting striatum were most related to attention and
executive function. Additionally, TC of thalamus-cerebellum,
thalamus-superior frontal, and frontal-temporal connections
were related to memory and language. Damages in a particular
tract may be associated with a specific functional domain
deterioration that the regions connecting the tract are responsible
for. For example, the striatum interacts with the prefrontal cortex
and contributes to executive function (Provost et al., 2015).
The thalamus plays an important role in memory, executive
functioning, attention and language (Van der Werf et al., 2003;
Crosson, 2013), and exhibits a close partnership with other
subcortical areas, especially the striatum (Wolff and Vann, 2019),

while the frontal lobes support high-level cognition comprising
executive skills and working memory.

On the other hand, the identified tracts in FC were mostly
associated with memory function, but not overlapping with
those identified in TC. This may be related to the fact that TC
and FC in tract-based approach are not directly associated as
shown in Figure 3. Deterioration in FC may occur in different
cognitive domains through different path of mechanism, which
may be independent with WMH-induced TC process. Overall,
the identified tracts for WMH and TC are largely related with
attention and executive function, while those for FC are mostly
related to memory function. The mediation analysis showed the
indirect path through TC was not significant between WMH
and memory, while that through FC was not significant between
WMH and attention and visuospatial function. It indicates that
alterations in TC and FC may occur in different cognitive
domains through different pathways, at least in aging or early
stage of disease progression.

Potential Limitations
We studied mostly normal subjects and relatively small number
of MCI subjects. Thus, the pathology features of WMH-induced
cognitive deficits may not be fully integrated in this study.
However, abnormalities in WM are considered one of the earliest
changes in the context of AD pathology in pre-dementia stages
(Peters and Rosene, 2003; Gunning-Dixon et al., 2009; Nasrabady
et al., 2018). Thus, our results may be helpful to understand
early mechanism of cognitive decline. The connectivity results
may vary depend according to different parcellation schemes for
node, which obstruct the comparison of results across studies
(Stanley et al., 2013). Regions (node) analyzed for FC and TC
in this study need to be cautious when comparing them with
other studies. In addition, larger increase in WMH burden may
be associated with steeper cognitive decline over the same time
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period (Vannorsdall et al., 2009). However, the cross-sectional
design of this study cannot assess these longitudinal changes.
Thus, it implies that there is no answer about the temporality
of alterations (progression or accumulation) of WMH and their
direct relationships to alterations in brain connectivity and
cognitive decline.

CONCLUSION

The burden of WMH lesions contributing to local
microstructural alterations is related to WM TC, but is not
directly associated with FC. The specific tracts of WMH, TC,
and FC were differently associated with changes in specific
cognitive performances, and alterations in these identified
tracts may involve in specific cognitive deficits. In addition,
changes in each cognitive domain on WMH loads were mediated
through different pathways of TC and FC. Thus, specific
cognitive deterioration may be affected by alterations in a set
of different tracts that are differently associated with macro- and
microstructural, and function changes. Therefore, assessing the
effects of WMH and its associated changes on tracts help for
better understanding of the inter-relationships of the multiple
pathological changes occurring in older adults that lead to
cognitive impairment.
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