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Recent years witness an increasing demand for using spiking neural networks (SNNs)

to implement artificial intelligent systems. There is a demand of combining SNNs

with reinforcement learning architectures to find an effective training method. Recently,

temporal coding method has been proposed to train spiking neural networks while

preserving the asynchronous nature of spiking neurons to preserve the asynchronous

nature of SNNs. We propose a training method that enables temporal coding method in

RL tasks. To tackle the problem of high sparsity of spikes, we introduce a self-incremental

variable to push each spiking neuron to fire, which makes SNNs fully differentiable. In

addition, an encoding method is proposed to solve the problem of information loss of

temporal-coded inputs. The experimental results show that the SNNs trained by our

proposed method can achieve comparable performance of the state-of-the-art artificial

neural networks in benchmark tasks of reinforcement learning.

Keywords: spiking neural networks, reinforcement learning, temporal coding, fully differentiable, asynchronous

processing

1. INTRODUCTION

Neuromorphic engineering aims to emulate the dynamics of biological neurons and synapses with
silicon circuits and run spiking neural networks (SNNs) to achieve cognitive behaviors (Mead,
1990). SNNs enjoy the advantages of the unique computing architecture of the brain, such as
low-power consumption, massive parallelism, and low-latency processing.

Among the recently proposed training methods of SNNs (Zhang and Li, 2019, 2020; Comsa
et al., 2020; Kim et al., 2020; Li and Pehlevan, 2020), the temporal coding (TC) method (Mostafa,
2017; Comsa et al., 2020) emerges as a promising one by achieving state-of-the-art performance in
many tasks while preserving the asynchronous processing nature of biological spiking neurons. The
TCmethod bridges the gap between artificial neural networks (ANNs) and SNNs. It encodes neural
dynamics as a relation of pre-synaptic spike times and the spike time of a neuron. Back-propagation
techniques developed for ANNs can thus be used in SNNs while preserving the network’s capability
of fast response to sensory stimuli. Nonetheless, all the existing TC methods are designed for
classification tasks, e.g., Boolean logic tasks and image recognition tasks (Mostafa, 2017; Comsa
et al., 2020), not fitting well with reinforcement learning tasks which require the input and output
of SNNs are continuous values.
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While there is an increasing demand for applying SNNs
to reinforcement learning (RL) tasks (Tang et al., 2020a,b),
there is no reported trial of using temporal coding methods to
train neural networks in RL tasks. Many advances have been
made on the training of SNNs for reinforcement learning tasks.
Most of the current works use the rate coding method (Patel
et al., 2019; Tang et al., 2020a,b; Tan et al., 2021) to train
neurons, and regard SNNs as a synchronous system where
neurons are activated layer by layer like ANNs (Rosenfeld
et al., 2019). Disappointingly, the SNNs trained by these
methods cannot be directly deployed on the latest asynchronous
neuromorphic processors that faithfully emulate the spike coding
and asynchronous nature of the biological neural systems,
such as Dynapse, DynapCNN, or Loihi. There is a necessary
conversion step between the ANNs or rate-based networks
to SNNs, and then they can be deployed to those chips. In
our methods, training with temporal coding can avoid this
conversion step.

Compared with temporal coding SNNs, the cost of currently
the most widely used rate coding SNNs mainly lies in response
delay and accuracy. The spiking neural network based on
temporal coding can cleverly use the activation time of the input
layer to represent information, which means an inference can
be completed in one activation cycle. Rate coding SNNs need
to estimate information based on the activation frequency over
a period of time, which takes more time and loses accuracy. In
addition, the transcoding process also loses accuracy, which is not

the case with temporal coding SNNs.

But to train SNNs for reinforcement learning tasks with

the TC method, there are two critical challenges when the

input and output of SNNs are continuous values. Firstly, the

derivative of the current temporal-coded SNNs does not exist

everywhere in the network during training, which deteriorates

the performance of back-propagation training for RL tasks.

Without ensuring the existence of the derivative of SNNs
everywhere, the existing TC methods cannot converge for
RL tasks. Secondly, due to the intrinsic computing paradigm

of SNNs, if an input signal is encoded as a relatively large

value, especially when it arrives after the first output neuron

spikes, it cannot effectively participate in the training and

inference of SNNs. A sophisticated signal encoding method
is required to transfer input signals to spike times in a

restricted range to ensure the effective usage of all the input
signals.

Inspired by the excellent performance of the TC method, we
attempt to apply it to reinforcement learning tasks in this work.
We propose a Continuous-Valued Temporal Coding (CVTC)
method to tackle the above-motioned challenges. To the best of
our knowledge, this is the first work to train SNNs with temporal
coding methods for RL tasks. The main contributions are as
follows:

• We design a fully differentiable temporal-coded SNN
architecture (see Section 3). By introducing a self-incremental
factor to each spiking neuron, the proposed SNN architecture
ensures that each neuron is differentiable almost anytime and
everywhere during training.

• We propose a signal encoding method for continuous input
signals (see Section 4). Based on a mixture of spatial and
temporal coding techniques, the novel encoding method can
transform input signals to spike times and solve the problem
of losing information of later arrived spikes.
• Experimental results show the effectiveness of the proposed

CVTC method for RL tasks (see Section 5). The SNN trained
by the CVTC method achieves a comparable performance of
the state-of-the-art ANN in the DDQN framework with the
same number of network parameters.

2. BACKGROUND

Most of the studies on temporal coding methods focus on how
to transform spiking neurons’ input spike times to their output
spike times and calculate derivatives (Neftci et al., 2019). There
are three typical methods (Bohte et al., 2002; Mostafa, 2017;
Comsa et al., 2020). SpikeProp (Bohte et al., 2002) is believed
the first temporal coding method for training SNNs, where
sub-connections are used for each pair of connected neurons
to transform input spike times to output spike times. Instead,
Mostafa (2017) relies on simple neural and synaptic dynamics,
resulting in an analytical relation between input and output spike
times. The SNNs thus can be trained with commonly used GPU-
accelerated ANN training packages. Recently, Comsa et al. (2020)
used an Alpha Synaptic Function to construct spiking neurons
inspired by biological evidence.

Among these three methods, Mostafa (2017) is the most
typical one of temporal coding. Our method is designed mainly
based on the study from Mostafa (2017). Here we briefly
introduce the network model proposed in Mostafa (2017). The
author used non-leaky I&F neurons with exponentially decaying
synaptic current kernels. The dynamics of neuron’s membrane
potential are described as:

dVmem(t)

dt
=

∑

i

wi

∑

r

κ(t − tri ), (1)

where κ(x) = 2(x)exp(− x
τsyn

), where 2(x) =

{

1 if x ≥ 0

0 otherwise
.

Assume the neuron spikes in response at time tout . By integrating
Equation (1), the membrane potential for t < tout is given by:

Vmem(t) =
N

∑

i=1
2(t − ti)wi(1− exp[−(t − ti)]). (2)

The neuron spikes when its membrane potential crosses a firing
threshold which is set as 1. Then the spike time tout is implied as:

1 =
∑

i∈C
wi(1− exp[−(tout − ti)]), (3)

where C = {i : ti < tout} is the subset of input spikes which
actually affect the output neuron. Eventually, the exponential
form of tout can be denoted as:

exp(tout) =
∑

i∈C wiexp(ti)
∑

i∈C wi − 1
. (4)
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TABLE 1 | Back-propagation cases in RL tasks.

Q(s) Q(s′) + r Derivative Back-propagation

Legal Legal Exist Normal

INF Legal Equal to 0 Stop

INF INF Equal to 0 Stop

Legal INF Exist Error

If exp(tout) is denoted as zout , the input and output relation of
a spiking neuron can thus be transformed to the same form
as a typical artificial neuron. In this way, the back-propagation
technique can be used for training SNNs.

In the temporal coding method, to ensure the back-
propagation work normally and effectively and the output
neurons emit spikes, the following conditions need to be
guaranteed:

∑

i∈C
wi > 1, (5)

exp(tout) > 1. (6)

Otherwise, the exp(tout) would be set to INF. We notice that due
to the sparsity of spikes in SNNs, most of the neuron outputs
would be set to INF. In the next section, we present the proposed
training method based on the equations above.

3. FULLY DIFFERENTIABLE
TEMPORAL-CODING TRAINING METHOD

The current TC method uses back-propagation technique to
train SNNs for classification tasks. However, for general RL
frameworks, such as Deep Q Network (DQN) (Fan et al., 2020)
and Actor-Critic (AC) (Degris et al., 2012), it requires at least
one neural network to regress the Q-value of states. Based on our
preliminary experiments, we find that during training an SNN
for regression tasks, there is always a case that some neurons
emit spikes with relatively short spike time (predicted value), and
many of the other neurons emit spikes with INF (assigned value).
The network parameters are updated with the back-propagation
algorithm based on the output neurons emitting predicted spike
times. The neurons with INF times would be ignored. Hence the
parameters of SNNmay not be updated normally when using the
TC method proposed in Mostafa (2017).

Taking Q-value prediction as an example, Table 1 describes
the results of the back-propagation algorithm in four different
situations about the network outputQ(s) and the targetQ(s′)+ r.
When Q(s) and Q(s′) + r are normal, the backpropagation runs
normally. When Q(s) is INF, the derivative of the feed-forward
network is 0, and the loss will not be fed back. When Q(s) is
normal butQ(s′)+ r is INF, the feed-forward network’s derivative
exists, and INF will be fed back to the network and unable to train
normally. In the case of stop, the network cannot be updated,
resulting in a fixed output value. In the case of error, there will be
unforeseen circumstances. Neither of them is expected to appear
in the Q-value prediction of RL tasks.

To tackle the above problem of derivative discontinuity, we
propose a fully differentiable temporal-coding training method
in the following part. Section 3.1 introduces a self-incremental
variable to make the TC method fully differentiable. Section 3.2
further discusses the impact of the self-incremental variable
during the inference phase of trained SNNs.

3.1. Training SNNs With a Self-incremental
Variable
To solve the problem above, here we modify the spiking neuron
model and introduce a self-incremental variable βexp(t) for each
of the spiking neurons. It ensures that every neuron will be
activated in a limited time, and its derivative is always continuous
for all the possible inputs. Without adding this term, a neuron’s
output spike time could be set to INF according toMostafa (2017)
and its derivative will be 0. The SNN could not be successfully
updated during training through back propagation. Thus, the
dynamics of a spiking neuron’s membrane potential can be
described as:

dVmem(t)

dt
=

∑

i

wi

∑

r

κ(t − tri )+ βexp(t). (7)

By integrating Equation (7), the spike time tout can be implied as:

1 =
∑

i∈C
wi[1− exp(−tout + ti)]+ βexp(tout)− β , (8)

where β is a hyperparameter. Hence, the exponential form of tout
can be calculated with:

exp(tout) =

√

∑

i∈C wiexp(ti)

β
+

(1+ β −
∑

i∈C wi)2

4β2

+
1+ β −

∑

i∈C wi

2β
, (9)

where the following requirements has to be satisfied:

(
∑

i∈C
wi − 1− β)2 > −4β

∑

i∈C
wiexp(ti), (10)

exp(tout) > 1. (11)

Otherwise, the exp(tout) would be set to INF. Our proposed
temporal coding method ensures that the derivative for each
neuron is always continuous as long as Equation (10) is satisfied.

For the convenience of comparison, we illustrate our
algorithm using the same style as Mostafa (2017), where
a transformation of variables is made: exp(tk) → z[k].
Algorithm 1 is the pseudocode of the forward pass, where
get_causal_set is a function that gets indices of input spikes
influencing the spike time of the first output of a neuron, as
shown in Algorithm 2.

A reinforcement learning problem can converge only if theQ-
value has maximum. It allows the z-domain (from 1 to ∞) to
contain the range of Q-values. Then we can use the spike time in
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Algorithm 1 : Pseudocode of the forward pass in a feed-forward
network with L layers.

Input: z0: Vector of input spike times encoded with Algorithm 1
Input: N1, ...,NL: Number of neurons in the L layers
Input: W1, ...,WL: Set of weight matrices. W l[i, j] is the weight

from neuron j in layer l− 1 to neuron i in layer l
Output: zL: Vector of first spike times of neurons in the output

layer
1: for r = 1 to L do

2: for i = 1 to Nr do

3: Cr
i ← get_causal_set(tr−1,Wr[i, :])

4: if Cr
i 6= φ then

5: zr[i] ←
√

∑i
k=1 wkz

r−1
k

β
+ (1+β−

∑i
k=1 wk)

2

4β2 +
1+β−

∑i
k=1 wk

2β
6: else

7: zr[i]←∞
8: end if

9: end for

10: end for

the z-domain to represent the Q-value of RL. To better illustrate
that the proposed method can generate a practical predictive
value, we visualize the spike time variation of the output layer
in the CartPole task. As shown in Figure 1, around step s1, the
pendulum tilts left, the neuron for moving left keeps spiking
faster than that of moving right. The network can keep selecting
the left-moving action until the upright state is restored. Around
step s2, the pendulum is upright, the neuron for moving left and
right both spike quickly, which means the expectation is always
high, and thus this state is close to the ideal one. At step s3,
the pendulum has been shifted to the left of the field and tilts
to the left. Since the network has not been well trained for this
situation yet, the two output neurons’ spike order flips between
steps. The network cannot continue to select the expected action,
left moving, to restore the upright state. It shows that our training
method is effective and in line with expectations.

3.2. Inference Without the Self-Incremental
Variable
In the above section, we introduce a self-incremental variable.
In this section, we discuss the impact of this variable when
inferencing the trained SNN on real chips. Although the
self-incremental variable is usually easy to implement with
mixed-signal analog/digital circuits, we further explore how
to deploy the trained network on neuromorphic hardware
without dedicated modification. Therefore, in the inference
stage of a trained SNN, the implementation of this variable is
removed. The method given in this section is to directly use
Equation (4) to calculate the activation time during inference.
Since β in Equation (9) is small enough, when the DQN
algorithm converges, the difference between Equations (4) and
(9) approaches zero.

Algorithm 2: Pseudocode of the get_causal_set function.

Input: z: Vector of input spike times of length N
Input: w: Weight vector of the input spikes
Output: C: Causal index set
1: sort_indices← argsort(z) //Ascending order argsort
2: zsorted ← z[sort_indices] //sorted input vectors
3: wsorted ← w[sort_indices] //weight vector rearranged to

match sorted input vector
4: for i = 1 to N do

5: if i == N then

6: next_input_spike←∞
7: else

8: next_input_spike← zsorted[i+ 1]
9: end if

10: if (
∑i

k=1 w
sorted[k] − 1 − β)2 >

−4β
∑i

k=1 w
sorted[k]zsorted[k] ∧ 1 <

√

∑i
k=1 w

sorted[k]sorted[k]

β
+ (1+β−

∑i
k=1 w

sorted[k])2

4β2 +
1+β−

∑i
k=1 w

sorted[k]

2β < next_input_spike then

11: return sort_indices[1], ..., sort_indices[i]
12: end if

13: end for

14: return φ

Theorem 1. In Q network of CVTC method, pj is the jth neuron’s
spike time of output layer using Equation (9), and qj is the jth
neuron’s spike time of output layer using Equation (4). For any
ǫ > 0, there is a small enough β for all j such that:

∣

∣exp(qj)− exp(pj)
∣

∣ < ǫ. (12)

During the training phase of SNNs, we set β as a small enough
value and use Equation (9) to calculate the spike time. During
the inference phase on real chips, we ignore the self-incremental
variable and directly use Equation (4) to implement the circuit.
According to the experimental results in Section 5.1, when β is
set as a value smaller than 1e − 2, the performance degradation
caused by ignoring the self-incremental variable is negligible.

4. ENCODE INPUT SIGNALS FOR
TEMPORALLY CODED SPIKING NEURAL
NETWORKS

Temporal-coded input information’s contribution is inherently
biased in asynchronous SNNs. In such networks, the input spikes
that arrive earlier affect the processing of the subsequent spikes.
Thus, the earlier spikes have a higher impact on the SNNs’s
output, which is undesirable. In reinforcement learning tasks, the
input signal represents the observation of the environment, such
as how far the agent is from the center, how large the angle is,
how large the speed is, etc. When we transfer the value to a spike
timing, ideally, the timing should not have any predefined impact
factor because we are not sure if the observed value should be
larger or lower. This should be the task for the reinforcement
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FIGURE 1 | Spike time variation of the output layer of CVTC. (A) An example of spike time in an episode shows the neurons’ spike time for moving left and right of

each step. (B) States of the car at step s1. The car is at the center of the field, and the pendulum is turning left. The spike time for moving right is high. (C) States of

the car at step s2. The car is at the center of the field, and the pendulum is upright. The spike times are both low. (D) States of the car at step s3. The car is on the left

of the field, and the pendulum is turning left. The spike times are both high.

learning algorithm to discover. Figure 2 shows one case of this
phenomenon where the last input spikes have no impact on the
network’s output. It is unfeasible to directly feed the input signals
as spike times into asynchronous SNNs.

To solve this problem of the inherently biased contribution
of input signals, we propose an encoding method based on a
mixture of spatial and temporal coding techniques, which can
solve the problem largely while keeping the input information
intact during the coding procedure. In Section 4.1, we present
our encoding method for input signals of SNNs. In Section 4.2,
we prove that the encoded input signal can be easily recovered,
and there is no information loss during encoding.

4.1. Encode With Neuron Populations and
Normal Distribution
We discrete the range [a, b] of value x intoK points k ∈ [0,K−1].
For an input channel i ∈ I, if a spike is generated at time xi, we
have

si,k =

{

T, Floor( xi−ai
bi−ai ∗ K) = k

0, otherwise
, (13)

where si,k is the value of the k-th point of i-th input channel. T is
a default spike time. All of the I × K all-or-none input channels
are fed into the input layer of SNNs with spike time T or 0.

Thus, continuous temporal signals can be mapped into
discrete spatial signals, and they can be treated equally by the
network as different parts of an input image. However, this
coding method is achieved at the cost of losing precision, making
it unable to distinguish subtle differences between input signals
and only representing 2K different input values.

Then we extend the coding method presented in this section
to take advantage of a normal distribution of µ = x to determine
the timing value of each point. In this way, the input signal can
be encoded as spikes with continuous times, which can be easily

decoded to the original information it carries. Now the input
signal can be encoded as:

si,k = [
1

√
2πσ
− Norm xi−ai

bi−ai
∗K,σ 2 (k)] ∗ T, (14)

where Norm is the probability density function of the normal
distribution. σ is the pulse width, can always be set as 1.

In this way, the original input signal is encoded as continuous
spike time in the range of [a, b]. K is the input width after
conversion. The larger the width, the more information the input
contains, so it should be as large as possible within the range
that the network performance can bear. We set K to 20 in the
following experiments of this paper.

It worth noting that since the final original output activation
time cannot be recovered from more than two output signals
when the output is mixed with noise, the premise that the
signal can be recovered in Section 4.1 must be lossless, and the
method in Section 4.1 cannot be directly applied to the output. In
addition, it is also difficult to implement the Q-value function of
reinforcement learning tasks with discretization method. So we
can only directly map the activation time of the output layer to
the Q-value. But relying on the method in Section 3.1 to enhance
the continuity of backpropagation, our method has been able to
enable the agent to overcome the imbalance of the output and
finally complete the training task as shown in the experimental
results below.

The pseudocode of our encoding method presented is
illustrated in Algorithm 3.

4.2. Recoverable Encoded Input Signal
Here we show that the input encoding method in Section 4.1
is non-destructive and can be recovered to the original input.
The probability density function of the normal distribution in
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FIGURE 2 | Example of the unbalanced-input problem in SNNs. (A) Network structure. (B) Input-output spike times when i3 = 1.0. (C) Input-output spike times when

i3 = 1.3. Since we take the first activated output neuron as the network’s output, it cannot distinguish the two different input patterns in this example. When we

delayed i3 from 1.0 (B) to 1.3 (C), it only affected o2.

Algorithm 3: Pseudocode for encoding the input signals.

Input: (x1, .., xL): Input signals
Output: (y1, .., yL∗K): Encoded spike times
1: a← min(x1, .., xL)
2: b← max(x1, .., xL)
3: for i = 1→ L do

4: for k = 1→ K do

5: Si,k ←
(

1− 1√
2πσ

exp[− (k− xi−a
b−a ∗K)

2

2σ 2 ]

)

6: Yi∗K+k ← Si,k
7: end for

8: end for

Equation (14) is defined as:

Normµ,σ 2 (k) =
1

√
2πσ

exp[−
(k− µ)2

2σ 2
]. (15)

Substitute the term of normal distribution in Equation (14) with
Equation (15), the encoded input signal becomes:

si,k = [1−
1

√
2πσ

exp(−
(k− xi−ai

bi−ai ∗ K)
2

2σ 2
)] ∗ T, (16)

Hence, the origin input signal are given by:

xi = (k±
√

2σ 2ln[
√
2πσ (1−

si,k

T
)])/K ∗ (bi − ai)+ ai. (17)

Based on Equation (17), xi can be easily recovered from the
encoded input.

4.3. Comparison of Different
Self-incremental Variables
The membrane potential of a spiking neuron when that is about
to fire is described as:

θ =
∑

i∈C
wi(1− exp[−(tout − ti)])+

∫ tout

0
f (x)dx, (18)

where f (x) is the self-incremental variable that we introduced.
With this term, the membrane potential can continue to increase
over time. It makes sure that every neuron can reach the firing
threshold eventually so that no neuron’s output spike would be
denoted as INF. When the input spikes are not given, to ensure
the neuron can spike eventually, it requires:

∫ ∞

0
f (x)dx >= θ [f (x) > 0]. (19)

We can transform Equation (18) to:

α
1

exp(tout)
+ γ +

∫ tout

0
f (x)dx = 0, (20)

where α and γ denote two constants. Then we have:

∫ tout

0
f (x)dx = ηexp(tout)

k + C (k ∈ Z+), (21)

where f (x) has multiple candidates. We choose to set f (x)
as βexp(x). Because only in this case, Equation (21) is not a
transcendental equation, and it can be solved using common
back-propagation algorithms. In the other cases, Equation (21)
would be a transcendental equation, to deal with it, we have to
use one of the following methods:

• Use iterative algorithms such as Newton’s method to get a
numerical solution. However, this would result in a great
reduce of the efficiency of the solution.
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TABLE 2 | Hyperparameters for algorithms in experiments.

Hyperparameter MNIST CartPole MountainCar

Optimization

algorithm

SGD (Amari, 1993) Adam (Kingma and

Ba, 2014)

Adam

Learning rate 0.01–0.0001 0.001251 0.001

Training batch size 10 32 32

Target network

update frequency

100 step 1 episode

Replay memory

capacity

1,000 200,000

Training batch size 23.37 −200 −106.4
γ 0.99 0.99

ǫ 1–0.1 1–0.00001

K 20 15

T 20 15

σ 1.4 1.2

β 0.1, 0.01, 0.001 0.001 0.001

• Use low-order Taylor expansion approximation. However, this
would result in an accuracy-decreasing problem.

Therefore, we choose to use βexp(x) as the self-incremental
variable to smooth the training process.

4.4. Architectures
In this paper, we use full-connected structure as the temporal-
layers. For MNIST task, we use the same network structure with
one hidden layer. Hidden layers of both the CVTC and Temporal
Coding (TC) network have 800 neurons. For CartPole task, we
also use one hidden layer of 800 neurons for all SNN networks.
But the input sizes of DDQN-SNN-CVTC and DDQN-SNN-TC-
encoded are 80 instead of 4. For MountainCar task, all networks
have two hidden layers of 12 and 48 layers, including SNN
and ANN methods. The input size of DDQN-SNN-CVTC are
expanded to 40 by input encoding.

4.5. Hyperparameters
In Table 2, the Hyperparameters for our experiments in this
paper are shown.

4.6. Inference With I&F Neurons
Here we show that the added incremental term can be removed
after training. So the trained network can be run in typical SNNs
constructed with I&F neurons.

Theorem 1. In Q network of CVTC method, pj is the jth
neuron’s spike time of output layer using Equation (9), and qj is
the jth neuron’s spike time of output layer using Equation (4). For
any ǫ > 0, there is a small enough β for all j such that:

∣

∣exp(qj)− exp(pj)
∣

∣ < ǫ. (22)

When the DQN algorithm converges, the predicted value of the
output layer is upper bound. Let L donate the layer number of Q
network, predmax donate the max activation time of the output
layer in the Q network. As we discussed at the beginning of

Section 4, in each layer of the network, only those inputs that are
less than the maximum spike time of the output layer could affect
the output layer. Let pl,j donate the jth neuron’s spike time of layer
l+ 1 and pl,j < predmax.

It can be conducted that all output times are positive as
follows:

exp(pl,j) > 1. (23)

So we always have:

exp(pl,j) <

∑

i∈C wl,iexp(pl−1,j)
∑

i∈C wl,i − 1
= exp(ql,j), (24)

where C = {i : pl−1,j < pl,j}, wl,i,j donate the weight between
neuron i of layer l and neuron j of layer l+ 1. Thus we have:

exp(ql,j)− exp(pl,j) > 0. (25)

For the first layer of Q network, inputs for p0,j and q0,j are same.
it can be obtained by Equation (8):

1 =
∑

i∈C
w0,i,j[1− exp(−p0,j + ti)]+ βexp(p0,j)− β

<
∑

i∈C
w0,i,j[1− exp(−p0,j + ti)]+ βexp(q0,j)− β ,

(26)

where ti donate the ith input of Q network.
Simplify the equation:

exp(p0,j)[1+β−βexp[q0,j]−
∑

i∈C
w0,i,j] <

∑

i∈C
w0,i,jexp(ti), (27)

exp(p0,j)[βexp[q0,j]+
∑

i∈C
w0,i,j−1−β] >

∑

i∈C
w0,i,jexp(ti). (28)

The lower bound of exp(p0,j) can be obtained:

exp(p0,j) >

∑

i∈C w0,i,jexp(ti)
∑

i∈C w0,i,j + βexp(q0,j)− 1− β
. (29)

Subtract exp(q0,j) on both sides:

exp(q0,j)− exp(p0,j) <

∑

i∈C w0,i,jexp(ti)
∑

i∈C w0,i,j − 1

−
∑

i∈C w0,i,jexp(ti)
∑

i∈C w0,i,j + βexp(q0,j)− 1− β

=
∑

i∈C w0,i,jexp(ti)
[

(
∑

i∈C w0,i,j + βexp(q0,j)− 1− β)− [
∑

i∈C w0,i,j − 1]
]

(
∑

i∈C w0,i,j − 1)[
∑

i∈C w0,i,j + βexp(q0,j)− 1− β]

=
∑

i∈C w0,i,jexp(ti)[βexp(q0,j)− β]

(
∑

i∈C w0,i,j − 1)[
∑

i∈C w0,i,j + βexp(q0,j)− 1− β]

=
AB

W(W + B)

<
AB

W2
,

(30)
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where A =
∑

i∈C w0,i,jexp(ti), W =
∑

i∈C w0,i,j − 1 and B =
βexp(q0,j)− β , A, B, and W are all positive. Let:

exp(q0,j)− exp(p0,j) < ǫ, (31)

β should satisfy:

β <
ǫW2

A[exp(q0,j)− 1]
. (32)

So when we choose β = ǫW2

2LA[exp(predmax)−1]
, there is:

exp(q0,j)− exp(p0,j) < ǫ
exp(q0,j)− 1

2Lexp(predmax)− 1
. (33)

Thus we proved the limit of loss for one layer. Then we generalize

it for all layers. For layer l > 0, let βl,j =
ǫW2

l,j

2L−lAl,j[exp(predmax)−1]
.

If exp(ql−1,j) − exp(pl−1,j) < ǫ
exp(q0,j)−1

2L−lexp(predmax)−1
holds, then we

rewrite Equation (30) as:

exp(ql,j)− exp(pl,j) <

∑

i∈C wl,iexp(ql−1,j)
∑

i∈C wl,i − 1

−
∑

i∈C wl,iexp(pl−1,j)
∑

i∈C wl,i + βexp(ql,j)− 1− β

<

∑

i∈C wl,i(exp(pl−1,j)+ ǫ
exp(ql−1,j)−1

2L−lexp(predmax)−1
)

∑

i∈C wl,i − 1

−
∑

i∈C wl,iexp(pl−1,j)
∑

i∈C wl,i + βexp(ql,j)− 1− β

=
∑

i∈C wl,iexp(pl−1,j)[βexp(ql,j)− β]

(
∑

i∈C wl,i − 1)[
∑

i∈C wl,i + βexp(ql,j)− 1− β]

+
ǫ

∑

i∈C wl,i − 1

∑

i∈C wl,iexp(ql−1,j)− 1

2L−lexp(predmax)− 1
,

(34)

exp(ql,j)− exp(pl,j) < ǫ
ql,j

2L−lexp(predmax)

+
ǫ

∑

i∈C wl,i − 1

∑

i∈C wl,iexp(ql−1,j)− 1

2L−lexp(predmax)− 1

< ǫ
ql,j

2L−lexp(predmax)
+

ǫ
∑

i∈C wl,i − 1
∑

i∈C wl,iexp(ql−1,j)

2L−lexp(predmax)

= ǫ
ql,j

2L−lexp(predmax)
+

ǫ

2L−lexp(predmax)
∑

i∈C wl,iexp(ql−1,j)
∑

i∈C wl,i − 1

= ǫ
ql,j

2L−lexp(predmax)
+

ǫ

2L−lexp(predmax)
ql,j

= ǫ
ql,j

2L−l−1exp(predmax)
.

(35)

If we choose β = min(βl,j), it always hold:

exp(qL−1,j)− exp(pL−1,j) < ǫ
qL−1,j

exp(predmax)
< ǫ. (36)

Theorem 1 is proved. By choosing a relative small value of β , the
effect of the removing the incremental term exp() in the neuron
model to the performance during inference can be controlled and
minimized.

5. EXPERIMENTS

In this section, we evaluate that the method proposed in this
paper can be applied to the two problems of the TC method in
RL and compare it with the general RL baseline.

Section 5.1 compares the training results of the TC and
CVTC methods based on the MNIST data set and the CartPole
environment. The purpose is to prove that the additional
increment item βexp(t) makes all neurons always continuous and
differentiable and can be removed after training without affecting
network performance.

In Section 5.2, we compare the results of whether to use the
coding method proposed in Section 4 and proved that the coding
method is effective for RL training.

In Section 5.3, we compare our method to other baseline
methods and proved that our approach could achieve the same
performance as the baseline method on Benchmark tasks.

Our experiments are carried out in the CartPole-v0 and
MountainCar-v0 control environment of OpenAI Gym (Barto
et al., 1983), and handwritten digits data set MNIST (Mostafa,
2017; Comsa et al., 2020). All experiments run with a single
process and an Nvidia RTX Quadro 5000 GPU.

5.1. Effectiveness of Fully Differentiable
Training Method
In Section 3, we analyze the influence of increment item
βexp(t) on network training and migration. In this section, we
evaluate that with different β values: (1) It is effective for model
training. (2) It is effective for migration. Here we don’t use RL
environment because the Q-value prediction of RL tasks needs
to introduce the input coding method proposed in Section 4. To
eliminate the interference, we conducted experiments based on
the MNIST data set without input encoding. All grayscale images
are binarized to zhigh = 6 and zlow = 1 instead.

We choose different β values, and the CVTC method was
trained for 20 epochs. Figures 3A,B show the training results.
Due to the increment term βexp(t), the CVTC method has a
significantly faster convergence speed than the TC method. The
CVTC method finally reached the same level as TC, indicating
that the self-increment term introduced by the CVTC method
did not affect the accuracy of algorithm training.

We show CVTC and TC methods’ spike time distribution in
MNIST task in Figures 3C,D. Here we use tout to show the real
activation time of neurons instead of zout . The TC method uses
1e6 to represent infinite zout , and its corresponding spike time
is 19.8. As shown in Figure 3C, in a TC network, the infinity
value accounts for the largest proportion in the output layer.
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FIGURE 3 | Results in MNIST task. (A) Training error. (B) Evaluation error. (C) Spike time distribution of TC. (D) Spike time distribution of CVTC.

TABLE 3 | Comparison of errors on MNIST task.

Beta 1e-1 1e-2 1e-3

Evaluate error (%) 2.65 2.72 2.85

Test error (%) 2.67 2.72 2.85

It is far more than other values, which means the number of
inactivated neurons accounts for a substantial proportion of the
total. These neurons represent negative samples in classification
tasks, but only positive samples and partially activated negative-
sample neurons can be updated, which has a significant impact
on RL tasks. As shown in Figure 3D, using our CVTCmethod, no
illegal value appears, and the model can be updated successfully.

Then we choose different β and analyzed the effect of the
inference phase (Table 3). We save the model after 50 rounds of
training under different β and use the TC method to read the
model parameters and verify them. The experimental results are
shown in Table 3. Evaluation error refers to the result of using
Equation (9), test error refers to the result of using Equation (4).
It shows that as β decreases, the error in the inference stage

gradually decreases. When β is less than 1e−2, the difference
between the two errors approaches 0. It proves that when β is
small enough, the parameters obtained by the CVTCmethod can
be deployed to the neuromorphic chip without transformation.

5.2. Effectiveness of Input Encoding
Method
In this section, we evaluate the effectiveness of the input coding
method on CartPole-v0 environment. We replace the deep
network with SNN in the DDQN framework, which is more
stable, and proved that it would converge in finite time (Xiong
et al., 2020). We use the zout as Q-value for RL, because zout
has wider range than tout . The Q-value of CartPole environment
has a range of [1, 200], which are included by the range of
zout . Then the fastest responding neurons in the output layer
refers to the best actions. We test the following permutations
of methods: The DDQN-SNN-CVTC network using the method
proposed in Sections 4 and 5.1; The DDQN-SNN-CVTC-
uncoded network removes the input coding step described in
Section 4; The DDQN-SNN-TC represents the original temporal
coding method, which has also been introduced in Section 5.1;
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FIGURE 4 | Training curves on CartPole task.

TABLE 4 | Comparison of performance on Gym basic tasks.

Environment CartPole MountainCar

DDQN 195.95 ± 0.59 −106.4 ± 1.05

PPO 198.57 ± 0.42 −96.20 ± 0.46

DDQN-SNN-CVTC (ours) 180.19 ± 2.73 −108.15 ± 2.1

DDQN-SNN-TC 17.89 ± 0.3 −199 ± 0

The DDQN-SNN-TC-encoded added the method proposed in
Section 4 based on TC but did not use the network proposed in
Section 3.

Figure 4 shows that our DDQN-SNN-CVTC out-performs
all other methods on the CartPole task. Both DDQN-SNN-
TC and DDQN-SNN-TC-encoded failed to learn a better-than-
random policy because of the discontinuity in back-propagation.
The performance of DDQN-SNN-CVTC-uncoded is better than
the DDQN-SNN-TC and DDQN-SNN-TC-encoded but inferior
to the DDQN-SNN-CVTC algorithm, which indicates that our
input encoding method is effective for RL training.

5.3. Performance Evaluation
We evaluate the performance of our approach on Gym basic
tasks. The MountainCar environment always returns −1 as the
reward, so we need to make the reward positive to ensure the
Q-value always greater than 1. We compare our method with
two commonly used RL algorithms: DDQN for value-based
RL method and proximal policy optimization(PPO) (Schulman
et al., 2017) for policy-based RL method. We run all types of
experiments 10 times and averaged their best rewards.

As shown in Table 4, the strategy-based PPO is obviously
stronger than other methods, which may be due to the
optimization method of PPO and the appropriate entropy
coefficient. The DDQN-SNN-CVTC method achieved high
scores, but DDQN-SNN-TC did not have any positive
performance on both tasks, indicating that our method
can effectively train reinforcement learning tasks. The
DDQN-SNN-CVTC method is based on the same architecture

as the DDQN method, but the effect is slightly inferior to the
DDQN algorithm, which implies that the SNN training method
still has a slight loss compared to the ANN. But in general, we
have achieved an effective means of giving the advantages of the
SNN method to RL.

Currently, there are still some special challenges to train
SNNs for Policy-based reinforcement learning tasks with the TC
method due to the existence of two regression networks in the
policy gradient algorithm: Q-value network and policy network.
Although we can make the Q-value lower bound by setting
the reward, the output of the policy network is unbounded,
which does not match the output threshold of the SNN (0,∞).
Therefore, the next step is to provide a method for limiting the
policy network to a certain threshold, so that the policy-based
reinforcement learning algorithm can be used as the baseline for
improvement, and the proposed method will also show better
performance.

6. CONCLUSION

This paper presents the CVTC method to train asynchronous
SNNs. We introduce a constantly increasing variable for each
spiking neuron to ensure that it is differentiable anytime during
training. This variable can be removed after training without
performance degradation. Then we propose a novel temporal
coding method to encode input signals with normal distribution
using a group of input coding neurons. It solves the problem
of losing information of later arrived spikes. Moreover, we
theoretically prove that the encoded input information can be
easily restored from the encoded spike times. We show that using
our CVTCmethod, SNNs can be trained for RL tasks and achieve
a comparable performance of the state-of-the-art ANN in the
DDQN framework. Code can be found at: https://github.com/
Dongchenl/CVTC.
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