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Abstract: [Objective] Using multi-omics research methods to explore cytolytic activity-related genes
through the immunoregulatory factors HAVCR2 (TIM3) affecting the survival and prognosis of lung
adenocarcinoma. [Methods] We combined Cox single factor regression and lasso regression feature
selection algorithm to screen out the key genes of cytolytic activity in lung adenocarcinoma, and
applied multi-omics research to explore the clinical predictive value of the model, including onset
risk, independent prognosis, clinical relevance, signal transduction pathways, drug sensitivity, and
the correlation of immune regulatory factors, etc. TCGA data are used as the experimental group,
and GEO data is used as the external data control group to verify the stability of the model. The
survival curve was generated by the Kaplan–Meier method and compared by log-rank, and the
Cox proportional hazard model was used for multivariate analysis. In this study, 10 fresh tissue
samples of lung adenocarcinoma were collected for cellular immunohistochemical experiments to
analyze the expression of immunoregulatory factors in cancer tissues, and the key immunoregulatory
factors were verified and screened out. [Results] A total of 450 genes related to cytolytic activity were
differentially expressed, of which 273 genes were up-regulated and 177 genes were down-regulated.
A total of 91 key genes related to cytolytic activity related to the prognosis of lung adenocarcinoma
were screened through Cox single factor regression. The ROC curve results showed that the AUC
values of 1, 3, and 5 years in the training set and test set were all greater than 0.7, indicating that
the model has a valid verification. The level of risk score is significantly related to the sensitivity of
patients to AKT inhibitor VIII, Lenalidomide, and Tipifarnib. In addition, our study also found that
receptor and MHC genes related to immunomodulatory, and chemokines, including HAVCR2, are
more highly expressed in the low-risk group. [Conclusions] HAVCR2 (TIM3) immunoregulatory
factors affect the expression of key genes that affect cytolytic activity in lung adenocarcinoma cells,
and to some extent indirectly affect the survival and prognosis of patients with lung adenocarcinoma.

Keywords: cytolytic activity; lung adenocarcinoma; immunoregulatory factor; immune checkpoint;
multi-omics study; drug sensitivity

1. Introduction

Lung cancer is one of the malignant tumors with the fastest increases in morbidity
and mortality and represents the biggest threat to people’s health and life. Lung cancer has
changed from a rare disease to a global and public health problem [1]. The causes of lung
cancer have become more complex with the world’s industrialization, urbanization, and
environmental pollution. In the last 50 years, many countries have reported a significant
increase in the incidence and mortality of lung cancer, but the cause of lung cancer is still
not completely clear [2–4]. Therefore, screening biomarkers to predict the early progression
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of lung cancer and establishing a risk prediction model for lung cancer are crucial for
disease management. In addition, immunotherapy is being explored as an alternative to
adjuvant therapy due to poor prognosis after standard treatment. Immune checkpoint is a
class of immunosuppressive molecules, which can regulate the intensity and extent of the
immune response, so as to avoid the damage and destruction of normal tissues. During
the occurrence and development of tumors, the immune checkpoint is one of the main
reasons for immune tolerance [5]. Today’s checkpoint inhibitor drugs target receptors,
such as PD-1 and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which act as
a kind of “off switch” on a T cell’s surface to prevent it from attacking other cells. The
use of one or more of these drugs can prevent the pathways from releasing the inhibitors
so that the immune system can fight the tumor. However, despite the great success of
anti PD-1/PD-L1 immune checkpoint antibodies in cancer treatment over the years, more
than half of patients who rely on these drugs have relapsed or their cancer has progressed.
Studies [6,7] have shown that cytotoxic T cells, natural killer cells, and other immune cells
reflect the strength of anti-tumor immunity and are associated with the effectiveness of
immune checkpoint inhibitors. In addition, they are closely associated with the clinical
prognosis of many tumors, including lung and colorectal cancer. Cytolytic activity, as a
new biomarker for immunotherapy, can characterize the anti-tumor immunoactivity of
immune cells, such as CD8+ cells, cytotoxic T cells, and macrophages [8]. Therefore, it is
necessary to explore genes and predictive models related to the CYT level to provide a
basis for the prognosis management of lung cancer.

Immune checkpoint receptor protein TIM3 is a type I membrane protein, also known
as hepatitis A virus cell receptor 2 (HAVCR2), which is a negative regulator of anti-tumor
immunity. As the largest database of cancer gene information at present, the comprehensive
TCGA is not only reflected in many cancer types but also reflected in multi-omics data,
including gene expression data, miRNA expression data, copy number variation, DNA
methylation, and SNPs [9]. In the early stages, we screened genes related to cytolytic
activity [10], constructed a model related to cytolytic activity through TCGA dataset,
verified the stability of the model in three GEO datasets, and predicted the prognosis of
lung cancer patients through the model related to cytolytic activity, which will provide a
new basis for the management of the disease.

2. Materials
2.1. Data Acquisition

The TCGA database (https://portal.gdc.cancer.gov/) (accessed on 1 January 2022). is
the biggest cancer gene information database, including gene expression data, the miRNA
expression data and copy number variation, DNA methylation, SNPS, and other data.
We downloaded the original mRNA expression data of processed LUAD, including the
normal group (n = 59) and the tumor group (n = 535). The Limma package was used to
integrate and standardize the FPKM data of level 3 mRNA, which was downloaded to
analyze the differently expressed genes and their expression levels [11]. The screening
conditions of different genes were LogFc > 1 and p < 0.05. The Series Matrix File data File
of GSE37745 from the NCBI GEO public database was downloaded, the platform GPL570
was annotated, and the data of 106 LUAD patients with the complete expression profile
and survival information was downloaded. The data of 83 LUAD patients with complete
expression profile and survival information were extracted [12]. The Series Matrix File
data File of GSE50081 was downloaded, the platform GPL570 was annotated, and the
data of 127 LUAD patients with complete expression profile and survival information was
extracted. GeneCards (https://www.genecards.org/) (accessed on 1 January 2022) were
used to obtain 976 cytolysis activity-related gene sets through our database.

2.2. Go and KEGG Functions

Clusterprofiler (R 3.6.3, The United States) was used to functionally annotate the
difference factors to comprehensively explore the functional correlation of these prognostic
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genes [13]. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) were used to assess related functional categories. The GO and KEGG enrichment
pathways with p and Q values of less than 0.05 were considered as significant categories.

2.3. Model Construction and Prognosis

Differential genes related to cell lytic activity were selected and lasso regression was
used to further construct prognostic correlation models. After the expression values for
each specific gene were included, a risk score formula for each patient was constructed
and weighted with its estimated regression coefficients in lasso regression analysis [14,15].
According to the risk scoring formula, patients were divided into low risk group and high
risk group with the median risk score as the cut-off point. Survival differences between
the two groups were assessed by Kaplan–Meier and compared using log-rank statistical
methods. Lasso regression analysis and stratified analysis were used to examine the role
of risk score in predicting patient outcomes, and the ROC curve was used to study the
accuracy of model prediction.

2.4. Drug Sensitivity Analysis

Using genomics based on the largest drug database (GDSC—Genomics of Drug Sensi-
tivity in Cancer, https://www.cancerrxgene.org/) (accessed on 1 January 2022), we utilized
the R software(R 3.6.3, The United States) package “pRRophetic” to predict chemotherapy
sensitivity of each tumor samples; the estimates of IC50 for each specific chemotherapeutic
agent were obtained by regression method [16], and 10 cross-validations were performed
with the GDSC training set to test the regression and prediction accuracy [17]. Default
values were selected for all parameters, including “combat”, which removes the batching
effect, and the average of the duplicate gene expression.

2.5. Analysis of Immune Cell Infiltration

The Cibersort algorithm was used to analyze the RNA-Seq data of LUAD patients
in different subgroups to infer the relative proportion of 22 kinds of immunoinfiltrating
cells [18], and Spearman correlation analysis was performed on the gene expression level
and the content of immune cells, and p < 0.05 was considered statistically significant.

2.6. GSEA Enrichment Analysis

The expression profiles of lung cancer patients were analyzed by gene collection
enrichment (GSEA, http://www.broadinstitute.org/gsea) (accessed on 1 January 2022) to
determine the high risk and low risk of differentially expressed genes between groups of
patients [19]. The gene set was filtered using a maximum and minimum gene set size of
500 and 15 genes, respectively. After 1000 permutations, a rich gene set was obtained based
on p < 0.05 and a false discovery rate (FDR) = 0.25.

2.7. Statistical Analysis

Survival curves were generated through the Kaplan–Meier method and compared
using log-rank analysis. The Cox proportional risk model was used for multivariate
analysis. All statistical analyses were conducted in the R software(R 3.6.3, The United
States). All statistical tests were bilateral, and p < 0.05 was statistically significant.

3. Results
3.1. To Investigate the Expression Profile and Related Signaling Pathways of Genes Related to
Cytolytic Activity in LUAD Cohorts

We downloaded raw LUAD mRNA expression data (FPKM) processed from the TCGA
database and extracted 935 sets of regulatory factors related to cytolytic activity. Differential
expression analysis was performed between lung cancer patients and non-lung cancer patients
using the Limma package [20]. The results showed that 450 genes related to cell lytic activity
were differentially expressed (logFc > 1 and logFc < −1 and p < 0.05), 273 of which were
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upregulated. There were 177 down-regulated genes (Figure 1a), and a protein interaction
network analysis of genes in different gene concentrations was conducted by Cytoscape
software (R 3.9.0, The United States) (Figure 1b). GO and KEGG enrichment analysis showed
that these differential genes were significantly enriched in a large number of pathways.
For example, there is the positive regulation of cell activation, the external side of plasma
membrane, peptide antigen binding, and the regulation of GO-rich concentrations. A large
number of genes were enriched in lymphocyte activation and other pathways (Figure 1c).
In the process of KEGG enrichment, several pathways, primary immunodeficiencies, and
Leukocyte transmigrations were found. At the same time, a large number of genes were
enriched in metabolism-related pathways (Figure 1d).
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Figure 1. Identification and pathway enrichment analysis of differential genes associated with
cytolytic activity in LUAD. (a) Differential genetic heat map. Heat maps of 10 up-regulated genes.
(b) PPI analysis. Cytoscape software was used to analyze the protein interaction network of genes in
different gene sets. (c) GO and (d) KEGG enrichment analysis.

3.2. Obtain Prognostic Related Genes and Build a Prediction Model

To further identify the key genes in the cytolytic activity gene concentration, we
collected clinical information from LUAD patients, and we used a combination of Cox
univariate regression and lasso regression feature selection algorithm to screen out the char-
acteristic genes in lung cancer (Figure 2a,b). The results showed that a total of 91 prognostic
related genes were screened out by Cox univariate regression (Figure 2c). We randomly
divided TCGA patients into a training set and a validation set at a 4:1 ratio. After lasso
regression analysis, the optimal risk score value corresponding to each sample was obtained
for subsequent analysis. According to the median risk score, LUAD patients were divided
into high-risk and low-risk groups and analyzed using Kaplan–Meier curves [21]. The OS
of the high-risk group in both the training set and the test set was significantly lower than
that of the low-risk group (Figure 2d,e). In addition, the results of ROC curve showed that
the AUC values of 1, 3, and 5 years in the training set and the test set were all greater than
0.7 (Figure 3a,b), indicating that the model had a good verification efficiency.
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3.3. The Clinical Predictive Value of the Model Was Discussed in Multi-Omics Study

The tumor microenvironment is mainly composed of tumor-related fibroblasts, im-
mune cells, extracellular matrix, a variety of growth factors, inflammatory factors, special
physical and chemical characteristics, and the cancer cells themselves. The tumor microen-
vironment significantly affects the diagnosis, survival outcome, and clinical treatment
sensitivity of tumors [22–24]. By analyzing the relationship between the risk score and
tumor immune invasion, the potential molecular mechanism of the risk score affecting the
progression of lung cancer was further explored (Figure 3c). Early lung cancer surgery
combined with chemotherapy has a clear effect. Based on the drug sensitivity data from
the GDSC database [25], our study predicted the chemotherapy sensitivity of each tumor
sample through the R package “pRRophetic” and further explored the risk score and the
sensitivity of common chemotherapy drugs. Results showed that risk score was signif-
icantly correlated with patients’ sensitivity to AKT VIII, Lenalidomide, and Tipifarnib
(Figure 3d). The results showed that risk score was significantly positively correlated with
macrophages M0, CD4 memory-activated T cells, macrophages M1, neutrophils, memory-
activated NK cells and B cells, monocytes, resting mast cells [26], resting dendritic cells
(Figure 3e), and the regulation network among immune cells is shown in Figure 3f. We
further explored the mutation profiles of patients in the low-risk group, and the results
showed that the proportion of mutations in TP53 and other genes in the high-risk group
was significantly higher than that in the low-risk group (Figure 3g). Meanwhile, we also
found that the tumor mutation load in the high-risk group was significantly higher than
that in the low-risk group (Figure 4a).
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3.4. Discussion on Specific Signaling Mechanisms Related to the Prognostic Model

We then investigate the specific signaling pathways involved in the high-risk correla-
tion model and explore the potential molecular mechanisms [27] by which the risk score
influences tumor progression. The GO results of GSEA analysis show that the differences
between the two groups were mainly enriched by mast cell-mediated immunity, mitotic
nuclear division, vacuolar acidification and other signaling pathways. The KEGG results of
GSEA analysis showed that the cell cycle, intestinal immune network for IgA production,
oocyte meiosis, the P53 signaling pathway and primary bile were mainly enriched in dif-
ferent pathways between the two groups’ acid biosynthesis, RNA degradation, and other
signaling pathways (Figure 4a,b).

3.5. External Datasets Were Used to Verify the Robustness of the Prognostic Model

We downloaded the data of LUAD patients with survival data processed from the GEO
database (GSE37745, GSE30219 and GSE50081), predicted the clinical classification of LUAD
patients in the GEO database according to the model, and evaluated the survival difference
between the two groups using Kaplan–Meier [28–30]. The stability of the prediction model
is discussed, and results showed that the OS in the high-risk group of the two GEO external
validation sets was significantly lower than that in the low-risk group (Figure 4c–e). We
used external datasets to conduct ROC curve analysis on the model, and the results showed
that the model had a strong predictive effect on the prognosis of patients (AUC values of 1,
3, and 5 years in the GSE37745 dataset were all greater than 0.6; AUC values of 1, 3, and
5 years in the GSE30219 dataset were all greater than 0.6; AUC values of 1, 3, and 5 years in
the GSE50081 dataset were all greater than 0.6) (Figure 4f–h).
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3.6. Analysis of Risk and Independent Prognosis

The results of logistic regression analysis showed that in all our samples, the risk score
value of lung cancer made a significant contribution to the scoring process of predictive
analysis [31]. Calibration curves for the nomogram prediction model are also drawn
to indicate the stability of the nomogram prediction model (Figure 5a,b). In addition,
univariate and bivariate analyses showed that the risk score was an independent prognostic
factor in LUAD patients (Figure 6a,b).
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3.7. Correlation Analysis between Risk of Disease and Multiple Clinical Indicators

According to the size of clinical index values, the corresponding risk score values of
the samples were divided into different groups, and the grouping results of each clinical
index were shown in the form of a boxplot (Figure 6c–h). Rank sum test (Kruskal test)
found that the distribution of risk score values in gender, stage, T, M, N, and other clinical
indicators were significant between groups (p < 0.05). The risk score has good applicability
to the grouping of this group of samples.
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3.8. Relationship between Risk Score Subtypes and Immunoregulatory Factors

The TIDE immunotherapy analysis was further performed in the high-risk groups,
and the results showed significant differences in immune dysfunction and rejection be-
tween the high-risk groups (Figure 7a,b). The genes associated with immune modification
include BTLA, CSF1R, ADORA2A, IL-10, LGALS9, HAVCR2, CD160, CTLA4, CD244,
TGFB1, TGFBR1, and CD96 (Figure 7c). Tumor immunotherapy is a hotspot in current and
future research, and T cell immunoglobulin mucin 3 (TIM3) is another emerging immune
checkpoint molecule after PD-1/PD-L1 and CTLA-4 [32]. TIM3 expression on CD8+ T
cells in the tumor microenvironment is considered to be a major marker of T cell dysfunc-
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tion. Therefore, TIM3 is of priority for further study among the genes related to immune
modification in this study.
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3.9. High Expression of TIM3 in Lung Adenocarcinoma May Be Involved in Tumor
Immune Response

In this study, the high and low expression of TIM3 in lung adenocarcinoma tissues
and adjacent tissues was verified by PCR experiments (Figure 8). The results of real-time
fluorescence quantitative PCR were generally presented in the form of mean ± standard
deviation. The results are usually analyzed by the method of relative definite halo analysis,
the expression level of the target gene is obtained by 2–∆∆CTmethod, β-actin is the internal
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reference gene, and TIM3 is the target gene. The expression level of each gene is measured
twice, so the final CT value is taken as the average of the results of the two groups. For the
calculation of the ∆∆ Ct value, the results of the final samples and the normal control group
2–∆∆CT are the expressions of the multiple differences between the two groups. In this
study, relative gene expression analysis was generally performed using the 2–∆∆CT method,
which was simple and easy to undertake. The necessary conditions for this analysis were
when the amplification efficiency of the target gene and reference gene was close to 100%
and the efficiency deviation between them was within 5%.
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The final QRT-PCR results indicated that there was a statistically significant difference
in the related mRNA levels of TIM3 in lung adenocarcinoma tissues and normal tissues
(p < 0.001).

3.10. Immunohistochemistry and Immunofluorescence Assay

TIM3 showed two different states of high and low expression, and the positive signal
was mainly located in the nucleus, which was consistent with its function as a gene
regulatory factor, and also reflected the relationship between the TIM3 expression level and
the clinicopathological characteristics of lung adenocarcinoma patients (Figure 9). Immune
checkpoint receptor protein TIM3 is a type I membrane protein, also known as hepatitis
virus cell receptor 2 (HAVCR2), which is a negative regulator of anti-tumor immunity.
TIM3 is a member of the TIM family, which is composed of eight TIM1-TIM8 members.
TIM3 is a type I membrane glycoprotein expressed in terminally differentiated CD4+T cell
subsets (e.g., Th1 cells, Th17 cells, and Tregs) and CD8+T cell subsets type 1 CD8+T cells
(Tc1) but not in Th2 cells. It is also expressed in B cells, macrophages, dendritic cells, natural
killer cells, mast cells, and monocytes (Figure 10).
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4. Discussion

Today, tumors have become the main cause of death worldwide. However, whether
in terms of morbidity or mortality, lung adenocarcinoma has shown an increasing trend
year by year. Although the level of medical care has greatly improved in recent years [33],
which has played an important role in the early screening, diagnosis, and treatment of
lung cancer, the degree of malignancy of lung cancer is relatively high and the survival
rate is still very low. Therefore, research on the pathogenesis of lung adenocarcinoma and
the management of prognosis assessment must be strengthened, and the importance of
establishing a risk model for lung cancer management must be further clarified so as to
achieve early prevention and effective treatment [34].

In recent years, immunotherapy for the programmed death factor 1 (PD-1) and its
ligand 1 (PD-L1) has made rapid progress in lung adenocarcinoma [35]. Although im-
munotherapy has a significant effect, only a small number of patients can benefit from it.
How to choose effective biomarkers to screen out potential benefit groups is the main prob-
lem currently facing. Some people think that its monitoring effect on tumors even outper-
forms T cells. As far as the current experiments and people’s understanding are concerned,
the killing of tumor cells by macrophages is multi-method and multi-mechanism [36]. It
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is still difficult to use one mechanism to explain all phenomena, including cytolysis, au-
tophagy, apoptosis, and other methods. When the cells of the body become cancerous, this
induces immune cells to attack the tumor cells in a variety of ways, destroying the cell mem-
brane through complement or cytolysin, etc., and causing the tumor cells to undergo a lytic
effect, thereby achieving the ultimate goal of killing the tumor cells. However, this immune
effect is different in different individuals or against different tumor cells, and its response
efficiency is different in high and low expression. This is related to the mutated genes in
tumor cells. Some mutated genes are closely related to cytolytic activity; relevant, highly
sensitive, and specific. At present, many studies have begun to explore the expression of
key genes related to cytolytic activity in different types of tumors, including cervical cancer,
bladder cancer, prostate cancer, breast cancer, and lung adenocarcinoma [37]. Cytolysis
is an effect mechanism for the body to kill viruses and other microorganisms infecting
cells and tumor cells. Compared with the N-terminus, the cytolytic activity regulator
contains a conserved C2 domain at the C-terminus, which is in the synaptic binding protein
(SYNC2A), protein kinase CB (PKC-B), and phospholipase CD (PLC-D). There are also
reports in China [38] that among these proteins, C2 interacts with the cell membrane to
regulate critical intracellular reactions, including membrane transport, second messenger
production, GTP ases activation, Ca2+-dependent neurotransmitter release, and control
protein phosphorylation. It can be seen that the high expression of cytolytic activity genes
plays a key role in tumor immunotherapy.

In this study, Cox single factor regression and lasso regression feature selection algo-
rithms were used to screen out the key genes of cytolytic activity related to the prognosis of
lung adenocarcinoma and construct a risk model. The median risk score in the test set was
−0.0354256887557756, and patients were classified as a high-risk group and low-risk group,
and Kaplan–Meier curve analysis was used. The OS of the high-risk group in the training
set and the test set was significantly lower than that of the low-risk group. In addition, the
ROC curve results show that the AUC values of 1, 3, and 5 years in the training set and the
test set are all greater than 0.7, indicating that the model has good verification performance.
The protein of HAVCR2 encoded by this gene belongs to the immunoglobulin superfam-
ily [31,32] and TIM family of proteins. The CD4-positive T helper lymphocytes can be
divided into types 1 (Th1) and 2 (Th2) on the basis of their cytokine secretion patterns [39].
This protein is a Th1-specific cell surface protein that regulates macrophage activation
and inhibits Th1-mediated auto- and alloimmune responses and promotes immunological
tolerance. The CD160 molecule is a glycosylphosphatidylinositol (GPI)-anchored protein,
also known as BY55, which was first discovered on the surface of NK cells [33,34]. The
CD160 gene is located in the 1q21.1 region of the human chromosome, and its protein
molecular weight is a 27 kda glycoprotein. Its open reading frame is composed of 181 amino
acids and it has weak homology with the kill-inhibitory receptor KIR on the surface of NK
cells. Classical and non-classical MHC I molecules have low affinity with CD160, and this
combination can enhance NK cells and the cytotoxic activity of T cells.

We further explored the risk score and the sensitivity of common chemotherapy drugs.
The results of the study showed that the level of risk score was significantly related to the
sensitivity of patients to AKT inhibitor VIII, Lenalidomide, and Tipifarnib. The results of the
study showed that the risk score was significantly positively correlated with macrophages
M0, memory-activated CD4 T cells, macrophages M1, neutrophils, and activated NK cells
and significantly negatively correlated with memory B cells, monocytes, resting mast cells,
and resting dendritic cells [40]. Through GO and KEGG enrichment analysis, we found
that these differential genes are significantly enriched in a large number of pathways, such
as the positive regulation of cell activation, the external side of the plasma membrane,
peptide antigen binding, the regulation of lymphocyte activation, and other pathways in
GO enrichment.

At present, target drugs represented by PD-1/PD-L1 have been gradually developed
to improve the prognosis and prolong the survival time of patients with advanced cancer,
but only a small proportion of patients show a long-term and lasting response. In addition,
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some patients may develop adaptive resistance to current immunotherapy regimens. As a
promising inhibitory receptor in many emerging immune checkpoints, TIM3 has shown
initial results in clinical trials as a monotherapy or in combination with anti-PD-1/PD-L1
drugs. The drug types have been expanded from a monoclonal antibody to dual antibody,
and by all indications cover both hematological tumors and solid tumors (including lung
cancer), but further studies are needed to determine the future direction of TIM3.

5. Conclusions

Immunoregulatory factor TIM3 may regulate the proliferation and invasion of lung
adenocarcinoma cells through signaling pathways (such as cytolytic activity), further
regulate the immune microenvironment of lung adenocarcinoma, and has a certain risk
correlation with drug resistance of tumor cells, which indirectly affects the survival and
prognosis of lung adenocarcinoma patients to a certain extent.
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