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1  | INTRODUC TION

Human cancers are classified based on anatomical, histopathologi‐
cal and molecular features. Hanahan and Weinberg posited cancer 
unifying changes in cell biology (hallmarks): resisting cell death, sus‐
taining proliferative signalling, evading growth suppressors, activat‐
ing invasion and metastasis, enabling replicative immortality and 
inducing angiogenesis.1 Now included are two ‘enabling’ hallmarks 

(genome instability and mutation, and tumour‐promoting inflamma‐
tion) and two ‘emerging’ hallmarks (deregulating cellular energetics 
and avoiding immune detection).1‐3 Aberrant signalling axes identify 
specific hallmarks in a given cancer.1 Treatments targeting each hall‐
mark promise individualized therapies.1,2,4

Individualized cancer therapy requires identifying contributors 
to these hallmarks, that is targetable biochemical pathways and 
genetic interactions. Presently, this includes histopathological, 
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Abstract
Numerous genetic and epigenetic alterations cause functional changes in cell biol‐
ogy underlying cancer. These hallmark functional changes constitute potentially tis‐
sue‐independent anticancer therapeutic targets. We hypothesized that RNA‐Seq 
identifies gene expression changes that underly those hallmarks, and thereby defines 
relevant therapeutic targets. To test this hypothesis, we analysed the publicly avail‐
able TCGA‐TARGET‐GTEx gene expression data set from the University of California 
Santa CruzToil recompute project using WGCNA to delineate co‐correlated ‘modules’ 
from tumour gene expression profiles and functional enrichment of these modules to 
hierarchically cluster tumours. This stratified tumours according to T cell activation, 
NK‐cell activation, complement cascade, ATM, Rb, angiogenic, MAPK, ECM recep‐
tor and histone modification signalling. These correspond to the cancer hallmarks 
of avoiding immune destruction, tumour‐promoting inflammation, evading growth 
suppressors, inducing angiogenesis, sustained proliferative signalling, activating inva‐
sion and metastasis, and genome instability and mutation. This approach did not de‐
tect pathways corresponding to the cancer enabling replicative immortality, resisting 
cell death or deregulating cellular energetics hallmarks. We conclude that RNA‐Seq 
stratifies tumours along some, but not all, hallmarks of cancer and, therefore, could 
be used in conjunction with other analyses collectively to inform precision therapy.

K E Y W O R D S

cancer, hallmarks of cancer, pan‐cancer, precision medicine, precision oncology, RNA‐seq, 
transcriptome, wgcna

www.wileyonlinelibrary.com/journal/jcmm
https://orcid.org/0000-0001-5268-3120
mailto:
https://orcid.org/0000-0003-3097-241X
http://creativecommons.org/licenses/by/4.0/
mailto:Samuel.Milanovich@SanfordHealth.org
mailto:Samuel.Milanovich@SanfordHealth.org


     |  419FROST eT al.

DNA, cytogenic and proteomic analyses.5‐7Gene expression anal‐
ysis is currently used case‐by‐case to discover targets 8; there is 
no consensus framework for using such analyses across all can‐
cer types in clinical care. Although previous studies of specific 
primary site cancers such as pancreatic 9 and breast cancers 10 
identified transcriptomic subgroups, investigation of transcrip‐
tomic subgroups across all cancers is not well studied. Using The 
Cancer Genome Atlas (TGCA) 11 and FANTOM5 12 transcriptomic 
data sets, Kaczowski et al 13looked for primary site‐independent 
cancer subgroups by grouping cancers according to differential 
expression of individual transcripts initially in cultured cells and 
secondarily in tumours. This analysis found that cancers could be 
classified into molecular subtypes defined by expression of tran‐
scripts involved in DNA and biopolymer metabolism, tumour sup‐
pression, oxidoreductase activity and developmental or cell cycle 
signalling.

The work of Kaczowski et al led us to hypothesize that can‐
cer‐associated mutations and epimutations alter expression of 
co‐correlated groups of genes independent of cancer type and are 
detectable primarily in cancer tissue by RNA‐Seq. We reasoned that 
assessing for co‐correlated groups of genes is arguably more sensi‐
tive to changes in expression of gene networks underlying biological 
processes than is identifying common processes among individual 
transcripts. To test this, we analysed gene expression profiles from 
the University of California, Santa Cruz (UCSC) Toil recompute of the 
TCGA, Therapeutically Applicable Research to Generate Effective 
Treatments (TARGET)14 and Genotype‐Tissue Expression (GTEx)15 
data sets available on the Xena Platform.16 We found consistent 
stratification of cancers by signatures of T cell activation, NK‐cell 
activation, complement cascade, ATM, Rb, angiogenic, MAPK, ECM 
receptor and histone modification signalling.

2  | MATERIAL S AND METHODS

2.1 | Data sources and processing

The RNA‐Seq data and associated metadata files were down‐
loaded from the UCSC Xena Data Browser16(2016‐09‐03 version, 
TcgaTargetGtex_rsem_gene_tpm (TTG) data set) (Table 1).These con‐
tained transcript‐non‐specific expression data for all coding genes as 
well as for long non‐coding RNA (lncRNA), pseudogenes and other 
non‐coding transcripts with unique Ensembl ENSG identifiers.17 The 
TTG data set quantifies gene expression as log2

(
TPM+1

)
 and were 

converted to TPM+1 for this analysis. The BioMart 18 database was 
used to extract genes having ENSG identifiers annotated with the 
protein_coding biotype. This eliminated 40,826 (67.5%) non‐cod‐
ing entries leaving 19,672 protein‐coding entries (TTG‐C data set, 
Figure 1A, Table 1). The TTG‐C data set was then reduced to cancers 
that had corresponding normal samples and vice versa to create the 
T‐C‐PS and N‐C‐PS data sets, respectively (Table 1). Primary sites 
of uncertain histological equivalence between tumour and normal 
samples (eg blood cancers) or with sample numbers below 20 in ei‐
ther cancer or normal data sets were excluded.

2.2 | Data normalization

Because non‐cancerous primary site‐specific gene expression might 
obscure cancer signatures, we used two methods to subtract non‐
cancer expression data. We analysed data before and after correc‐
tion (Figure 1B).

We used two binary primary site classification matrices: Pc, a t×q 
matrix of cancer primary sites, and Pn, a t× r matrix of normal tissue 
primary sites. q and r are the number of cancer and normal samples, re‐
spectively, and t is the number of primary sites. We used two gene ex‐
pression matrices:C, a s×q matrix of cancer gene expression from the 
T‐C‐PS data set (Table 1), and N, a s× r matrix of normal tissue gene ex‐
pression from the N‐C‐PS data set (Table 1).q and r are the number of 
cancer and normal samples, respectively, and s is the number of genes.

For a given cancer expression vector of gene i  in matrix C, and 
for a binary classification vector for primary site l  in matrix Pc, we 
derived the vector of tissue‐specific cancer gene expression Xi by 
multiplying these two vectors:

For a normal tissue, given the expression vector for gene i  in 
matrix N and the binary classification vector for primary site l  in ma‐
trix Pn, we derived the vector of tissue‐specific normal tissue gene 
expression Yi by multiplying these two vectors:

By calculating Xi and Yi or all primary sites and all genes, we cre‐
ated a series of vectors that form the two three‐dimensional ma‐
trices X and Y. Xi,j,l is the TPM gene expression value for gene i  in 
cancer j of primary site l . Yi,k,l is the TPM gene expression value for 
gene i  in normal tissue k of primary site l .

The tissue normal‐corrected data set (subsequently called ‘tis‐
sue‐corrected’) was calculated by first defining the mean normal ex‐
pression ̂Gtissue for gene i  at each primary site l  as:

Where r is the number of normal tissue samples in primary site l , ml is 
calculated as:

The tissue‐corrected gene expression matrix Ltissue was calcu‐
lated as:

The grand normal‐corrected data set (subsequently called ‘grand 
mean‐corrected’) was calculated by partitioning matrix Y by both the 

Xi=Pc
l
×Ci

Yi=Pn
l
×Ni

̂Gtissue
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TA B L E  1   Characteristics of the data sets used in this study

Data set Abbreviated name Sample types Number of samples
Number of 
primary sites Number of genes

TcgaTargetGtex_rsem_gene_tpm TTG Tumour and normal 19,109 47 60,498* 

TCGA‐TARGET‐GTEx_coding TTG‐C Tumour and normal 19,109 47 19,672

TTG_coding_common_primary TTG‐C‐PS Tumour and normal 12,166 15 19,672

Tumour_coding_common_primary T‐C‐PS Tumour 7,272 15 19,672

Normal_coding_common_primary N‐C‐PS Normal 4,894 15 19,672

*The 60,498 ‘genes’ in the TcgaTargetGtex_gene_expected_count data set includes various species of non‐coding RNAs and pseudogenes which 
have unique Ensembl ENSG identifiers. 

F I G U R E  1   A flowchart depicting the analyses used in this study. Transcriptome profiles were first restricted to protein‐coding genes (A), 
then two different primary site‐correction approaches were taken to analyse the three data sets in parallel (B). Each data set was analysed 
using WGCNA to identify groups of genes (modules) that were co‐correlated, and variable across cancers (C). Genes found in modules were 
put through pathway enrichment analysis (WebGestalt) and used for hierarchical clustering (D)
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total number of primary sites, t and the number of cancers within 
each primary site, r:

ml was calculated as before. Finally, the grand mean‐corrected 
gene expression matrix Lgrand as calculated as:

2.3 | Gene selection for clustering analysis

For clustering analysis, the genes profiled were restricted firstly 
to protein‐coding genes because mechanisms of tumorigenesis are 
currently better understood for the protein‐coding transcriptome 
(Figure 1A). Secondly, protein‐coding genes were restricted to ‘mod‐
ules’ with expression values co‐correlated and variable across can‐
cers using weighted gene co‐expression network analysis (WGCNA, 
Figure 1C).19 WGCNA was carried out using the WGCNA package 
in R (version 1.68).20 The mean TPM values of all genes in a module 
were used to evaluate the expression of a module in a cancer.

2.4 | Characterization of modules identified 
by WGCNA

Modules were characterized using the over representation analysis 
(ORA) in the WebGestaltR package (version 0.4.1, Figure 1C).21 ORA 
used all protein‐coding genes as a reference set, the WikiPathway 
22 database for functional annotations and the Benjamini‐Hochberg 
method 23 for multiple testing correction. Modules were named 
using default WGCNA settings, which assign each module a colour. 
The module names were not changed after characterization due to 
the complexity of the functional enrichment.

2.5 | Clustering by transcript profiling

Clusters of similar cancers were defined by hierarchical clustering 24 
using the cosine distance 25 between the expression profiles of the 
genes included in the modules and Ward's method 26 for agglom‐
eration (Figure 1C). The number of clusters was determined with 
the find_k function from the dendextend R package (version 1.12.0); 
this function estimates k using maximal average silhouette widths.27 
Dendrograms were cut into k groups to assign cancers to a cluster.

3  | RESULTS

To test the hypotheses that cancer‐inducing gene expression 
changes are detectable by RNA‐Seq and traverse cancer primary 
sites, we analysed the TTG data set (Table 1) and restricted it to tu‐
mour and corresponding normal data (Figure 1; Table 1). These data 
sets were normalized, analysed and stratified.

3.1 | Hallmark cancer and tissue‐specific pathways 
distinguish cancer clusters in uncorrected data

Analysis of the uncorrected data set showed that subtle expression 
differences in both hallmark cancer and cancer‐unrelated, tissue‐
specific pathways differentiated clusters. WGCNA categorized 991 
genes into 17 modules. Eleven of those modules were enriched for 
functional pathway annotations: brown, cyan, green, grey60, light 
yellow, midnight blue, pink, purple, red, tan and turquoise. Eight mod‐
ules were enriched for tissue‐specific processes: brown, cyan, green, 
light yellow, pink, red, tan and turquoise (Table S1, ORA, P ≤ .049). 
The remaining three modules were enriched for cancer‐relevant pro‐
cesses. The grey60 and purple modules were, respectively, enriched 
for natural killer (NK) cell signalling and T cell receptor (TCR) signal‐
ling (Table S1, ORA, P ≤ 2.9*10‐5), axes characteristic of the avoiding 
immune destruction hallmark. The midnight blue module was en‐
riched for histone modification signalling (Table S1, ORA, P ≤ 10‐12), 
a component of the genome instability and mutation hallmark.1

Hierarchical clustering of the 991 genes in WGCNA modules 
resulted in four cancer clusters. Each cluster was characterized 
by significantly different expression of the cyan, grey60, light yel‐
low, midnight blue, pink, purple, red, tan and turquoise modules 
(Figure 2A, Kruskal‐Wallis Test, P ≤ 10‐16). The brown and green 
modules did not show differential expression (Figure 2A, Kruskal‐
Wallis Test, P ≥ .35). Post hoc analysis by Dunn's Test for pairwise 
differences in module expression between clusters showed signifi‐
cantly different expression for four of six pairwise cluster compari‐
sons for the turquoise module, five of six comparisons for the purple, 
red and tan modules, and six of six comparisons for the cyan, grey60, 
light yellow, midnight blue and pink modules (Table S2).

To investigate whether anatomical cancer primary site corre‐
sponded with cluster assignment, we evaluated the primary site 
composition of each cluster. All clusters were primary site heteroge‐
neous. Cluster 1 was primarily composed of breast (26%), prostate 
(20%), ovary (18%) and kidney (12%) cancers (Figure 3A). Cluster 2 
was predominantly composed of lung (37%) and breast (14%) can‐
cers (Figure 3A). Cluster 3 was primarily composed of kidney (24%), 
liver (21%) and brain (16%) cancers (Figure 3A). Cluster 4 was pri‐
marily composed of kidney (21%), breast (20%) and prostate (11%) 
cancers (Figure 3A).

Post hoc analysis by Tukey's Test determined pairwise differ‐
ences in module expression between primary sites (Table S3). The 
brown module was expressed higher in uterine cancers than other 
sites (Figure 4A, Tukey HSD, P ≤ 3.2*10‐9). The light yellow module 
was expressed higher in breast cancers than other sites (Figure 4A, 
Tukey HSD, P ≤ 5.9*10‐6). The pink module was expressed higher in 
liver cancers than other sites (Figure 4A, Tukey HSD, P ≤ 2.0*10‐11). 
The red, tan and turquoise modules were expressed higher in brain 
cancers than other sites (Figure 4A, Tukey HSD, P ≤ 2.0*10‐11).The 
cyan module was expressed higher in stomach and prostate cancers 
than other sites (Figure 4A, Tukey HSD, P ≤ 7.6*10‐6). The green 
module was expressed higher in skin cancers than in prostate, liver, 
kidney, brain or breast cancers (Figure 4A, Tukey HSD, P ≤ .037).The 
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F I G U R E  2   Heat maps of module 
expression within cancer clusters. Heat 
maps are shown for (A) uncorrected, (B) 
tissue‐corrected and (C) grand mean‐
corrected RNA‐Seq data. WGCNA‐
identified modules (left colour bar) are 
composed of protein‐coding genes with 
TPM values co‐correlated and variable 
across cancers. For panel A, module 
expression is the mean of TPM + 1 values 
for all genes within a module. For panels 
B and C, module expression is ln(Tumour/
Normal) as defined in the Methods. 
Clusters of similar tumours (numbered 
divisions across the top) were defined by 
hierarchical clustering using the cosine 
distance between the genes included 
in the modules and Ward's method for 
agglomeration. The anatomical primary 
sites of tumours are graphically portrayed 
by the colour bar along the top
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F I G U R E  3   Graphs showing the 
distribution of each cancer type among 
clusters for (A) uncorrected, (B) tissue‐
corrected and (C) grand mean‐corrected 
RNA‐Seq data. Count represents the 
number of tumours. Colours within the 
bars represent the cancer anatomical 
primary sites as described in the key
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F I G U R E  4   Heat maps of the module 
expression for each anatomical primary 
site (colour bar along the top).Heat maps 
are shown for (A) uncorrected, (B) tissue‐
corrected and (C) grand mean‐corrected 
RNA‐Seq data. A heat map showing 
expression of modules (vertical colour bar) 
identified by WGCNA for each anatomical 
primary site (horizontal colour bar). 
WGCNA‐identified modules (left colour 
bar) are composed of protein‐coding 
genes with TPM values co‐correlated 
and variable across cancers. For panel A, 
module expression is the mean of TPM + 1 
values for all genes within a module. 
For panels B and C, module expression 
is ln(Tumour/Normal) as defined in the 
Methods
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expression of the grey60, midnight blue and purple modules differed 
between pairs of primary sites but without an appreciable pattern 
(Figure 4A, Tukey HSD, P ≤ .05).

3.2 | Hallmark cancer and tissue‐specific pathways 
distinguish cancer clusters in tissue‐corrected data

Because of the potential for cancer‐unrelated primary site‐specific 
pathways to obfuscate tumorigenic signatures, we repeated the 
analyses (Figure 1D) after correcting for tissue‐specific gene expres‐
sion. This removed some, but not all, of the primary site‐specific 
pathways seen in the uncorrected data and introduced new primary 
site‐specific pathways (Table S4 vs Table S1).

WGCNA identified 3573 genes distributed into 27 modules 
in the tissue‐corrected data. Of those modules, 16 were enriched 
for functional pathway annotations: black, blue, brown, cyan, dark 
green, green, green yellow, grey60, light cyan, light yellow, magenta, 
pink, purple, red, turquoise and white (Table S4, ORA, P ≤ .05). Of 
these 16 modules, 7 were enriched for tissue‐specific processes: 
black, blue, cyan, dark green, light cyan, light yellow and turquoise 
(Table S4). The remaining 9 modules were enriched for cancer‐rel‐
evant processes. The grey60, white and purple modules were en‐
riched for mRNA splicing and translation (Table S4, ORA, P ≤ .004), 
processes globally dysregulated in cancer,28 although not a Hanahan 
and Weinberg described hallmark. The brown module was enriched 
for EGFR signalling (Table S4, ORA, P ≤ .05) and genes corresponding 
to mitogenic signalling axes (BRAF, ERK, CREB1, JAK2 and SOS2(Table 
S4)); components of the sustained proliferative signalling hallmark. 
The pink module included genes involved in mitogenic signalling 
axes (RICTOR, SOS1, MEKK2 and REL)(Table S4) and in histone modi‐
fication (ARID4B, KAT6A, KDM6A, TET2, KMT2C, ASH1L and KMT2E)
(Table S4); the former represents the sustained proliferative signal‐
ling hallmark and the latter the genome instability and mutation hall‐
mark.1 The green module was enriched for processes related to cell 
cycle progression (Table S4), a characteristic of the evading growth 
suppressors hallmark. The green yellow, magenta and red modules 
were enriched for NK cell, T cell or inflammatory signalling (Table S4, 
ORA,P ≤ .05), markers of the tumour‐promoting inflammation and 
evading immune destruction hallmarks.

Hierarchical clustering of the 3573 genes in WGCNA modules 
detected 10 clusters characterized by distinct expression of 10 
modules (Figure 2B, Kruskal‐Wallis Test, P ≤ 2.2*10‐16). Post hoc 
analysis by Dunn's Test to assess pairwise differences in module 
expression showed differential expression for 38 of 45 cluster 
comparisons for the blue and purple modules, 39 of 45 compari‐
sons for the turquoise module, 40 of 45 comparisons for the black 
and dark green modules, 41 of 45 comparisons for the cyan, green 
yellow, grey60, light cyan and light yellow modules, 42 of 45 com‐
parisons for the brown, green, magenta, red and white modules, 
and 44 of 45 comparisons for the pink module (Table S5). The high 
proportion of pairwise cluster comparisons with significant differ‐
ence reinforces the distinctive expression patterns of each module 
across clusters.

To investigate whether anatomical cancer primary site corre‐
sponded with cluster assignment, we evaluated the primary site 
composition of each cluster. Clusters 1, 2, 3 and 5 were primary 
site heterogeneous. Cluster 1 was primarily composed of bladder 
(66%), testis (24%) and uterine (9%) cancers (Figure 3B). Cluster 
2 was composed of stomach (47%), colon (33%) and oesophagus 
(20%) cancers (Figure 3B). Cluster 3 was predominantly composed 
of prostate (61%), lung (14%) and breast (13%) cancers (Figure 3B). 
Cluster 5 was composed of liver (67%) and pancreas (33%) can‐
cers (Figure 3B). Clusters 4, 6, 7, 8, 9 and 10 were ≥ 99.9% a single 
primary site: skin, kidney, ovarian, lung, brain and breast cancers, 
respectively (Figure 3B). The primary site homogeneity of clusters 
suggests either that correction for primary site signatures in this 
data set was incomplete or that the detected cancer signatures are 
primary site‐dependent.

Post hoc analysis by Tukey's Test determined pairwise differ‐
ences in module expression between primary sites (Table S6). The 
expression of the black, blue, brown, cyan, dark green, green, green 
yellow, grey60, light cyan, light yellow, magenta, pink, purple, red, 
turquoise and white modules differed between primary sites but 
without an appreciable pattern (Figure 4B, Tukey HSD, P ≤ .05).

3.3 | Hallmark cancer pathways primarily distinguish 
cancer clusters in grand mean‐corrected data

Given modules enriched for normal tissue processes in the tissue‐
corrected data, we corrected for non‐cancer gene expression using 
the grand mean expression of each gene in all non‐cancer primary 
sites. This stratified tumours according to some hallmarks.

WGCNA identified 1084 genes in 17 modules, of which 12 were 
enriched for functional pathway annotations: black, blue, cyan, 
green, green yellow, light cyan, magenta, pink, salmon, tan, turquoise 
and yellow (Table S7, ORA, P ≤ .05). Of those 12 modules, 4 were 
enriched for tissue‐specific processes: blue, green yellow, magenta 
and yellow (Table S7, ORA, P ≤ .05). The remaining 8 modules were 
enriched for cancer‐relevant processes. The tan module was en‐
riched for markers of angiogenesis (Table S7, ORA, P ≤ .01), that is 
the inducing angiogenesis hallmark. The turquoise module was en‐
riched for cell cycle progression pathways (Table S7, ORA, P ≤ .03), 
a component of the evading growth suppressors hallmark. The cyan 
and light cyan modules were, respectively, enriched for markers of 
the epithelial to mesenchymal transition (EMT) and extracellular ma‐
trix (ECM) receptor and adhesion signalling (Table S7, ORA,P ≤ .02), 
components of the activating invasion and metastasis hallmark. The 
black, green, pink and salmon modules were enriched for NK cell, T 
cell or inflammatory signalling (Table S7, ORA,P ≤ .05), components 
of the tumour‐promoting inflammation and evading immune de‐
struction hallmarks.

Hierarchical clustering of the 1,084 genes in grand mean‐cor‐
rected WGCNA modules defined 10 clusters. These clusters were 
characterized by distinct expression of modules (Figure 2C). All 
modules showed differential expression across clusters (Figure 2C, 
Kruskal‐Wallis Test, P ≤ 2.2*10‐16).
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Post hoc analysis by Dunn's Test for pairwise differences in mod‐
ule expression showed differential expression for 31 of 45 cluster 
comparisons for the magenta module, 37 of 45 for the black module, 
38 of 45 for the salmon module, 40 of 45 for the green yellow, pink 
and tan modules, 41 of 45 for the turquoise and yellow modules, 
42 of 45 for the light cyan module, 43 of 45 for the blue and green 
modules, and 44 of 45 for the cyan module (Table S8).

To investigate whether anatomical cancer primary site corre‐
sponded with cluster assignment, we evaluated the primary site 
composition of each cluster. Clusters 1, 3 and 5 were primary site 
heterogeneous. Cluster 1 was primarily composed of ovarian, (56%), 
testis (19%) and kidney (16.8%) cancers (Figure 3C). Cluster 3 was 
predominantly composed of lung (33%), bladder (28%) and breast 
(18%) cancers (Figure 3C). Cluster 5 was primarily composed of 
stomach (42%), colon (33%) and pancreas (17%) cancers (Figure 3C).

Post hoc analysis by Tukey's Test determined pairwise differ‐
ences in module expression between primary sites (Table S9). The 
green yellow module was expressed higher in kidney and liver can‐
cers than other primary sites (Figure 4C, Tukey HSD,P ≤ 2.0*10‐11). 
The magenta module was expressed higher in skin cancers than in 
prostate, pancreas, ovary, lung, liver, kidney, brain, colon and breast 
cancers (Figure 4C, Tukey HSD,P ≤ .02). The expression of black, 
blue, cyan, green, light cyan, pink, salmon, tan, turquoise and yellow 
modules differed for many pairwise comparisons of primary sites but 
did not have an appreciable pattern (Figure 4C, Tukey HSD, P ≤ .05).

3.4 | Clusters are incompletely primary site‐
independent

To evaluate whether cancer clusters express hallmarks indepen‐
dently of primary site, we assessed the stratification of a primary 
site across clusters and the primary site diversity within clusters. For 
the former, we counted the number of clusters in which the null hy‐
pothesis of the hypergeometric test was rejected (P ≤ .05, Table S10). 
Primary sites with 2 or more clusters that rejected that null hypoth‐
esis were considered stratified across clusters. We observed that in 
the uncorrected data breast, oesophagus, kidney, ovary, prostate, 
stomach and uterine cancers were stratified by their gene expres‐
sion profiles (Table 2), that in the tissue‐corrected data no cancer 
types were stratified by their gene expression profiles (Table 2), and 
that in the grand mean‐corrected data breast, oesophagus and lung 
cancers were stratified by their gene expression profiles (Table 2).

4  | DISCUSSION

By WGCNA, hierarchical clustering and ORA analyses, RNA‐Seq 
detects gene expression changes contributing to some cancer hall‐
marks. Of the ten hallmarks identified by Hanahan and Weinberg, 
our analyses detected modules enriched for seven: evading growth 
suppressors, tumour‐promoting inflammation, avoiding immune 
destruction, inducing angiogenesis, sustained proliferative signal‐
ling, activating invasion and metastasis, and genome instability and TA
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mutation. The gene expression changes corresponding to these hall‐
marks stratify a subset of cancers across clusters, although not fully 
independent of tumour primary site.

4.1 | RNA‐Seq data consistently stratifies 
cancers by seven therapeutically targetable 
hallmarks of cancer

Consistent with prior studies,29 our analyses showed enrichment 
for pathways representative of the sustained proliferative signal‐
ling hallmark. The common perturbation of mitogenic signalling 
axes such as MAPK or PI3K‐Akt‐mTOR has led to development of 
inhibitors of those axes, although those inhibitors have not been 
potent single‐agents,30,31 therapies targeting cell cycle progres‐
sion, the end‐point of proliferation cascades commonly activated 
in cancer,29,32 are being actively investigated. CDK4/6 inhibi‐
tors have shown efficacy in trials for late stage breast and lung 
cancers.33,34

The detection of modules enriched for cell cycle pathways rep‐
resent the evading growth suppressors hallmark. Expression of 
genes such as CDKN2A, CCNE1 and RB1, which are all components 
of cell cycle signalling, has been implicated in resistance to CDK4/6 
inhibitors.33This illustrates that expression assays might have utility 
detecting biomarkers for resistance to therapies targeting the sus‐
tained proliferative signalling hallmark.

Components of the tumour‐promoting inflammation and the 
avoiding immune destruction hallmarks were enriched in several 
modules and were detected in all data sets (Tables S1, S4, S7).
Because only a minority of patients within a given cancer type re‐
spond to CD8+T cell dependent cancer immunotherapy,35induction 
of CD8+T cell recruitment and activation 36or inclusion of innate im‐
mune processes such as NK‐cell activation are being developed.37 
This expansion requires characterization of biomarkers defining an 
antitumoral immune response. The presence of T cell activation, 
NK‐cell activation and inflammatory signalling axes in our anal‐
ysis suggests that gene expression assays might contribute such 
biomarkers.

Our analyses detected modules enriched for angiogenesis hall‐
mark related processes. Although clinical targeting of the VEGF 
signalling axis frequently induces resistance38 that limits it as a 
monotherapy, expression of VEGF and its receptors correlates with 
cancer stage and metastasis and might be a useful prognostic indica‐
tor.39 The variation in the angiogenic signalling detected in our study 
divides breast, kidney and colon cancers into high and low expres‐
sion groups (Figure 4C), a division that might not only be useful as a 
staging marker but also for identifying tumours likely to respond to 
antiangiogenic therapy.

Detection of markers of EMT and ECM signalling axes processes 
of the activating invasion and metastasis hallmark suggests that 
gene expression assays might contribute to the individualization of 
future antimetastatic drug cocktails. Despite limitations, there are 
current therapeutic strategies to inhibit the metastatic potential in‐
cluding targeting VEGF, the NF‐κB pathway and integrin signalling.40

Chromatin remodelling pathways, which we detected, are both 
components of the genome instability and mutation hallmark1 and 
therapeutic targets. Inhibitors of chromatin remodelling have been 
in use for over a decade, although primarily for leukemias and lym‐
phomas.41 Because nearly half of cancers have alterations of chro‐
matin remodelling, several current trials target aspects of chromatin 
remodelling in solid cancers.41 Grouping cancers by their precise 
mechanisms of dysregulated chromatin remodelling assists selecting 
appropriate therapies, and our analyses suggest gene expression as‐
says might assist with this.

The detection of multiple hallmarks by gene expression analyses 
highlights a potential for RNA‐Seq to identify therapeutic combina‐
tions as our analyses subgrouped some cancers according to expres‐
sion of multiple modules. For example, kidney cancers subdivided 
into three subgroups: (a) high expression of genes enriched for TCR 
signalling and for angiogenic signalling, (b) low expression of both 
TCR signalling and angiogenic signalling genes, and (c) high expres‐
sion of TCR signalling and low expression of angiogenic signalling 
genes (Figure 4C). Although not yet tested clinically, such subgroups 
could provide useful as biomarkers for multimodal treatment of 
kidney cancer given that immunotherapy and antimetastatic drugs 
would theoretically target subgroup 1, standard chemotherapies 
would target subgroup 2 and immunotherapies would target sub‐
group 3.

Multimodal treatment targets multiple hallmarks concurrently 
because the strong selective pressure on cancer cell populations 
42leads to resistance to monotherapies.43Additional multimodal 
therapies include dual inhibition of the mitogenic and cell cycle sig‐
nalling pathways,44CDK4/6 inhibitors plus immunotherapy 45 and 
VEGF inhibition plus multiple classes of antimetastatic therapies,40 
which, respectively, correspond to the sustained proliferative sig‐
nalling, evading growth suppressors, inducing angiogenesis, and ac‐
tivating invasion and metastasis hallmarks of cancer. The analyses 
herein subdivided some tumours according to combination of these 
hallmarks.

4.2 | RNA‐Seq data does not stratify cancers by 
three hallmarks of cancer

Our analyses did not detect three of Hanahan and Weinberg's hall‐
marks as gene expression modules stratifying tumours. These hall‐
marks were resisting cell death, deregulating cellular energetics and 
enabling replicative immortality.

Strong transcriptomic signatures are not expected for the sus‐
tained enabling replicative immortality hallmark. This hallmark is 
predominantly characterized by the expression of TERT.1,46 TERT 
alone is insufficient as a transcriptomic network to be detected by 
our analyses.20

The deregulating cellular energetics hallmarks have a strong 
transcriptomic footprint.1,47 The processes underlying this hallmark 
originate from changes in gene expression, namely, glucose trans‐
port,48 glutamine transport49 and the pentose phosphate pathway,50 
as well as the biosynthesis of nucleotides,51 serine,52 arginine 53 
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and proline.54 Studies detecting these changes in gene expression, 
however, either did not use tumour biopsies as the source tissue or 
use more targeted methods than RNA‐Seq. In contrast to cultured 
tumour cells or xenografts of cultured tumour cells, our analyses 
agnostically probed tumour biopsies, a highly complex cell pop‐
ulation,55 for gene expression signatures varying across samples. 
Consequently, we postulate that tissue heterogeneity introduces 
too much biological variability or that our assumption of variabil‐
ity across cancers is invalid. Supporting the latter hypothesis, prior 
studies show consistent expression of metabolic genes across can‐
cer types,56 and we find that genes with the least variable expression 
are enriched for metabolic pathway annotations (Table S11).

Like the cellular energetics hallmark, the resisting cell death 
hallmark has a strong transcriptomic footprint. It is characterized 
by the subversion of the regulatory and functional elements of the 
cellular apoptosis machinery.1 Cancer cells impair apoptosis by de‐
creasing expression of proapoptotic proteins or by increasing ex‐
pression of antiapoptotic proteins.57 The specific family members up 
or down‐regulated are, however, relatively cancer type‐specific.57 
Consequently, although gene expression networks involved with 
apoptosis are altered, specific cancers usually have changes in only 
a few genes in that network,57 and our methodology is insensitive to 
such limited changes.

4.3 | Clusters defined by hallmark gene 
expression are incompletely independent of cancer 
primary sites

Analyses of the uncorrected data set showed that brain, oesopha‐
geal, ovarian, prostate, stomach and uterine cancers were stratified 
across clusters (Table 2). Due to the presence of modules enriched 
for non‐cancer processes (Table S1) and the lack of distinct expres‐
sion of modules enriched for hallmarks across clusters (Figure 2), we 
are not certain that hallmark cancer signatures solely underlie that 
stratification.

Suggesting the dependence of clustering on the anatomical pri‐
mary site, analyses of the tissue‐corrected data set found that no 
cancer types were stratified across clusters (Table 2). The normal‐
ization for the tissue‐corrected data set used separate ‘normal’ gene 
expression vectors for each primary site and that process could in‐
troduce signatures by over‐correction. Supporting this, comparison 
to the uncorrected data shows the concurrent elimination of mod‐
ules enriched for non‐cancer processes in the uncorrected data and 
the detection of other modules enriched for non‐cancer processes 
(Tables S1, S4).

Analyses of the grand mean‐corrected data set showed that 
breast, oesophageal and lung cancers were stratified across clusters 
(Table 2), suggesting that clusters are incompletely independent of 
primary site. Although there are four modules enriched for non‐can‐
cer processes, the expression of those modules only distinguishes 
three of ten clusters (Figure 2C). The modules enriched for hallmarks 
are the primary differentiators of clusters responsible for stratify‐
ing cancers. This stratification is unlikely to be an artefact of the 

normalization process since the use of a uniform ‘normal’ gene ex‐
pression vector for all cancers could introduce consistent signatures 
that would not be considered in module detection by WGCNA. This 
raises the promise that clustering by expression of genes relevant 
to cancer hallmarks stratifies cancers to provide prognostically rel‐
evant information or therapeutically relevant information, particu‐
larly in conjunction with histopathologic, DNA or proteomic data.

4.4 | Biological processes identified in this study 
align with previous literature

Previous investigations into transcriptomic subdivisions of cancer 
observed several of the pathways that we identified. Specifically, 
pancreatic,9 breast 10 and pan‐cancer 13 studies found that cell cycle 
pathways define transcriptomic subgroups and that immune signal‐
ling defines subgroups of pancreatic 9 and breast 10 cancers. In con‐
trast to the pan‐cancer study of Kaczowski et al did,13 our analysis 
did not detect differential expression of genes relevant to the cel‐
lular energetics hallmark; we hypothesize, as discussed above, that 
this arose because our analysis of co‐correlated groups of transcripts 
is insensitive to small numbers of transcripts with altered expression, 
whereas the approach of Kaczowski et al is not so limited because 
it focuses on differential expression of individual transcripts.13 On 
the other hand, detecting expression changes in the chromatin re‐
modelling, angiogenesis and ECM signalling axes, our analysis dis‐
tinguished molecular subtypes that were not noted in studies of the 
pancreatic,9 breast 10 or pan‐cancer 13 data sets.

4.5 | Limitations

The detection of some cancer hallmark signatures is encouraging, 
given the conservative approach (requiring an expression signature 
across all cancers) and the following limitations of our study. First, 
the data set did not contain isoform‐specific expression, and this 
prevented the incorporation of alternatively spliced transcripts into 
our analysis. Alternatively, spliced transcripts play important roles 
in cancer cell biology 58 and are relevant to all hallmarks of cancer.28 
Second, although dysregulation of non‐coding RNAs is integral to 
cancer biology 59 and play a therapeutically relevant role,60 we re‐
stricted our analysis to the protein‐coding transcriptome to facilitate 
pathway enrichment analysis. Third, our analysis did not account 
for therapeutically relevant gene fusions detectable by RNA‐Seq.61 
Fourth, we did not assess allele‐specific expression, which is rel‐
evant to cancer biology and progression.62 Fifth, to mitigate the 
effects of spurious expression differences, we did not consider mod‐
ules of single or small numbers of genes20; this might be addressed 
in the future by the inclusion of spike‐in reference RNAs.63 Sixth, 
for several technical reasons, our analysis was indifferent to tumour 
microenvironments (TMEs) which are known to modify processes 
(proliferation, metastasis and interaction with immune cells 64) un‐
derlying cancer hallmarks. Although these limitations decreased the 
sensitivity of our analysis to hallmark changes, they do not alter the 
specificity of our analysis.
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5  | CONCLUSIONS

RNA‐Seq detects some hallmarks of cancer and those hallmarks 
stratified some, but not all, cancer types. We consistently identi‐
fied signatures corresponding to the tumour‐promoting inflamma‐
tion and avoiding immune destruction hallmarks (T cell activation, 
NK‐cell activation and complement cascade activation), the evading 
growth suppressors (ATM, Rb and G1 to S phase transition signal‐
ling), the inducing angiogenesis (angiogenesis signalling), the sus‐
tained proliferative signalling (BRAF‐ERK‐CREB1), the activating 
invasion and metastasis (ECM receptor signalling and EMT markers), 
and the genome instability and mutation (histone modification) hall‐
marks. Additionally, cancer clusters differentiated by the above hall‐
marks stratified breast, oesophageal and lung cancers, highlighting 
the possibility of targeting transcriptomic features independent of 
anatomical primary site. Future studies are required to determine 
the therapeutic and prognostic relevance of these findings and to 
assess the impact of including transcriptomic features that we did 
not analyse.
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