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This work set out to develop a motion-correction approach aided by
conditional generative adversarial network (cGAN) methodology that
allows reliable, data-driven determination of involuntary subject mo-
tion during dynamic "8F-FDG brain studies. Methods: Ten healthy vol-
unteers (5 men/5 women; mean age = SD, 27 * 7 y; weight, 70 = 10
kg) underwent a test-retest '®F-FDG PET/MRI examination of the
brain (n = 20). The imaging protocol consisted of a 60-min PET list-
mode acquisition contemporaneously acquired with MRI, including
MR navigators and a 3-dimensional time-of-flight MR angiography se-
quence. Arterial blood samples were collected as a reference stan-
dard representing the arterial input function (AIF). Training of the
cGAN was performed using 70% of the total datasets (n = 16, ran-
domly chosen), which was corrected for motion using MR navigators.
The resulting cGAN mappings (between individual frames and the ref-
erence frame [55-60 min after injection]) were then applied to the test
dataset (remaining 30%, n = 6), producing artificially generated low-
noise images from early high-noise PET frames. These low-noise im-
ages were then coregistered to the reference frame, yielding 3-dimen-
sional motion vectors. Performance of cGAN-aided motion correction
was assessed by comparing the image-derived input function (IDIF)
extracted from a cGAN-aided motion-corrected dynamic sequence
with the AIF based on the areas under the curves (AUCs). Moreover,
clinical relevance was assessed through direct comparison of the av-
erage cerebral metabolic rates of glucose (CMRGIc) values in gray
matter calculated using the AIF and the IDIF. Results: The absolute
percentage difference between AUCs derived using the motion-cor-
rected IDIF and the AIF was 1.2% + 0.9%. The gray matter CMRGlc
values determined using these 2 input functions differed by less than
5% (2.4% + 1.7%). Conclusion: A fully automated data-driven mo-
tion-compensation approach was established and tested for '®F-FDG
PET brain imaging. cGAN-aided motion correction enables the trans-
lation of noninvasive clinical absolute quantification from PET/MR to
PET/CT by allowing the accurate determination of motion vectors
from the PET data itself.
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The capability of obtaining fully quantitative physiologic
measurements from the human body is a fundamental strength of
PET methodology (1/,2). However, due to the requirement of an ar-
terial input function (AIF), the adoption of absolute quantification
into clinical work has been severely limited, and only semiquanti-
tative assessments of tracer uptake using standardized uptake ex-
pressed as SUV are commonly performed.

In recent years, several methodologies have been proposed to
extract an image-derived input function (IDIF) directly from brain
PET data to avoid arterial cannulation for determination of an AIF
(3-10). It was demonstrated that a brain IDIF can be calculated ei-
ther using a combined protocol that integrates PET/CT with MR
data (3,7,8) or using a fully integrated PET/MR protocol
(4,6,9,10). The calculation of an IDIF typically entails, in addition
to the definition of a suitable blood-pool region and accounting for
partial-volume effects, an accurate correction for involuntary sub-
ject motion. A fully integrated PET/MR system is ideally suited to
perform all these tasks due to its capability of providing detailed
anatomic information, which also includes MR navigators that
track motion. However, due to its high cost, the proliferation of
PET/MRI into the clinical realm has been severely limited. In con-
trast, PET/CT is widespread and cost-effective, thus motivating
the transfer of IDIF methodology from PET/MR to PET/CT. The
definition of a suitable blood-pool region, as well as the geometric
correction for partial-volume effects, can be easily accomplished
using coregistered PET/CT and MR data. Nonetheless, the accu-
rate correction for subject motion remains a serious challenge in
PET/CT imaging.

Assessment of currently available motion-compensation techni-
ques points toward 3 general approaches: data-driven approaches
(11-17), frame-based image registration (/8,/9), and real-time
hardware motion tracking (20). Real-time hardware-based motion
tracking detects subject motion with excellent temporal resolution
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(20) but is typically not used in clinical routine due to its complex-
ity and the necessity to integrate external data (motion tracking)
with the imaging system (applying the motion vector to images).
In contrast, data-driven approaches do not require any external in-
formation (such as fiducials or laser positioning system), and they
are also less computationally demanding. However, the clinical
adoption of frame-based motion-correction schemes has been slow
due to poor performance when coregistration is applied to frames
that display a dissimilar tracer uptake pattern or noise characteris-
tics as well as the difficulty to correct for intraframe motion in
long-duration PET frames (>5 min).

Here, we explored the utility of conditional generative adversar-
ial networks (cGAN) (21) as a data-driven approach to facilitate
motion correction for involuntary subject motion in dynamic '°F-
FDG PET studies of the brain. Thereby, we build on recent studies
that have shown the potential of cGAN methodology in converting
low-count PET images to high-count images (22). In general, the
objective of cGAN processing is the mapping of a low-count trac-
er distribution pattern to a high-count pattern based on a priori
training data, where generic image features—such as overall brain
shape and contours—are likely to be correctly reproduced. Put dif-
ferently, the creation of high-count images enhances image fea-
tures that are important for the detection of motion artifacts and as
a result might improve the performance of subsequently applied
conventional rigid body coregistration routines. It is important to
note, however, that the so obtained images are devoid of unique
characteristics that are specific for a particular subject and cannot
be considered as representing the true (subject-specific) high-count
uptake pattern beyond the enhancement of generic image features.

In light of the above, our ultimate objective was to determine
the accuracy with which involuntary subject motion occurring dur-
ing the first part of a dynamic "®F-FDG PET/CT study can be de-
tected using conventional motion-correction routines when images
are first preprocessed using cGAN methodology, given that early
frames are subject to both low-count statistics and dynamically
changing tracer uptake patterns. The cGAN preprocessed frames
can be thought of as PET navigators whose activity distribution
are now temporally invariant, similar to that of the MR navigators.
Although our focus was geared toward the derivation of an IDIF,
the developed methodology appears to be broader in scope, poten-
tially aiding in improved ability to detect both inter- and intra-
frame motion. Consequently, our study was guided by the over-
arching hypothesis that cGAN preprocessing of images can be
used to address low-count limitations of short time frame motion-
correction strategies and support an accurate data-driven arterial
IDIF calculation.

MATERIALS AND METHODS

Ten healthy volunteers (5 men/5F women; mean age = SD, 27 = 7
y) were included in this study (/0,/1). The study was approved by the
Ethics Committee of the Medical University of Vienna and was per-
formed in accordance with the revised Declaration of Helsinki (1964).
All volunteers were deemed to be healthy based on their medical his-
tory, physical examinations, and vital signs. Written informed consent
was obtained from all subjects before the examinations.

Study Design

We studied 10 subjects, each of whom underwent 2 PET/MR scans
(mean time difference = 17 = 44 d) in a fully integrated PET/MRI
system (Biograph mMR; Siemens Healthineers). To correct the PET
study for involuntary subject motion, cGAN image preprocessing was
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performed before image coregistration, enabling the accurate determi-
nation of motion parameters in 3-dimensional (3D) space. These mo-
tion parameters were then used to extract the IDIF from the motion-
corrected dynamic PET sequence (Fig. 1). To assess the accuracy of
the IDIF, arterial blood samples were obtained from a radial artery. Fi-
nally, immediately after the PET/MRI examination, a low-dose CT
scan of the brain (120 kVp, 50 mAs) was acquired once using a PET/
CT system (Biograph TruePoint TrueView 64; Siemens Healthineers,
USA) for the purpose of CT-based attenuation correction.

Imaging Protocol

All examinations were conducted in the afternoon; subjects were
asked to keep their eyes open without performing any task. Before
each scan, the glucose concentration (mmol/L) in blood was measured,
and a venous line was established for the injection of the '*F-FDG
tracer. In addition, an arterial line was established in the contralateral
arm for manual arterial blood sampling. To ensure a high signal-to-
noise ratio in the MR images, a head and neck coil was used.

After positioning the brain in the center of the field of view, a 60-
min PET list-mode acquisition was initiated with the bolus injection of
"E-FDG (352 = 66 MBq). Contemporaneously with the PET data

PET

MR

Siemens Biograph mMR

[1] Apply motion vectors from MR navigators to align PET data

Reference

[2] Generate pairwise data: Early frames - late frames and train the pair using conditional GANs

F1  F-37 F2 F37 F3 F37 F-36 F-37

M, M, M Mz

[3] Use the models (M-1 to M-36) to generate synthetic PET navigators from the original PET
data

navigators

[4] Use motion vectors from cGAN processed frames to spatially align the original PET frames

navigators

FIGURE 1. Schematic representation of cGAN methodology for motion
correction of dynamic PET frames. [1] Motion vectors from the MR naviga-
tors are applied to align the PET data. [2] All training data (n = 14) are
used to calculate mappings (M, i = 1, 36) between each individual frame
(F-1 to F-36) and the reference frame (F-37). [3] These mappings are sub-
sequently used to derive a motion vector based on coregistration of
cGAN-produced artificially generated images and the reference image
(test data). [4] Application of the motion vector to either rebin frames so
that they all correspond spatially or apply the motion vector to the location
of region from where a time-activity curve is extracted.
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FIGURE 2. Results of cGAN processing for a representative subject. (Top and bottom panels, first
rows) Original PET frames at different mid-scan times (1.7 to 52.5 min) with various frame durations (5
s, 1 min, 2 min, and 5 min). (Top and bottom panels, second rows) Corresponding, artificially generat-
ed, high-count PET images. cGAN processing is able to produce a tracer distribution pattern that is
similar to the reference frame as early as 2.5 min after injection (arrow, top row).

acquisition, multiple MR sequences were acquired: a 3D time-of-flight
MR angiography (TOF-MRA) sequence (0.5 X 0.5 X 1 mm voxel
size, echo time = 3.6 ms, repetition time = 21 ms, 25° flip angle, 228
X 384 matrix, 220 slices) for the definition of the carotid vasculature
and a T1-weighted MRI sequence (1 X 1 X 1 mm voxel size, 256 X
256 matrix, 192 slices) for anatomic localization. Sparsely sampled
MR navigators (2D-EPI, 3.0 X 3.0 X 3.0 mm voxels, 64 X 64 matrix,
36 slices, echo time = 30 ms, repetition time = 3,000 ms) were inter-
leaved at specific time intervals (0, 2.5, 5, 7.5, 10, 14, 17, 21, 26, 33,
38, 42, 44, and 50.5 min after injection), yielding for each time point a
3D image volume (23) that allowed the determination of subject mo-
tion with 6° of freedom (translation in x,y,z direction and rotation with
respect to the 3 Euler angles). These 6 motion parameters defined a
motion vector, which was used to ensure spatial correspondence be-
tween early frames and late frames for cGAN training.

PET list-mode data were rebinned into a dynamic frame sequence
(24 X 58,1 X60s,1 X 120s, 11 X 300 s) and were reconstructed
(e7 tools; Siemens) into a 344 X 344 X 127 matrix (voxel size, 2.08
X 2.08 X 2.03 mm) using the ordinary Poisson ordered-subset expec-
tation maximization 3D algorithm (3 iterations, 28 subsets, 2 mm
gaussian filter). Attenuation and scatter correction were performed us-
ing CT-based attenuation-corrected maps corrected for motion in each
PET frame.

Blood Sampling

Arterial blood samples were collected manually at different time points
(24 X 58,1 X60s,1X120s,1X300s,1 X 600s,2 X 1,200 s after
injection) from the radial artery. Whole-blood radioactivity concentrations
were measured using a y-counter (2480 Wizard2 automatic -y-counter;
PerkinElmer). To obtain the arterial input function (AIF), whole-blood
samples were centrifuged to separate the plasma component, followed by
the measurement of radioactivity in the plasma. The measured
whole-blood and plasma tracer concentrations were used to calculate the
time-dependent plasma—to—whole-blood ratios for each subject.

3D-cGAN

Generative Adversarial Networks (GANSs) are generative algorithms,
which belong to the field of unsupervised learning (24). The architecture
of a GAN consists of 2 convolutional neural networks that together
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2 image patterns together and is “learned”
from a training set that defines the true cor-
respondence between pairs of input and out-
put images (x—y). In short, the training da-
taset provides a general mapping of 2
images with different noise characteristics
(e.g., a low-count to a high-count image). It
is a generic mapping operation that accounts for broad features in the
2 images but does not account for subject-specific attributes. Accord-
ingly, such mapping is representative for the transformation of any
"E-FDG uptake image obtained at a particular time (e.g., 2-3 min af-
ter injection) to any 'SF-FDG uptake image at a later time (e.g., 55-60
min after injection).

In this 3D-cGAN implementation, corresponding pairs of low-count
(early) and high-count (late) PET frame images were used to define the
mapping operation (G) by minimizing a loss function expressed as:

Accan(G, D) = Eyyllog D(x,y)] + Eyllog(1 = D(x, G(x)))]
Eq. 1

where G attempts to minimize the loss function (A.G4y), Whereas D
strives to maximize it (i.e., G* = arg ming max p Aoccan(G, D)). To
create artificially generated high-count images from low-count (early)
PET frames, we added an estimation error loss to the Discriminator
feedback for the effective training of the Generator (G) (23). The final
loss function, G* is then expressed as:

G* = argmingmaxp bocoan (G, D)+ Ao (G),

where Az1(G) is an additional L1-norm based loss function for the
generator, and A is a tunable parameter, which is greater than zero (in
our case A=1 (24)). The U-netlike architecture (26) with skip connec-
tions was used as the Generator network (Supplemental Fig. 1; supple-
mental materials are available at http://jnm.snmjournals.org), taking
3D subvolumes of the original early frame PET image as input. The
skip connections facilitate the preservation of the local image informa-
tion that is lost during the initial down-sampling process and transfer
this information to the later occurring up-sampling phase of the net-
work. We used a PatchGAN (Supplemental Fig. 2) as a Discriminator
(22), which classifies each given patch as either true or artificial. In ad-
dition, we added 2 more convolutional layers to the Discriminator ar-
chitecture. The advantage of this architecture is that the network pre-
serves the high-frequency structures of the high-count (late) PET
frames using fewer parameters than would be required using the full-
size images. Training of the convolutional neural networks was
performed using the standard method from Goodfellow et al. (24).

Eq.2
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FIGURE 3. Comparison of Ml index between the original (green) and cGAN processed (red) dynamic
frames with the reference frame as a (log) function of scan time. Note that neither dynamic sequence
is motion corrected. Values represent the average and the SD (shown as shaded area) of the test da-
taset (n = 6). cGAN processing increases Ml of '8F-FDG brain images with respect to the reference

frame close to the Ml of late frames (dotted line).

cGAN-Aided Motion Correction

A random 70%-t0-30% data split of the full data was used for
c¢GAN training (14 scans) and testing (6 scans). Initially, all studies in
the training set (14 measurements with 37 frames each) were corrected
for motion using motion vectors obtained from the contemporaneously
acquired MR navigators (23) (Fig. 1). Real-time data augmentation
(rotation, translation, shearing, additive gaussian noise, brightness,
contrast) was performed on the training datasets, resulting in 21,000
synthetic datasets. Subsequently, cGAN mapping was performed be-
tween the last high-count PET frame (reference frame 37, representing
tracer accumulation at 55-60 min after injection) and all other PET
frames, resulting in 36 mappings (x—y) with variable quality (Fig. 2).

The obtained mappings were then applied to the test datasets to ob-
tain artificially generated high-count images (using cGAN) that imitate
the distribution of the reference frame from the original low-count im-
ages. After the generation of the cGAN-based high-count images for
the test datasets, motion correction was performed by considering the
55-60 min postinjection PET frame as reference frame (F,¢), and all
other frames were subsequently registered to the F,.; using a standard
multiscale mutual information (MI) routine (Greedy module ITK
1.2.4, Insight Segmentation and Registration Toolkit). For each frame
of the dynamic sequence, this approach resulted in a 6-parameter mo-
tion vector.

Standard PET Frame-Based Motion Correction

To evaluate the added value of cGAN-aided motion correction, this
methodology was compared with a standard PET frame—based motion
correction. PET image frames were aligned using the same multiscale
MIl-based coregistration routine as described above (Greedy module
ITK 1.2.4). This routine performs alignment between images starting
at a coarse scale, which is then used to initialize registration at the
next finer scale, a process repeated until it reaches the finest possible
scale. As for the early images (<3 min after injection), the applied
multiscale MI coregistration approach failed due to insufficient count
statistics, thus we summed the first 3 min of the dynamic sequence to
create a reference frame with sufficient statistics. Subsequently, all lat-
er frames (>3 min after injection) were rigidly aligned to this summed
frame. It is important to point out that this approach (summing of early
frames) is frequently implemented in dynamic studies when low-count
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PET emission data and the attenuation map,
we used a dual-reconstruction approach.
Specifically, PET attenuation correction was
performed on the basis of an attenuation
map derived from a CT image acquired im-
mediately after the PET/MRI protocol. This
CT attenuation map was coregistered to the
first MR sequence of the study protocol (TOF-MRA sequence), and
this static map was then used to perform attenuation correction for the
whole PET dynamic sequence. However, this approach does not take
into account PET interframe motion. Therefore, non—motion-corrected
PET frames were initially used to derive a motion vector (using either
MR navigators for the training data or cGAN-processed images for
the test data), and once the motion vector was determined this infor-
mation was used to align the CT attenuation map to each PET dynam-
ic frame. The motion-corrected CT attenuation maps were subsequent-
ly used to re-reconstruct the whole dynamic PET sequence.

Characterization of cGAN Performance

To assess the degree to which cGAN image processing is able to
enhance generic features of brain tracer distribution (such as overall
brain shape and contours), cGAN performance of individual frames
was assessed on the basis of 2 measures: first, by the improvement in
MI between the reference image and the cGAN-generated high-count
images relative to the original images, and second, by the comparison
of the absolute percentage difference with respect to the histogram
area-under-the-curve (Histayc) between histograms derived from
cGAN-generated and reference images. It is important to note that
these histograms include all image voxels in 3D space and are not af-
fected by subject motion. Moreover, the MI and Histayc are comple-
mentary; MI is sensitive to the similarity in image patterns expressed
in the 2 images, whereas Histsyc provides information with respect to
scale relationship between voxel intensities in the 2 images (27,28).

Generation of Simulated Test Datasets

Given the low number of the original test datasets (6 scans), additional
test datasets were generated on the basis of the original 6 test datasets.
These simulated datasets were used to further investigate the potential of
the cGAN method to address the problem of interframe motion.

Excessive interframe motion was simulated by adding to each dy-
namic frame (except the reference frame) an arbitrary translation (0, 1,
or 2 voxels in each direction) and rotation (0°, 0.5°, or 1° for each Eu-
ler angle) vector (SimpleITK 1.2.4, Supplemental Fig. 3). Ten repeti-
tions were performed for each dataset with different motion vectors
added, resulting in a total of 60 synthetically created test datasets,
each consisting of 37 dynamic frames. These datasets were then either
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preprocessed using cGAN methodology or were directly coregistered
to the reference frame (standard PET frame—based motion correction)
using the normalized MI alignment routine as described above.

Moreover, to assess the potential of cGAN methodology to aid in
the detection of intraframe motion in routine clinical static studies, we
partitioned the list-mode data of the reference frames (#37 from 55-60
min after injection) into a series of short subframes (10 subframes of
30 s and 20 subframes of 15 s). cGAN was used to produce artificially
generated high-count images from these subframes. This procedure
was applied for each measurement of the test dataset (6 scans). Im-
provement in image quality was assessed on the basis of the increase
in MI after cGAN processing. In addition, to further demonstrate the
ability of cGAN processing in accurately accounting for intraframe
motion, we selected a representative reference frame, which we parti-
tioned into 15-s subframes and introduced random motion (translation
3-5 mm, rotation < 1°) to the subframes. After motion correction ei-
ther with (cGAN-aided) or without cGAN preprocessing, the coregis-
tered subframes were summed and the resulting images were visually
compared for image quality.

cGAN-Based IDIF

To assess the clinical performance of the cGAN method for motion
compensation of dynamic PET frames, we extracted the IDIF from the
test dataset (both original and simulated) and compared the IDIF with
the AIF. For this, we replaced the MRI navigator-based motion correc-
tion in our previously developed IDIF pipeline with the developed
c¢GAN-aided motion correction. This analysis pipeline was described
in detail previously (9,/0). In brief, it entails automated segmentation
of the petrous region of the internal carotid arteries (ICA) from the
corresponding TOF-MRA images followed by an automatic multiscale
intermodal NMI coregistration (Greedy ITK 1.2.4) of the TOF-MRA
volume and the reference frame (frame #37) for each study. The arteri-
al blood-pool region was defined on the basis of the MR angiography
image, clearly identifying the ICA region. This region was subse-
quently transferred into PET space where it was used to extract the
time—activity curve. cGAN-aided motion vectors were applied during
the extraction of the time-activity curve to adjust the blood-pool re-
gion for the computed displacements. Finally, an iterative regional
partial volume correction procedure was applied in each PET frame to
recover the true activity in the internal carotid arteries (/0).

Postprocessing of IDIF

The motion- and partial volume—corrected IDIF was interpolated with
a step length of 1 using a “Piecewise Cubic Hermite Interpolating Poly-
nomial” to match the blood sampling times. All corrections were applied
to the IDIF, with the AIF being considered as the reference (3,9). First,
count rates from sampled arterial blood were scaled using the cross-cali-
bration factor between the PET/MR and the on-site y-counter to express
the AIF in the same units as the PET data (Bq/mL). Second, a plasma
IDIF was derived on the basis of the individual plasma-to-blood ratios
obtained from sampled arterial blood of the study subjects. Third, the de-
lay between the AIF and the IDIF was corrected by shifting the IDIF
curve to match the sampling times of the AIF. Finally, due to the differ-
ence in sampling location (ICA for IDIF and radial arteries for AIF), a
monoexponential dispersion function with a tau value of 5 s (29) was
convolved with the IDIF to mimic the dispersion effects.

Quantification of CMRGlc

Calculation of cerebral metabolic rate of glucose (CMRGlc) for the test
datasets was performed using a voxelwise Patlak graphical analysis (lumped
constant = 0.65 (30)) using either the AIF or the IDIF. Analyses were per-
formed using in-house—developed Matlab tools (Matlab R2018a; The Math-
Works) that generate parametric images representing CMRGlc (umol/100 g/
min). In particular, a linear function was fitted to the Patlak-transformed
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data, including data from 25 min after injection until the end of the scan (8
data points). The resulting slope was then multiplied with the subject’s plas-
ma glucose level (umol/L) and divided by the lumped constant. By applying
a gray matter (GM) mask derived from individually coregistered T1-weight-
ed MR images, the average CMRGlc value in the GM was determined us-
ing either the AIF (CMRGIcr) or the IDIF (CMRGle ).

Assessment of cGAN Performance for Motion Compensation

The quality of cGAN-aided motion correction of the dynamic frame
sequence was assessed in relation to the sampled AIF. Specifically,
IDIFs were determined from the test datasets (both original and simu-
lated) using cGAN-aided motion vectors and compared with the AIFs
using the area under the curve (AUC). Differences in GM CMRGlc
values derived from the IDIF and AIF were assessed using the abso-
lute percentage difference (|%A|) between CMRGIc values:

CMRGIC[DIF_CMRGICAIF
CMRGZCAIF

c¢GAN performance was assessed separately for the original dataset
(n = 6) and the simulated dataset (n = 60).

x 100.

Eq. 3

o

RESULTS

Figure 2 visualizes the results of cGAN processing of the dy-
namic frame sequence from approximately 100 s (1.7 min) after
injection until the penultimate frame in the study (#36). The data
indicate a visually excellent quality of the artificially generated im-
ages for frames of 60 s duration, as early as 2 min after injection
of the tracer. In contrast, the quality of cGAN images appears sub-
optimal for very short frames (5 s) before 2 min after injection.

Quantitative assessment of cGAN performance based on MI is
depicted in Figure 3. A substantial increase in MI of the individual
frames after the application of cGANS, in frames as early as 1 min
after injection, is clearly noted. Figure 4 indicates a substantial de-
crease in the |%| between histogram AUCs characterizing cGAN-
processed images and those characterizing the original images dur-
ing the very early phase of the study (60—120 s). During that time,
c¢GAN-processed images derived from the very short frames (5 s)
decreased the difference in histogram AUC by approximately 80%
relative to histogram AUCs obtained from the original images.
Subsequent improvements were minor (<5%) for longer and later
frames with better count statistics.

Supplemental Figure 4 demonstrates that cGAN-based IDIFs
were closer to the reference standard in comparison to the IDIFs
obtained without ¢cGAN processing and using only standard
frame-based motion correction (motion profile of the represented
subjects in Supplemental Fig. 5). For the original dataset (n = 6),
the |%A| between AUCs derived using the motion-corrected IDIF
and the AIF was 1.2% = 0.9%. The GM CMRGlc values deter-
mined using these 2 input functions differed by less than 5%
(2.4% = 1.7%) (Fig. 5). The quantitative difference in AUC and
GM CMRGlIc values between AIF and IDIF (before and after
c¢GAN preprocessing) for individual datasets (» = 6) with their re-
spective augmentations (10 iterations) is depicted in Table 1. For
the simulated datasets (n = 6 X 10 iterations), the mean difference
in AUC values between those obtained using the AIF and the IDIF
using cGAN preprocessing was 0.9% = 0.7%, whereas the differ-
ence in AUC values between AIF and the IDIF without cGAN
preprocessing was 2.9% * 3.1%. Moreover, IDIFs extracted from
c¢GAN-preprocessed motion compensated data resulted in CMRGlc
values closer to those obtained using the AIF, with an absolute differ-
ence of 2.2% = 1.8% as compared with CMRGlc values determined
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motion correction is likely to have a substan-
tial impact on the quality of dynamic low-
count '®F-FDG PET brain studies and as a
result might contribute to the expansion of
absolute brain quantification into clinical
routine. Especially in the context of clinical
PET/CT imaging, cGAN preprocessing of
low-count image frames could play an im-
portant role in improving the performance of
1 established motion-correction approaches.
The developed cGAN methodology also
shows promise in addressing the problem of
intraframe motion in long-duration (5-20
min) PET scans, by allowing the partitioning
of a frame into subframes which, after
c¢GAN preprocessing, can be accurately cor-
rected for motion.

e

1.38 1.72 2.50

PET mid-time (min)

0.05 0.38 0.72 1.05

17.50

To prevent motion when imaging the

57.50 . . .
brain, subjects are usually instructed to re-

37.50

FIGURE 4. The |%A| of the AUC between the reference image histogram and image histograms de-
rived from cGAN-processed images (red) and original images (green) as a function of scan time. Note,
images were not motion corrected because histograms are independent from motion. The percentage
difference is substantially decreased for low-count (short) frames between 1 min and 2 min after injec-
tion, suggesting that an accurate motion vector can be determined even for early frames.

without cGAN preprocessing of 3.9% = 3.5%. The improved perfor-
mance of cGAN-aided as compared with non—cGAN-aided motion
correction can be also inferred from the smaller variance of both
AUC and GM CMRGIc values in the case of cGAN preprocessing.

Figure 6 shows representative images that were obtained by par-
titioning the reference image (55-60 min after injection) into 15-s
subframes and the image quality of these subframes after cGAN
processing. For the 10 X 30 s subframe dataset, the MI improved
by 135% (from 0.030 = 0.003 to 0.070 = 0.001), whereas im-
provement was even greater for the 20 X 15 s dataset (improve-
ment of 290%; from 0.002 = 0.003 to 0.0700 = 0.0001). More-
over, Figure 7 demonstrates the improvement in image quality of
the reference image when 15-s subframes with artificially intro-
duced random motion underwent standard frame-based motion
correction and ¢cGAN preprocessing before rigid-body motion cor-
rection as compared with non—motion-corrected summed sub-
frames. As expected, motion correction improves image sharpness,
and one can appreciate a slight improvement of images processed
using cGAN methodology as compared with those processed with
standard frame-based motion correction.

DISCUSSION

We present a fully automated motion-correction approach for dy-
namic '8F-FDG PET studies of the brain that uses cGAN preprocess-
ing of low-count images to improve the estimation of motion vectors
derived using conventional rigid-body coregistration algorithms (Fig.
2). Our results suggest that cGAN methodology allows the creation of
artificially generated high-count '8F-FDG brain images from early
low-count images that closely resemble the 'F-FDG uptake pattern at
late (~60 min after injection) scan times. The creation of artificially
generated, high-count images allows then the reliable determination of
a motion vector directly from the data, which was verified by the com-
parison of an IDIF with arterial blood samples. Thus, cGAN-aided
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main motionless, and their head is immo-
bilized using bands that affix the skull to
the head rest (37). This approach works
reasonably well when imaging coopera-
tive subjects, but frequently fails in the
clinical population due to the subjects be-
ing either uncomfortable or claustropho-
bic within the PET gantry (37). As a re-
sult, motion artifacts are frequently encountered in both static and
dynamic PET imaging. The problem with motion artifacts is even
more severe when an IDIF is extracted from the dynamic PET se-
quence, given that the magnitude of random displacements and the
system resolution are typically larger than the small size of the ar-
teries. Accordingly, accurate motion correction is an important
prerequisite for absolute quantification in PET imaging (7).

It has been well recognized that the original low-count/high-
noise images are poorly suited for alignment due to the poor
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FIGURE 5. The |%A| between AUC and GM CMRGic values (n = 6) ob-
tained using the cGAN-based IDIF and AIF. All differences were within 5%
of the AIF standard.
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TABLE 1
The |%A| Between AUC or GM CMRGic Values (n = 6 X 10 Synthetic Datasets) Using the IDIF (Motion Corrected With
cGAN and Without cGAN Processing) and Values Obtained Using Arterial Blood Sampling

AUC original PET frames AUC cGAN processed

GM CMRGiIc original PET ~ GM CMRGIc cGAN processed

Patient ID (mean = SD %) frames (mean = SD %) frames (mean = SD %) frames (mean = SD %)
P-01 1.4 + 0.8 0.8 = 0.3 3.8*+23 3.9+ 04
P-02 20*+1.4 0.4 = 0.3 27 *+25 1.3 +1.0
P-03 83 £ 1.7 1.7 £ 04 10.1 = 2.6 0.9 = 0.6
P-04 43+29 0.8 = 0.7 3.1+23 0.9 = 0.8
P-05 1.1+ 0.6 0.2 = 0.2 1.9 + 0.6 1.0 £ 0.3
P-06 1.3+ 0.6 0.5+ 04 4.9+ 0.9 19 + 0.6

definition of image landmarks that could guide the registration
procedure. As such, low-count images require some form of pre-
processing to achieve a satisfactory performance of the subse-
quently applied coregistration routines (32). This preprocessing
step could include various forms of smoothing or morphologic op-
erations, but could also consist of more sophisticated forms of
processing, such as the cGAN methodology. From a conceptual
point of view, cGAN preprocessing might be superior to the previ-
ously applied methods, as cGAN processing is based on an auto-
mated (i.e., operator-independent) mapping of low-count images
to their true high-count match. Stated differently, the calculated
mapping is specific to the noise characteristics of the original low-
count images, and the resulting artificially generated images repre-
sent the most likely prediction of the final (high-count) tracer dis-
tribution one could expect based on the training data. Overall, our
data clearly highlight the strengths of cGAN processing, such as
the autonomous optimized smoothing and “smart” inpainting,
which substantially enhance the information content of low-count

images so that coregistration algorithms are provided with suffi-
cient information to accurately estimate the motion parameters.

In practical terms, the functionality of cGANs consists in the abili-
ty to correctly predict the local distribution of measured data based
on a statistically insufficient sample. More specifically, the cGAN al-
gorithm extracts the most likely relationships between low-count im-
ages (where the underlying distribution is ambiguous) and high-count
images (where the underlying distribution is well defined) from the
training dataset and applies the extracted relationships to new images.
As a result, cGAN methodology is able to accurately predict generic
image features (such as brain contours) from low-count images. The
improved definition of brain contours then allows improved perfor-
mance of conventional MI coregistration routines that strongly de-
pend on well-defined imaging features.

Images with dissimilar uptake pattern are typically encountered
in dynamic studies when the tracer uptake pattern changes as a
function of time during the frame sequence. Our results showed
that structural information inherent to very early low-count images

(<2 min after injection) is insufficient to

20 x 15 s subframes

Original
subframes

generate an acceptable mapping with the
reference frame, thus precluding the gener-
ation of a high-count image that could
guide the derivation of an accurate motion
vector. Conversely, '*F-FDG brain uptake

cGAN
navigators

10 x 30 s subframes

Original
subframes

at times > 2 min after injection appears to
be sufficient for adequate cGAN mapping
if the frames are not too short (>30 s).
However, we acknowledge that the rele-
vance of cGAN processing is strongly di-
minished in the case of high-count/low-
noise images that are already characterized
by well-defined features. Finally, despite
the fact that histograms derived from
cGAN-processed images have a similar
overall shape with respect to the reference

Original 300 s frame

18F-FDG tracer uptake
50-60 min p.i.

cGAN
navigators

images (Supplemental Fig. 6), they tend to
overrepresent high intensities and should
not be used in lieu of the original low-
count images for clinical diagnosis.

FIGURE 6. Performance of cGAN processing when applied to a subset of frames that were
partitioned into frames of either 15-s duration (left upper panel) or 30-s duration (left lower panel)
from an original 300-s static '®F-FDG frame at 55 min after injection (right panel). The image quality
of the processed subframes for both subsets is substantially improved when compared with the
unprocessed subframes and resembles closely the original 300-s frame that includes all data.

CcGAN-DERIVED PET NAVIGATORS

Data from our previous studies suggest
that motion magnitude increases with time,
and for very early time points (<2 min)
the motion magnitude tends to be negligi-
ble (i.e., translation all axes < 1 mm, rota-
tion <1° in all axes) (9,10). Moreover,

.
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FIGURE 7. Summed images corresponding to 55-60 min p.i, after intra-
frame motion correction using motion vectors obtained from 15-s sub-
frames. (Left column) Summed images without correction for intraframe
motion (No-MoCo). (Middle column) Summed images after standard
frame-based motion correction without cGAN preprocessing (SFB-
MoCo). (Right column) Summed images using cGAN-aided motion cor-
rection (cGAN-MoCo). Red arrows indicate the areas of improvement.

even in the case of subject movement in this very early phase of
the study, the error accrued in the integral under the blood time—
activity curve remains negligible. We demonstrated this accuracy
in our own test dataset, showing a mean value of <1.5% for the
absolute difference between the IDIF and the sampled arterial
blood curve, which translated to an average difference of <3% for
the calculated glucose metabolic rate in GM (Fig. 5).

An exciting application of cGAN-aided motion correction is the
possibility to address intraframe motion in static clinical PET
scans. Clinical '®F-FDG brain scans are usually performed at
times > 45 min with a typical duration of 10-20 min. Such rela-
tively long frames are sometimes subject to considerable patient
motion artifacts, which impair image resolution and reduce image
contrast important for differential diagnosis. Our data suggest that
due to the high tracer uptake in brain tissue at these late time
points, these long frames can be partitioned into subframes as
short as 15 s, which can be then processed with cGAN methodolo-
gy to yield images of sufficient quality for accurate coregistration
(Fig. 6). Thus, one can envision a reconstruction protocol in which
list-mode data are sequentially divided into smaller and smaller
subframes that are individually corrected for motion by taking ad-
vantage of enhanced image features generated by cGAN prepro-
cessing, resulting in an overall improvement in image quality. We
would like to point out that the short subframes (15 s) are only
necessary to determine the exact time of displacement. Because re-
alistic patient motion occurs in the form of a few distinct shifts in
head position interspersed within a longer time frame, most mo-
tion vector parameters derived from the set of all short subframes
will be negligible.
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In this context, the question arises whether mappings are specif-
ic to one particular imaging system or whether they could be also
applied to '"®F-FDG data obtained from other imaging systems.
Our very preliminary data suggest that mappings might be trans-
ferrable to other imaging systems on the basis of the application of
our mappings to a dynamic '*F-FDG study (12 X 60's, 4 X 120s,
5 X 300 s) acquired using an external PET/CT system from a dif-
ferent vendor. The only requirement is that mappings should
match their respective PET mid-times. Supplemental Figure 7 sug-
gests that mappings might possibly be independent from the imag-
ing system; however, this issue mandates further investigations
that were not the focus of this work.

One of the main drawbacks of the study is the low number of
test datasets. Although synthetic data with variable motion param-
eters were generated, they were still generated from the test data-
sets. Moreover, there are several other limitations that need to be
considered when applying cGAN methodology in clinical applica-
tions. First, current implementations of cGAN processing are high-
ly computationally intensive. The time to generate one (source-to-
target) mapping pair is 17 h on a dedicated NVIDIA DGX Work-
station with 1 X 32 GB Tesla V100 Volta GPU for a frame size of
344 X 344 X 127 voxels. However, once a mapping specific for a
particular tracer is established via the training process, the time to
apply this mapping to a low-count image of any individual subject
is only 1 min. Another potential source of error might be intra-
frame motion in the reference frame. In this study, we did not cor-
rect for such motion artifacts because neither visual inspection of
image quality nor close monitoring of the subjects during the last
frame indicated noticeable subject motion. Finally, our cGAN im-
plementation requires a training set that consists of image pairs
that are devoid of motion artifacts. Because our data were acquired
on a fully integrated PET/MR system, simultaneously acquired
MR navigators were used to correct the training set for motion.
When translating these findings to other sites, the use of cycle
GANSs (33), which produce generic mappings from spatially non-
corresponding data, may be a potential solution that voids the re-
quirement of motion-corrected image pairs.

CONCLUSION

We present a data-driven motion-correction approach for dy-
namic '"®F-FDG brain studies that is based on cGAN methodology.
The method allows the derivation of an accurate motion vector for
low-count frames as early as 2 min after injection, thus facilitating
the derivation of an IDIF void of motion artifacts. The developed
methodology has the potential to improve the accuracy of nonin-
vasive absolute quantification in the context of clinical PET and
PET/CT studies. In addition, cGAN methodology might also facil-
itate correction for intraframe motion, thus improving image quali-
ty of clinical scans of long duration.
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KEY POINTS

QUESTION: Can conditional generative adversarial networks facil-
itate "8F-FDG PET brain motion correction by generating tempo-
rally activity invariant PET navigators?

PERTINENT FINDINGS: The proposed motion-correction ap-
proach allows accurate noninvasive determination of an IDIF. The
developed noninvasive method yields CMRGiIc values that are
within 5% of those determined using arterial sampling.

IMPLICATIONS FOR PATIENT CARE: cGAN-aided motion cor-
rection of '®F-FDG dynamic PET brain studies depends only on
the acquired emission data and can be applied retrospectively
without additional information. As such, it can be easily imple-
mented in clinical routine and has the potential to facilitate nonin-
vasive absolute quantification in the context of clinical '®F-FDG
PET/CT patient studies.

ACKNOWLEDGMENTS

We express our gratitude to Vivian Tseng from The University of Ap-
plied Arts Vienna for creating the graphical abstract for our article. To
invite swift adoption of this novel approach by the research and clini-
cal community, software codes developed for cGAN processing are
free and available online: https://github.com/LalithShiyam/QIMP-
tools/tree/master/PANDA. This repository contains all software code
that has been used to perform analyses in our work.

REFERENCES

[}

%)

>

3

=)

Nel

. Lammertsma AA. Forward to the past: the case for quantitative PET imaging. J

Nucl Med. 2017;58:1019-1024.

. Subramaniam RM. Precision medicine and PET/computed tomography: emerging

themes for future clinical practice. PET Clin. 2017;12:xi—xii.

. Sari H, Erlandsson K, Law I, et al. Estimation of an image derived input function

with MR-defined carotid arteries in FDG-PET human studies using a novel partial
volume correction method. J Cereb Blood Flow Metab. 2017;37:1398-1409.

. Jochimsen TH, Zeisig V, Schulz J, et al. Fully automated calculation of image-de-

rived input function in simultaneous PET/MRI in a sheep model. EJNMMI Phys.
2016;3:2.

. Su'Y, Vlassenko AG, Couture LE, et al. Quantitative hemodynamic PET imaging

using image-derived arterial input function and a PET/MR hybrid scanner. J Cereb
Blood Flow Metab. 2017;37:1435—-1446.

Khalighi MM, Deller TW, Fan AP, et al. Image-derived input function estimation
on a TOF-enabled PET/MR for cerebral blood flow mapping. J Cereb Blood Flow
Metab. 2018;38:126-135.

. Su'Y, Shoghi KI. Single-input-dual-output modeling of image-based input function

estimation. Mol Imaging Biol. 2010;12:286-294.

. Fung EK, Carson RE. Cerebral blood flow with ['°0] water PET studies using an

image-derived input function and MR-defined carotid centerlines. Phys Med Biol.
2013;58:1903-1923.

. Sundar LKS, Muzik O, Rischka L, et al. Towards quantitative [ISF] FDG-PET/

MRI of the brain: Automated MR-driven calculation of an image-derived input
function for the non-invasive determination of cerebral glucose metabolic rates. J
Cereb Blood Flow Metab. 2019;39:1516-1530.

CGAN-DERIVED PET NAVIGATORS  *

10.

20.

2

—

22.

2

[

24.

2

[

26.

27.

2

oo

29.

30.

3

32.

33.

Shiyam Sundar LK, Muzik O, Rischka L, et al. Promise of fully integrated PET/
MRI: noninvasive clinical quantification of cerebral glucose metabolism. J Nucl
Med. 2020;61:276-284.

. Carson RE, Barker WC, Jeih-San Liow, Johnson CA. Design of a motion-compen-

sation OSEM list-mode algorithm for resolution-recovery reconstruction for the
HRRT. IEEE Nucl Sci Symp Conf Rec. 2003;5:3281-3285.

. Lu Y, Gallezot J-D, Naganawa M, et al. Data-driven voluntary body motion detec-

tion and non-rigid event-by-event correction for static and dynamic PET. Phys
Med Biol. 2019;64:065002.

. Ren S, Jin X, Chan C, et al. Data-driven event-by-event respiratory motion correc-

tion using TOF PET list-mode centroid of distribution. Phys Med Biol. 2017;62:
4741-4755.

. Feng T, Yang D, Zhu W, Dong Y, Li H. Real-time data-driven rigid motion detec-

tion and correction for brain scan with listmode PET. /IEEE Nucl Sci Symposium
(MIC/RTSD). 2016:1-4.

. Huang C, Petibon Y, Normandin M, Li Q, El Fakhri G, Ouyang J. Fast head mo-

tion detection using PET list-mode data. J Nucl Med. 2015;56(suppl 3):1827.

. Thielemans K, Schleyer P, Dunn J, Marsden PK, Manjeshwar RM. Using PCA to

detect head motion from PET list mode data. /EEE Nucl Sci Symp (MIC).
2013:1-5.

. Lu Y, Naganawa M, Toyonaga T, et al. Data-driven motion detection and event-

by-event correction for brain PET: comparison with Vicra. J Nucl Med.
2020;61:1397-1403.

. Costes N, Dagher A, Larcher K, Evans AC, Collins DL, Reilhac A. Motion correc-

tion of multi-frame PET data in neuroreceptor mapping: simulation based valida-
tion. Neuroimage. 2009;47:1496-1505.

. Picard Y, Thompson CJ. Motion correction of PET images using multiple acquisi-

tion frames. /EEE Trans Med Imaging. 1997;16:137-144.
Kyme AZ, Se S, Meikle SR, Fulton RR. Markerless motion estimation for motion-
compensated clinical brain imaging. Phys Med Biol. 2018;63:105018.

. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional

adversarial networks. Research Gate website. https://www.researchgate.net/
publication/310610633_Image-to-Image_Translation_with_Conditional
Adversarial_Networks. Published November 2016. Accessed March 17, 2021.
Wang Y, Yu B, Wang L, et al. 3D conditional generative adversarial networks for
high-quality PET image estimation at low dose. Neuroimage. 2018;174:550-562.

. Keller SH, Hansen C, Hansen C, et al. Motion correction in simultaneous PET/MR

brain imaging using sparsely sampled MR navigators: a clinically feasible tool.
EJNMMI Phys. 2015;2:14.

Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In:
Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, , eds. Advan-
ces in Neural Information Processing Systems 27. Curran Associates, Inc.;
2014:2672-2630.

. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv.org website

(Cornell University). https://arxiv.org/abs/1411.1784v1. Published November
2014. Accessed March 17, 2021.

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical
image segmentation. arXiv.org website (Cornell University). https://arxiv.org/abs/
1505.04597v1. Published May 2015. Accessed March 17, 2021.

Reza FM. 4n Introduction to Information Theory. Courier Corporation; 1994.

. Studholme C, Hill DLG, Hawkes DJ. Automated 3-D registration of MR and CT

images of the head. Med Image Anal. 1996;1:163—175.

lida H, Law I, Pakkenberg B, et al. Quantitation of regional cerebral blood flow
corrected for partial volume effect using O-15 water and PET: . theory, error anal-
ysis, and stereologic comparison. J Cereb Blood Flow Metab. 2000;20:1237-1251.
Wu HM. Measurement of the global lumped constant for 2-deoxy-2-[*F]fluoro-D-
glucose in normal human brain using [*OJwater and 2-deoxy-2-['*F]fluoro-D-glu-
cose positron emission tomography imaging a method with validation based on
multiple methodologies. Mol Imaging Biol. 2003;5:32-41.

. Huang C, Ackerman JL, Petibon Y, Brady TJ, El Fakhri G, Ouyang J. MR-based

motion correction for PET imaging using wired active MR microcoils in simulta-
neous PET-MR: phantom study. Med Phys. 2014;41:041910.

Mukherjee JM, Lindsay C, Mukherjee A, et al. Improved frame-based estimation
of head motion in PET brain imaging. Med Phys. 2016;43:2443.

Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cy-
cle-consistent adversarial networks. [EEE Inter Conf Comp Vis. 2017:2223-2232.

Shiyam Sundar etal. 879


https://github.com/LalithShiyam/QIMP-tools/tree/master/PANDA
https://github.com/LalithShiyam/QIMP-tools/tree/master/PANDA
https://www.researchgate.net/publication/310610633_Image-to-Image_Translation_with_Conditional_Adversarial_Networks
https://www.researchgate.net/publication/310610633_Image-to-Image_Translation_with_Conditional_Adversarial_Networks
https://www.researchgate.net/publication/310610633_Image-to-Image_Translation_with_Conditional_Adversarial_Networks
http://arXiv.org
https://arxiv.org/abs/1411.1784v1
http://arXiv.org
https://arxiv.org/abs/1505.04597v1
https://arxiv.org/abs/1505.04597v1

