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Hospital of Soochow University, Suzhou, China

The detection of microbial pathogens relies on the recognition of highly conserved
microbial structures by the membrane sensor Toll-like receptors (TLRs) and cytosolic
sensor NOD-like receptors (NLRs). Upon detection, these sensors trigger innate immune
responses to eradicate the invaded microbial pathogens. However, it is unclear whether
TLR and NOD signaling are both critical for innate immunity to initiate inflammatory and
antimicrobial responses against microbial infection. Here we report that activation of
both TLR and NOD signaling resulted in an augmented inflammatory response and the
crosstalk between TLR and NOD led to an amplified downstream NF-kB activation with
increased nuclear transactivation of p65 at both TNF-a and IL-6 promoters. Furthermore,
co-stimulation of macrophages with TLR and NOD agonists maximized antimicrobial
activity with accelerated phagosome maturation. Importantly, administration of both TLR
and NOD agonists protected mice against polymicrobial sepsis-associated lethality with
increased serum levels of inflammatory cytokines and accelerated clearance of bacteria
from the circulation and visceral organs. These results demonstrate that activation of
both TLR and NOD signaling synergizes to induce efficient inflammatory and antimicrobial
responses, thus conferring protection against microbial infection.

Keywords: TLR signaling, NOD signaling, inflammatory response, antimicrobial activity, NF-«kB pathway,
phagosome maturation, microbial infection

INTRODUCTION

Innate immunity constitutes the primary defense system of host against invading
microbial pathogens (1). This mechanism of host defense involves the recognition of
pathogens by germline-encoded host innate immune receptors or pattern-recognition
receptors (PRRs) and in essence results in activation of the innate immune system
(2, 3). Innate phagocytes including monocytes/macrophages and polymorphonuclear
neutrophils (PMNs) express a variety of PRRs and thus are capable of detecting
highly conserved and distinct molecular structures of pathogenic microorganisms,
named pathogen-associated molecular patterns (PAMPs) as well as damage-associated
molecular patterns (DAMPs) produced in the event of cellular and/or tissue injury (2, 4).
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Typical examples of PAMPs are lipopolysaccharide (LPS),
bacterial lipoprotein  (BLP), lipoteichoic acid (LTA),
peptidoglycan (PGN), flagellin, and microbial nucleic acid.
Detection of PAMPs by PRRs leads to the activation of
intracellular signal transduction pathways, which in turn results
in the initiation of inflammatory response and antimicrobial
activity, culminating in the elimination of the invaded microbial
pathogens (1, 3).

The two principal classes of PRRs predominantly involved
in the recognition of molecular structures unique to microbial
pathogens are Toll-like receptors (TLRs) and the nucleotide-
binding oligomerization domain (NOD)-like receptors (NLRs)
(3,5). The transmembrane TLRs are the best-known PRRs, which
possesses an extracellular domain responsible for the recognition
of bacterial ligands at the cell surface or within endosomes.
In particular, TLR4 is the primary receptor for LPS, thereby
conferring the recognition of gram-negative bacteria (6, 7),
whereas the heterodimmer of TLR2 with either TLR1 or TLR6
binds BLP and LTA, thus being accountable for gram-positive
bacteria detection (8-10). On the other hand, the NLRs with up
to 20 family members are located in the intracellular cytoplasm,
thus serving as the cytosolic PRRs (5, 11). Among the NLR
family members, NOD1 and NOD2 have been demonstrated
to be capable of detecting different structural core patterns
generated from PGN present in both gram-positive and gram-
negative bacteria (11, 12). NOD1 senses PGN-derived peptides
characterized by y-D-glutamyl-meso-diaminopimelic acid (iE-
DAP) from all gram-negative and certain gram-positive bacteria
(13, 14), whereas NOD2 detects muramyl-dipeptide (MDP),
a highly conserved PGN motif present in almost all bacteria
(15, 16). NOD1 and NOD2 share similar tripartite structures,
consisting of a C-terminal domain with the leucine-rich repeat
(LRR) for microbial motif detection and ligand binding, a
central nucleotide-binding domain (NBD) for ligand-induced
self-oligomerization, and an N-terminal caspase-recruitment
domain (CARD) for intracellular signal transduction (17-19).
Upon bacterial ligand recognition and binding, both NOD1
and NOD2 recruit the adaptor protein, receptor-interacting
protein 2 (RIP2), via homophilic CARD-CARD interactions,
thereby activating downstream signal transduction pathways of
nuclear factor-kB (NF-kB) and mitogen-activated protein kinase
(MAPK), thus initiating transcription of the targeted genes
and consequently necessitating the production of inflammatory
cytokines and chemokines, antimicrobial peptides, and type I
interferons (IFNs) (12, 20).

There is growing evidence for the importance of NODI1
and NOD2 by functioning as intracellular PPRs to sense the
fragments of bacterial PGN in host innate immunity-associated
protection against microbial infection. Consequently, NOD1-
deficient mice display an increased vulnerability to a number of
microbial pathogens including Helicobacter pylori, Streptococcus
pneumoniae, and Clostridium difficile (20-22), whereas mice
with deficiency in NOD2 were more susceptible to infections
caused by Streptococcus pneumoniae, Citrobacter rodentium, and
Staphylococcus aureus (23-25). This enhanced susceptibility to
microbial infection observed in NOD1- and NOD2-deficient
mice correlated closely to the diminished recruitment of PMNs

and impaired antimicrobial activity of macrophages (21-24).
Furthermore, both NOD1 and NOD2 are implicated in the
development of certain inflammatory diseases, as supported
by the association of LRR mutations in NOD2 with an
increased risk for developing Crohn’s disease (26) and a complex
insertion-deletion polymorphism in NOD1 with early onset of
inflammatory bowel disease (27). More recently, NOD1 and
NOD?2 have been implicated to participate in PGN-independent
inflammatory responses by not only sensing of virus and parasite
infections but also monitoring of Rho GTPpase activation and
endoplasmic reticulum stress to maintain the homeostasis of
intracellular environments (28).

It was generally presumed that the membrane-bound TLR2
and TLR4 survey the extracellular bacteria, whereas the
cytosolic NOD1 and NOD2 detect the intracellular microbial
pathogens (5). Indeed, NOD1 and NOD?2 play a critical role
in protection against the intracellular Legionella pneumophila-
induced pneumonia by promoting PMN recruitment into the
lung (29), whereas deficiency in either NOD1 or NOD2
led to an impaired bacterial clearance of Chlamydophila
pneumophia, a gram-negative intracellular pathogen (30).
However, emerging evidence has revealed that quite a number
of extracellular bacteria such as Staphylococus aureus and
Streptococus pneumonia can also be detected by NOD1 and
NOD2 (21, 23, 25, 31, 32). Conversely, TLR2 and TLR4
are implicated in the recognition of both extracellular and
intracellular bacteria (6, 9, 10, 33, 34). Of note, it is demonstrated
that the induction and acceleration of phagosome maturation
upon microbial infection occurs via a TLR-dependent manner
where TLR signaling tightly controls phagosome maturation and
the destruction of engulfed microbial pathogens in the case
of extracellular bacteria as well as intracellular bacteria (35).
Therefore, it is more likely that extracellular TLR2/TLR4 and
intracellular NOD1/NOD2 work in synergy to necessitate an
efficient and vigorous innate immune response for eradication of
avariety of the invaded microbial pathogens. In the present study,
we identified that TLR and NOD signaling are both critical for
innate immunity to trigger a strong inflammatory response and
to initiate an efficient antimicrobial activity, thereby facilitating
host defense to combat against microbial infection.

MATERIALS AND METHODS

Reagents and Antibodies

The TLR2 agonist BLP, a synthetic bacterial lipopeptide
(Pam3Cys-Ser-Lys4-OH), and the TLR4 agonist ultrapure LPS
from E. coli serotype O55:B5 were purchased from EMC
Microcollections (Tubingen, Germany) and InvivoGen (San
Diego, CA), respectively. The NOD1 agonist L-Ala-y-D-Glu-
mDAP (Tri-DAP) and NOD2 agonist MDP were obtained
from InvivoGen. Antibodies (Abs) that recognize TLR4, NOD1,
NOR2, myeloid differentiation factor 88 (MyD88), IL-1 receptor-
associated kinase-1 (IRAK-1), CARD?9, and RIP2 were purchased
from Cell Signaling Technology (Beverly, MA), Santa Cruz
Biotechnology (Santa Cruz, CA), and Abcam (Cambridge,
MA), respectively. Abs that recognize NF-kB p65, phosphor-
p65 at Ser586, the inhibitor of kBa (IkBa), phosphor-IkBa at

Frontiers in Immunology | www.frontiersin.org

January 2019 | Volume 9 | Article 3082


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Zhou et al.

TLR and NOD Signaling in Microbial Infection

Ser32/36, MAPK p38, and phospho-p38 at Th180/Try182 were
purchased from Cell Signaling Technology. All culture medium
and reagents for cell cultures were obtained from Invitrogen
Life Technologies (Paisley, Scotland, U.K.). All other chemicals,
unless indicated, were purchased from Sigma-Aldrich (St. Louis,
MO).

Mice, Murine Macrophage Isolation and

Cultures

Pyrogen-free, 8- to 10-week-old C3H/HeN mice, TLR2- and
TLR4-deficient mice on the C3H background, C57BL/6 mice,
NOD1- and NOD2-deficient mice on the C57BL/6 background
were obtained from Harlan (Oxon, UK), Jackson Laboratories
(Bar Harbor, ME), and Carsten J. Kirschning at Technische
Universitat Munchen, Munich, Germany. Mice were housed
in barrier cages under controlled environmental conditions
(12/12h light/dark cycle, 55 & 5% humidity, 23°C) and had
free access to standard laboratory chow and water. All animal
studies were conducted with the ethical approval granted from
the Institutional Animal Care and Use Committee of Soochow
University and the Ethics Committee of University College Cork,
and complied with the animal welfare act. The methods applied
in the present study were performed in accordance with the
approved guidelines.

Peritoneal macrophages were collected from wild-type, TLR4-
and TLR2-deficient, and NODI- and NOD2-deficient mice
by peritoneal lavage and incubated with DMEM containing
10% heat-inactivated fetal calf serum (FCS) in 24-well plates
(Falcon, Lincoln Park, NJ) for 90 min to remove non-adherent
cells as previously described (36, 37). Bone marrow-derived
macrophages (BMMs) were isolated from the femurs and tibias
of wild-type, TLR4- and TLR2-deficient, and NOD1- and NOD2-
deficient mice, and cultured in DMEM containing 20% heat-
inactivated FCS, penicillin (100 units/ml), streptomycin sulfate
(100 pg/ml), and supplemented with 10 ng/ml of recombinant
mouse macrophage colony-stimulating factor (CSF) (R&D
Systems, Minneapolis, MN) for 7 days at 37°C in a humidified
5% CO2 atmosphere as previously described (36, 37). The
purity of both peritoneal macrophages and BMMs was >95%, as
confirmed by FACScan analysis of the positive F4/80 antigen (Ag)
staining with a rat anti-mouse F4/80 Ab (Serotec, Oxford, U.K.).

Isolated peritoneal macrophages or BMMs were incubated
with PBS, LPS (10 ng/ml), BLP (10 ng/ml), Tri-DAP (5 pg/ml),
MDP (5g/ml), LPS + Tri-DAP (10ng/ml + 5pg/ml), LPS
+ MDP (10ng/ml + 5pg/ml), BLP + Tri-DAP (10 ng/ml +
5pg/ml), and BLP 4+ MDP (10 ng/ml 4 5pg/ml) for 6h, and
further challenged with gram-positive or gram-negative bacteria
to assess their ability in bacterial phagocytosis, killing, and
phagosome maturation.

Cytokine Measurement

Isolated peritoneal macrophages or BMMs were plated onto 96-
well plates (Falcon) at 2 x 10* cells/well and incubated with PBS
as the control or stimulated with LPS (10 ng/ml), BLP (10 ng/ml),
Tri-DAP (5 ng/ml), MDP (5 pg/ml), and their combinations for
12 h. Cell-free supernatants were collected and stored at —80°C
until analysis. Concentrations of inflammatory cytokines TNF-a,

IL-6, IL-12p70, and chemokine CXCL2 in the supernatant were
assessed by cytometric bead array (BD Biosciences, San Joes, CA)
and ELISA (R&D Systems), respectively.

FACScan Analysis for Phagocytic Receptor

Expression

Isolated peritoneal macrophages were incubated with PBS,
LPS (10ng/ml), BLP (10ng/ml), Tri-DAP (5ug/ml), MDP
(5png/ml), and their combinations for 2h, and stained with
anti-complement receptor type 3 (CR3) (BD PharMingen, San
Diego, CA) and anti-FcyIII/II receptor (FcyR) (BD PharMingen)
monoclonal antibodies (mAbs) conjugated with PE or FITC. PE-
or FITC-conjugated isotype-matched mAbs (BD PharMingen)
were used as the control. FACScan analysis was performed from
at least 10,000 events for detecting the surface expression of
CR3 and FcyR on macrophages using CellQuest software (BD
Biosciences).

Bacteria and Bacterial Uptake, Ingestion,
and Killing

Gram-positive Staphylococcus aureus (S. aureus) and gram-
negative Salmonella typhimurium (S. typhimurium) were
obtained from American Type Culture Collection (ATCC,
Manassas, VA) and the National University of Ireland Culture
Collection, respectively. Bacteria were cultured at 37°C in
trypticase soy broth (Merck, Darmstadt, Germany), harvested
at the mid-logarithmic growth phase, washed twice, and
resuspended in PBS for in wvitro use. The concentration
of resuspended bacteria was determined and adjusted
spectrophotometrically at 550 nm.

Bacterial uptake, phagocytosis, and intracellular bacterial
killing were determined as previously described (38, 39).
Briefly, S. aureus and S. typhimurium were heat-killed at
95°C for 20 min and labeled with 0.1% FITC (Sigma-Aldrich).
After stimulation with LPS, BLP, Tri-DAP, MDP, and their
combinations for 6h as mentioned above, isolated peritoneal
macrophages or BMMs were incubated with heat-killed, FITC-
labeled S. aureus or S. typhimurium at a ratio of 1/20
(macrophage/bacteria) at 37°C for 30 min. Bacterial uptake was
assessed by FACScan analysis and bacterial ingestion was further
determined after the external fluorescence of the bound, but
non-ingested, bacteria was quenched with 0.025% crystal violet
(Sigma-Aldrich). Intracellular bacterial killing was assessed by
incubation of macrophages with live S. aureus or S. typhimurium
(macrophage/bacteria = 1/20) at 37°C for 60 min in the presence
or absence of cytochalasin B (5pg/ml) (Sigma-Aldrich). After
macrophages were lysed, total, and extracellular bacterial killing
were determined by incubation of serial 10-fold dilutions of the
lysates on tryptone soy agar (Merck) plates at 37°C for 24 h.
Intracellular bacterial killing was calculated according to the total
and extracellular bacterial killing.

Measurement of Phagosomal pH

Phagosome luminal pH was assessed as previously described
(40, 41). Briefly, heat-killed S. aureus and S. typhimurium
were doubly labeled with 5 pg/ml carboxyfluorescein-SE (a pH-
sensitive fluorescent probe) (Molecular Probes, Eugene, OR) and
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10 ug/ml carboxytetramethylrhodamine-SE (a pH-insensitive
fluorescent probe) (Molecular Probes). After stimulation with
LPS, BLP, Tri-DAP, MDP, and their combinations for 6 h, isolated
peritoneal macrophages or BMMs were pulsed with the labeled
bacteria (macrophage/bacteria = 1/20) for 20 min, and then
chased at 37°C for the indicated time periods. Macrophage-
based mean fluorescence intensity (MFI) of fluorescein on
FL1 and rhodamine on FL2 were simultaneously detected by
FACScan analysis using CellQuest software (BD Biosciences).
Phagosomal pH was calculated according to the ratio of
fluorescein/rhodamine fluorescence using a calibration curve.

Assessment of Phagosome Maturation in a

Cell-Free Organelle System

After stimulation with LPS, BLP, Tri-DAP, MDP, and their
combinations for 6 h, isolated peritoneal macrophages or BMMs
were labeled with a red fluorescent cell membrane linker
PKH26 (20 uM) (Sigma-Aldrich) for subsequent phagosome
recognition, as previously described (40, 42). PKH26-labeled
macrophages were pulsed and chased with heat-killed S. aureus
or S. typhimurium (macrophage/bacteria = 1/20) at 37°C for the
indicated time periods. Cells were lysed in a hypotonic buffer,
and phagosomes were prepared by centrifugation. The isolated
phagosomes were permeabilised with 0.2% saponin (Sigma-
Aldrich) and stained with FITC-conjugated anti-LAMP-1 mAb
(Abcam) that specially recognizes late endosomes/lysosomes, or
FITC-conjugated isotype-matched mAb (Abcam) as the control.
The green MFI of LAMP-1 on the positive red fluorescent
events (phagosomes that have ingested bacteria), representing
phagolysosome fusion and/or phagosome maturation, was
quantitatively assessed by FACScan analysis using CellQuest
software (BD Biosciences).

FACScan Analysis for Phosphorylated

NF-kB p65 and MAPK p38

Isolated BMMs were incubated with PBS, BLP (10 ng/ml), Tri-
DAP (5pg/ml), MDP (5pg/ml), and their combinations for
various time periods. For determination of intracellular NF-kB
p65 and MAPK p38 phosphorylation, BMMs were fixed and
permeabilized simultaneously with Phosflow fix and perm buffers
(BD Biosciences) for 30 min on ice. Cells were then stained
with anti-phospho p65 and anti-phospho p38 mAbs conjugated
with PE or Alexa Fluor 488 (Cell Signaling Technology). PE
or Alexa Fluor 488-conjugated isotype-matched mAbs (Cell
Signaling Technology) were used as the control. FACScan
analysis was performed from at least 10,000 events for detecting
the intracellular staining of phosphorylated NF-kB p65 and
MAPK p38 in BMMs using CellQuest software (BD Biosciences).

Western Blot Analysis

Following stimulation of isolated BMMs with LPS (10 ng/ml),
Tri-DAP (5 pg/ml), MDP (5 jLg/ml), and their combinations for
the indicated time periods, cells were collected, washed with ice-
cold PBS, and lysed on ice in cell lysis buffer (Cell Signaling
Technology), supplemented with 1 mM phenylmethylsulfonyl
fluoride and protease inhibitor cocktail (Roche Life Science,
Indianapolis, IN). The resultant lysates were centrifuged

and supernatants containing the cytoplasmic proteins were
collected. Protein concentrations were determined using a
micro bicinchoninic acid (BCA) protein assay (Pierce, Rockford,
IL). Equal amounts of protein extracts were separated on
SDS-polyacrylamide gels and trans-blotted onto polyvinylidene
difluoride (PVDF) membranes (Schleicher and Schuell, Dassel,
Germany). The membrane was blocked for 1h at room
temperature with PBS containing 0.05% Tween-20 and 5% nonfat
milk, and probed overnight at 4°C with the respected primary
Abs. Blots were then incubated with appropriate horseradish
peroxidase-conjugated secondary Abs (Dako, Cambridge, U.K.)
at room temperature for 1h, developed with SuperSignal
chemiluminescent substrate (Pierce), and captured with LAS-
3000 imaging system (Fujifilm, Tokyo, Japan).

Chromatin Immunoprecipitation (ChiP)

Assay

ChIP assay was performed using the ChIP-IT Express kit
(Active Motif, Carlsbad, CA) according to the manufacturer’s
instructions. Briefly, isolated BMMs were stimulated with
LPS (10ng/ml), BLP (10ng/ml), Tri-DAP (5ug/ml), MDP
(5png/ml), and their combinations for 1h, and then washed
with PBS and fixed with 1% formaldehyde at room temperature
for 10min. The cells were lysed in ice-cold lysis buffer
and sheared by sonication to generate 200-1,000 bp DNA
fragments. Immunoprecipitation was carried out by incubation
of the diluted sonicates with protein G magnetic beads and
a specific anti-NF-kB p65 Ab (Santa Cruz Biotechnology)
with rotation overnight. Protein G magnetic beads were
collected with magnetic stand (Active Motif) and washed
extensively. Protein-DNA complexes were eluted, the cross-
link was reversed, and proteins were digested with proteinase
K. Immunoprecipitated DNA and nonimmunoprecipitated
DNA (input control) were amplified by quantitative PCR
(qPCR) using the following promoter-specific primers: mouse
TNF-a  (sense-5'-TCCTTGATGCCTGGGTGTCCC-3' and
antisense-5'-GCAGACGGCCGCCTTTATAGC-3') and mouse
IL-6 (sense-5-TCCAATCAGCCCCACCCACTC-3 and
antisense-5'-GGTGGGCTCCAGAGCAGAATG-3').

Cecal Ligation and Puncture

(CLP)-Induced Polymicrobial Sepsis

Pyrogen-free, 8- to 10-week-old male C3H/HeN mice received
intraperitoneal injection of 200 pl PBS, LPS (1 mg/kg),
BLP (1 mg/kg), Tri-DAP (15 mg/kg), LPS + Tri-DAP (1 mg/kg
+ 15 mg/kg), and BLP + Tri-DAP (1 mg/kg + 15 mg/kg),
respectively, 6 h before septic challenge. Polymicrobial sepsis was
induced using a CLP method as previously described (40, 43).
Briefly, mice were anesthetized by intramuscular injection of 150
ul of a ketamine/xylazine admixture (150 pl ketamine + 150 pl
xylazine made up to 1 ml with 0.9% saline). A midline laparotomy
was performed at which the cecum was delivered, ligated at the
base, just distal to the ileocaecal juncture with a 2/0 mersilk tie.
A single through puncture was then made distal to the ligature
with a 17G needle. The cecum was returned to the peritoneal
cavity and the abdomen was closed with 6/0 prolene sutures.
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Survival rates were recorded and monitored for at least 7 days.
Blood samples were collected at 2 and 6h post CLP, and serum
TNF-a and IL-6 were assessed by cytometric bead array (BD
Biosciences).

Enumeration of Bacteria in the Blood and

Visceral Organs

Bacterial counts were determined as previously described (39,
40). Briefly, mice were culled at 12 and 24h post CLP-
induced polymicrobial sepsis. Blood samples were obtained
by retinal artery puncture, and the dissected liver and spleen
were homogenized in sterile PBS. Serial 10-fold dilutions of
heparinized whole blood and organ homogenates in sterile water
containing 0.5% Triton X-100 (Sigma-Aldrich) were plated on
brain heart infusion agar (BD Biosciences) and incubated for
24h at 37°C for determination of bacterial colony-forming unit
(CFU).

Statistical Analysis

All data are expressed as the mean =+ SD. Statistical analysis was
performed using the log rank test for survival, and the ANOVA
or Mann-Whitney U test for all others with GraphPad software
version 5.01 (Prism, La Jolla, CA). Differences were judged to be
statistically significant when the p-value was less than 0.05.

RESULTS

Activation of TLR and NOD Signaling Is
Both Required to Induce a Strong

Inflammatory Response
We first stimulated macrophages isolated from wild-type mice
with the TLR4 agonist LPS, NODI agonist Tri-DAP, NOD2
agonist MDP, and their combinations for 12h to assess the
production of inflammatory cytokines and chemokines. As
shown in Figure 1A, stimulation of macrophages with LPS led
to an increased release of inflammatory cytokines TNF-a, IL-6,
IL-12p70, and chemokine CXCL2 (p < 0.01 vs. PBS-treated
macrophages), whereas Tri-DAP or MDP stimulation caused
moderate but significant increases in TNF-a, IL-6, IL-12p70,
and CXCL2 release (p < 0.05 vs. PBS-treated macrophages).
Of note, a combined stimulation of LPS with Tri-DAP or
MDP maximized the inflammatory response with substantially
augmented release of TNF-a, IL-6, IL-12p70, and CXCL2 when
compared to the response observed with LPS, Tri-DAP, or MDP
alone (p < 0.05, p < 0.01). Consistent with the finding from the
TLR4 agonist LPS stimulation, stimulation of macrophages with
the TLR2 agonist BLP also induced a markedly increased release
of TNF-a, IL-6, IL-12p70, and CXCL2 (p < 0.01 vs. PBS-treated
macrophages), which was further augmented by a combination of
BLP plus Tri-DAP or MDP (p < 0.05, p < 0.01 vs. macrophages
stimulated with BLP, Tri-DAP, or MDP alone) (Figure 1B).
These results indicate that activation of both TLR and NOD
signaling in macrophages leads to an augmented inflammatory
response.

To examine whether TLR and NOD signaling are both
critical for the observed optimal inflammatory response, we

further stimulated macrophages isolated from TLR4- and
TLR2-deficient, and NODI- and NOD2-deficient mice with
LPS, BLP, Tri-DAP, MDP, and their combinations. LPS
stimulation failed to induce TNF-a release and was unable to
augment Tri-DAP- or MDP-induced TNF-a release in TLR4-
deficinet macrophages (Figure2A). Moreover, the amplified
TNF-a release induced by a combined stimulation of LPS
with the NOD1 agonist Tri-DAP or NOD2 agonist MDP
observed in wild-type macrophages was receded in NODI-
and NOD2-deficient macrophages, respectively (Figure 2A).
Similarly, BLP also lost its stimulatory ability in TLR2-
deficient macrophages, and failed to augment Tri-DAP- or
MDP-induced TNF-a release in NOD1- or NOD2-deficient
macrophages (Figure2B). These results suggest that the
augmented inflammatory response by a combined stimulation of
TLR and NOD agonists is entirely dependent on intact TLR and
NOD signaling.

The Crosstalk Between TLR and NOD
Signaling Leads to Augmented Activation
of NF-kB and Nuclear Transactivation of

P65 at Both TNF-o and IL-6 Promoters

To examine whether the crosstalk between TLR and NOD
signaling results in an enhanced activation of intracellular
signal transduction pathways, thus causing an augmented
inflammatory response, we assessed TLR- and NOD-mediated
upstream and downstream pathways in macrophages stimulated
with TLR and NOD agonists. Stimulation of BMMs with
LPS, Tri-DAP, MDP, and their combinations did not affect
TLR- and NOD-mediated upstream pathways including the
expression of TLR4, NOD1, NOD2, MyD88, IRAK1, RIP2,
and CARD9 (Figure 3A). However, stimulation of BMMs with
a combination of LPS plus Tri-DAP resulted in a vigorous
activation in the downstream NF-kB pathway with considerably
increased phosphorylation of NF-kB p65 at Ser586 and IkBa
at Ser32/36 (p < 0.05, p < 0.01), but had no augmentative
effect on phosphorylation of MAPK p38 at Th180/Tryl182,
when compared to BMMs stimulated with LPS or Tri-DAP
alone (Figures 3B,D). A markedly enhanced expression of
phosphorylated NF-kB p65 at Ser586 and IkBo at Ser32/36
was also observed in BMMs stimulated by LPS in combination
with MDP (p < 0.05, p < 0.01 vs. BMMs stimulated with
LPS or MDP alone) (Figures 3C,E). We also stimulated BMMs
with BLP, Tri-DAP, MDP, and their combinations, and observed
a substantially augmented activation of NF-kB p65 in BMMs
stimulated with a combination of BLP plus Tri-DAP (p <
0.01) (Figure S1A) or MDP (p < 0.05) (Figure S1B) compared
with BMMs stimulated with BLP, Tri-DAP, or MDP alone.
Again, stimulation of BMMs by BLP in combination with
Tri-DAP (Figure S1C) or MDP (Figure S1D) did not induce
a further activation of MAPK p38 compared with BMMs
stimulated with BLP, Tri-DAP, or MDP alone. Consistent with
the amplified downstream NF-«kB activation by a combined
stimulation of TLR and NOD agonists, stimulation of BMMs
with a combination of LPS plus Tri-DAP or MDP strongly
augmented the nuclear transactivation of NF-kB p65 at both
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FIGURE 1 | A combined stimulation of LPS or BLP with Tri-DAP or MDP resullts in augmented inflammatory cytokine and chemokine release. Peritoneal macrophages
and BMMs isolated from wild-type mice were stimulated with LPS (10 ng/ml), Tri-DAP (5 wg/ml), MDP (5 pg/ml), and their combinations (A) or BLP (10 ng/ml), Tri-DAP
(5 wg/ml), MDP (5 ng/ml), and their combinations (B) for 12 h. Macrophages incubated with PBS were used as the control. TNF-a, IL-6, IL-12p70, and CXCL2
concentrations in the supernatants were assessed by cytometric bead array. Data are expressed as mean + SD from five to six independent experiments in duplicate.
*n < 0.05, **p < 0.01 vs. macrophages incubated with PBS; #p < 0.05, ##p < 0.01 vs. macrophages stimulated with LPS, BLP, Tri-DAP, or MDP alone.
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FIGURE 2 | The augmented inflammatory response is dependent on the intact of both TLR and NOD signaling. Peritoneal macrophages and BMMs isolated from
wild-type, TLR4- and TLR2-deficient, and NOD1- and NOD2-deficient mice were stimulated with LPS (10 ng/ml), Tri-DAP (5 pg/ml), MDP (5 wg/ml), and their
combinations (A) or BLP (10 ng/ml), Tri-DAP (5 wg/ml), MDP (5 ug/ml), and their combinations (B) for 12 h. Macrophages incubated with PBS were used as the control.
TNF-a concentrations in the supernatants were assessed by cytometric bead array. Data are expressed as mean + SD from five to six independent experiments in
duplicate. “p < 0.05, *p < 0.01 vs. macrophages incubated with PBS; #p < 0.05, 7#p < 0.01 vs. macrophages stimulated with LPS, BLP, Tri-DAP, or MDP alone.
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FIGURE 3 | Stimulation of macrophages with the combined TLR and NOD agonists amplifies downstream NF-«B activation and augments NF-«kB p65 binding to
TNF-a and IL-6 promoters. Isolated BMMs were stimulated with LPS (10 ng/ml), Tri-DAP (5 wg/ml), MDP (5 ng/ml), and their combinations either for 30 min (A) or for
the indicated time periods (B,C). Cytoplasmic proteins were extracted and subjected to immunoblotting for detection of either TLR4, NOD1, NOD2, MyD88, IRAK1,
RIP2, and CARD9 (A) or total and phosphorylated p65 (P-p65), total and phosphorylated IkBa (P- IkBa), and total and phosphorylated p38 (P-p38) (B,C). Results
shown represent one experiment from a total of three to four separate experiments. The intensity of P-65, total IkBa, P-IkBa, and P-p38 signal in each band was
normalized by GAPDH (D,E). Data are expressed as mean + SD from three to four separate experiments. *p < 0.05, “p < 0.01 vs. macrophages stimulated with
LPS, Tri-DAP, or MDP alone. Isolated BMMs were stimulated with LPS (10 ng/ml), Tri-DAP (5 pg/ml), MDP (5 wg/ml), and their combinations (F) or BLP (10 ng/ml),
Tri-DAP (5 ig/ml), MDP (5 pg/ml), and their combinations (G) for 1 h. The binding of NF-kB p65 to TNF-a and IL-6 promoters was assessed by ChIP analysis and
expressed as percentage of input. Data are expressed as mean + SD from four independent experiments in duplicate. *p < 0.05, **p < 0.01 vs. macrophages
incubated with PBS; #p < 0.05, ##p < 0.01 vs. macrophages stimulated with LPS, BLP, Tri-DAP, or MDP alone.

TNF-a and IL-6 promoters (p <0.05,p <0.01 vs. BMMs  Tri-DAP, or MDP alone) (Figure 3G). These results indicate
stimulated with LPS, Tri-DAP, or MDP alone) (Figure 3F). that the crosstalk between TLR and NOD signaling by a co-
A substantially enhanced recruitment of NF-kB p65 to either  stimulation with TLR and NOD agonists triggers an amplified
the TNF-a promoter or IL-6 promoter was also observed in  downstream activation of the NF-kB pathway with subsequently
BMMs stimulated by BLP in combination with Tri-DAP or  augmented nuclear transactivation of p65 at both TNF-a and
MDP (p < 0.05, p < 0.01 vs. BMMs stimulated with BLP,  IL-6 promoters.
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FIGURE 4 | Stimulation of macrophages with the combined TLR and NOD agonists maximizes the innate phagocyte-associated antimicrobial activity. Peritoneal
macrophages isolated from wild-type mice were stimulated with LPS (10 ng/ml), Tri-DAP (5 pg/ml), MDP (5 ng/ml), and their combinations (A) or BLP (10 ng/ml),
Tri-DAP (5 wg/ml), MDP (5 ng/ml), and their combinations (B) for 6 h, and further incubated with either FITC-conjugated S. typhimurium (S. typhi) (A), FITC-conjugated
S. aureus (B) for 30 min to assess bacterial uptake and phagocytosis or live S. typhi (A), live S. aureus (B) for 60 min to assess intracellular bacterial killing. Bacterial
uptake and phagocytosis were expressed as mean channel fluorescence (MCF) per cell. Data are expressed as mean + SD from four to five independent experiments
in triplicate. *o < 0.05, **p < 0.01 vs. macrophages stimulated with LPS, BLP, Tri-DAP, or MDP alone.

Activation of TLR and NOD Signaling Is
Both Essential for an Efficient Innate
Phagocyte-Associated Bactericidal Activity

We stimulated macrophages isolated from wild-type mice
with LPS, Tri-DAP, MDP, and their combinations for 6h,
and further challenged these macrophages with gram-negative
S. typhimurium to assess bacterial uptake, phagocytosis, and
intracellular killing. Stimulation with LPS, Tri-DAP, or MDP
alone did not affect macrophage-associated bactericidal activity;
however, a combined stimulation of LPS with Tri-DAP or
MDP significantly enhanced uptake and phagocytosis of S.
typhimurium with substantially increased intracellular killing
of the engulfed S. typhimurium (p < 0.05 vs. macrophages
stimulated with LPS, Tri-DAP, or MDP alone) (Figure 4A). BLP
stimulation in combination with Tri-DAP or MDP also resulted
in an augmented bactericidal activity against gram-positive
S. aureus, as represented by significantly enhanced uptake,
phagocytosis, and intracellular killing of S. aureus (p < 0.01
vs. macrophages stimulated with BLP, Tri-DAP, or MDP alone),
whereas stimulation with BLP, Tri-DAP, or MDP alone had no
such effect (Figure 4B). Nevertheless, a combined stimulation
of LPS or BLP with either Tri-DAP or MDP significantly
augmented macrophage-associated bactericidal activity against
gram-positive S. aureus (p < 0.05 vs. macrophages stimulated

with LPS, Tri-DAP, or MDP alone) (Figure S2A) and gram-
negative S. typhimurium (p < 0.01 vs. macrophages stimulated
with BLP, Tri-DAP, or MDP alone) (Figure S2B). These results
indicate that activation of both TLR and NOD signaling in
macrophages is required to induce an enhanced antimicrobial
response.

We next stimulated macrophages isolated from TLR4- and
TLR2-deficient, and NOD1- and NOD2-deficient mice with LPS,
BLP, Tri-DAP, MDP, and their combinations for 6 h, and further
challenged these macrophages with live bacteria to assess the
intracellular bacterial killing. The augmented bactericidal activity
observed in wild-type macrophages following a combined
stimulation of LPS with Tri-DAP or MDP was totally
abolished in TLR4-deficient macrophages and selectively lost
in NOD1- and NOD2-deficient macrophages upon live gram-
negative S. typhimurium (Figure5A) or gram-positive .
aureus (Figure S3A) infection. An enhanced intracellular killing
of the engulfed S. aureus (Figure5B) or S. typhimurium
(Figure S3B) seen in wild-type macrophages after stimulation
with a combination of BLP plus Tri-DAP or MDP was also absent
in TLR2-deficient macrophages as well as in NOD1- or NOD2-
deficient macrophages. These results suggest that TLR and NOD
signaling are both critical for an efficient phagocyte-associated
bactericidal activity.
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FIGURE 5 | TLR and NOD signaling are both required for an efficient macrophage-mediated intracellular bacterial killing. Peritoneal macrophages isolated from
wild-type, TLR4- and TLR2-deficient, and NOD1- and NOD2-deficient mice were stimulated with LPS (10 ng/ml), Tri-DAP (5 ig/ml), MDP (5 ng/ml), and their
combinations (A) or BLP (10 ng/ml), Tri-DAP (5 wg/ml), MDP (5 ng/ml), and their combinations (B) for 6 h, and further incubated with live S. typhimurium (S. typhi) (A)
or live S. aureus (B) for 60 min to assess intracellular bacterial killing. Data are expressed as mean + SD from four to five independent experiments in triplicate. *p <
0.05, *p < 0.01 vs. macrophages stimulated with LPS, BLP, Tri-DAP, or MDP alone.

Activation of TLR and NOD Signaling
Enhances Phagocytic Receptor Expression

and Accelerates Phagosome Maturation

We first examined whether co-stimulation of macrophages with
TLR and NOD agonists induces an enhanced expression of
phagocytic receptors. Stimulation with LPS, but not Tri-DAP
or MDP, increased surface expression of CR3 and FcyR on
macrophages, and a combined stimulation of LPS with Tri-DAP
or MDP led to a further upregulation of CR3 and FcyR expression
(Figure S4A). An enhanced expression of CR3 and FcyR was also
observed in macrophages stimulated with BLP alone, which was
further augmented in macrophages stimulated by a combination
of BLP plus Tri-DAP or MDP (Figure $4B). All phagocytic
processes including the engulfment of microbial pathogens
within the phagocyte are primarily driven by a tightly controlled
rearrangement of the actin cytoskeleton or actin polymerization
(44), we next assessed actin polymerization in macrophages
stimulated with TLR and NOD agonists. Significantly enhanced
actin polymerizations as represented by the F-actin ratio were
observed in macrophages stimulated by LPS in combination with
Tri-DAP or MDP, but not by LPS, Tri-DAP, or MDP alone,
upon gram-positive S. aureus or gram-negative S. typhimurium
infection (p < 0.05, p < 0.01 vs. macrophages stimulated
with LPS, Tri-DAP, or MDP alone) (Figure S5A). A combined
stimulation of BLP with Tri-DAP or MDP also caused markedly
increases in actin polymerization in response to S. aureus or

S. typhimurium infection (p < 0.01 vs. macrophages stimulated
with BLP, Tri-DAP, or MDP alone) (Figure S5B).

We further determined whether activation of TLR and NOD
signaling by their specific agonists results in an accelerated
phagosome maturation. Stimulation of macrophages with
LPS, Tri-DAP, or MDP alone had no effect on phagosomal
acidification; however, a combined stimulation of LPS with Tri-
DAP or MDP substantially accelerated phagosomal acidification
after engulfment of gram-negative S. typhimurium (p < 0.01
vs. macrophages stimulated with LPS, Tri-DAP, or MDP
alone) (Figures 6A,C). A similar acceleration in phagosomal
acidification was also seen in macrophages stimulated by a
combination of BLP plus Tri-DAP or MDP after ingestion of
gram-positive S. aureus (p < 0.01 vs. macrophages stimulated
with BLP, Tri-DAP, or MDP alone) (Figures 6B,D). Consistent
with an accelerated phagosomal acidification, macrophages
stimulated by a combination of LPS or BLP plus either Tri-DAP
or MDP displayed significantly increased phagolysosome fusion
at 30, 60, and 90 min after ingestion of S. typhimurium (p <
0.05 vs. macrophages stimulated with LPS, Tri-DAP, or MDP
alone) (Figures 6E,G) and S. aureus (p < 0.05 vs. macrophages
stimulated with BLP, Tri-DAP, or MDP alone) (Figures 6F,H), as
determined in a cell-free organelle system.

Upregulation and activation of membrane-trafficking
regulators and lysosomal enzymes in macrophages during
the process of bacterial phagocytosis are critical events for
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FIGURE 6 | Stimulation of macrophages with the combined TLR and NOD agonists accelerates phagosome maturation. Peritoneal macrophages isolated from
wild-type mice were stimulated with LPS (10 ng/ml), Tri-DAP (5 ng/ml), MDP (5 ng/ml), and their combinations (A,C,E,G) or BLP (10 ng/ml), Tri-DAP (5 ng/ml), MDP
(5 ng/ml), and their combinations (B,D,F,H) for 6 h, and further incubated with heat-killed bacteria for the indicated time periods. (A-D), Phagosomal pH was
kinetically measured in peritoneal macrophages after being chased with fluorescent probe-coupled S. typhimurium (A,C) or S. aureus (B,D). (E-H), Phagolysosome
fusion was assessed in phagosomes isolated from peritoneal macrophages after being chased with S. typhimurium (E,G) or S. aureus (F,H), and expressed as mean
fluorescence intensity (MFI). Data are expressed as mean + SD from five to six independent experiments in duplicate. *p < 0.05, **p < 0.01 vs. macrophages
stimulated with LPS, BLP, Tri-DAP, or MDP alone.
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subsequent phagolysosome fusion and efficient killing of the
ingested microbial pathogens (45, 46), we next examined
whether co-stimulation of macrophages with TLR and NOD
agonists upregulates membrane-trafficking regulator and
lysosomal enzyme expression. Stimulation of macrophages with
LPS, but not Tri-DAP or MDP, led to increased expression of
membrane-trafficking regulators Rab10 and Stx1A as well as
lysosomal enzymes Camp and Acp5 (p < 0.05 vs. PBS-treated
macrophages); however, a combined stimulation of LPS with
Tri-DAP or MDP maximized mRNA expressing levels of Rab10,
Stx1A, Camp, and Acp5 when compared with macrophages
stimulated with LPS, Tri-DAP, or MDP alone (p < 0.05, p < 0.01)
(Figure S6A). A similar augmented expression of Rab10, Stx1A,
Camp, and Acp5 was also observed in macrophages stimulated
by BLP in combination with Tri-DAP or MDP (p < 0.01 vs.
macrophages stimulated with LPS, Tri-DAP, or MDP alone)
(Figure S6B). These results indicate that activation of both
TLR and NOD signaling in macrophages results in upregulated
phagocytic receptor expression, enhanced actin polymerization,
accelerated phagosome maturation, and increased membrane-
trafficking regulators and lysosomal enzymes in response to
microbial infection.

Activation of TLR and NOD Signaling
Confers Protection Against Polymicrobial
Sepsis With Enhanced Inflammatory
Cytokines and Accelerated Bacterial

Clearance

To further clarify whether activation of both TLR and NOD
signaling in vivo affords protection against microbial infection,
wild-type mice were pretreated with PBS, LPS, Tri-DAP, or
LPS plus Tri-DAP for 6h, and further challenged with CLP-
induced polymicrobial sepsis. Survival rates were recorded and
monitored for at least 7 days. All mice receiving PBS succumbed
within 60 h of septic challenge, while mice receiving LPS or Tri-
DAP alone had a similar mortality rate at 95%, respectively,
upon septic challenge (Figure 7A). However, mice that received
a combination of LPS plus Tri-DAP were shown to be more
resistant to polymicrobial sepsis, with an overall survival of 34%
compared with the survival rate of 0% in mice that received PBS
(p = 0.0112), 5% in mice that received LPS alone (p = 0.0275),
and 5% in mice that received Tri-DAP alone (p 0.0375)
(Figure 7A). Consistent with a substantial survival advantage,
mice treated with LPS plus Tri-DAP displayed moderate but
significantly increased serum peak levels of TNF-acat 2 h and IL-6
at 6 h post septic challenge (p < 0.05 vs. mice treated with LPS or
Tri-DAP alone) (Figure 7B). Furthermore, substantially reduced
bacterial counts in the blood, spleen, and liver were observed
at 12 and 24h post septic challenge in mice treated with LPS
plus Tri-DAP (p < 0.05, p < 0.01 vs. mice treated with LPS or
Tri-DAP alone) (Figure 7C), indicating an accelerated bacterial
clearance in these mice. Stimulation with a combination of BLP
plus Tri-DAP also protected mice against polymicrobial sepsis-
associated lethality, with a significant reduction in mortality from
100% in mice receiving PBS (p = 0.0091), 100% in mice receiving
BLP alone (p = 0.0085), and 95% in mice receiving Tri-DAP

alone (p = 0.0298) to 61% in mice receiving BLP plus Tri-
DAP (Figure 7D). Consistent with the findings in mice treated
with LPS plus Tri-DAP, mice treated with BLP plus Tri-DAP
showed increased serum TNF-a and IL-6 (p < 0.05 vs. mice
treated with BLP or Tri-DAP alone) (Figure 7E), and reduced
bacterial load in the circulation and visceral organs (p < 0.05 vs.
mice treated with BLP or Tri-DAP alone) (Figure 7F) post septic
challenge. These results demonstrate that activation of both TLR
and NOD signaling by the combined TLR and NOD agonists
protects mice against microbial sepsis-associated lethality, which
is associated with simultaneously augmented both inflammatory
and antimicrobial responses.

DISCUSSION

The individual importance of the membrane-bound TLR2/4
and the cytosolic NOD1/2 during microbial infection has been
well documented (6, 9, 22, 23, 29, 34); however, it is largely
undefined whether TLR and NOD signaling are both critical
for host defense to induce an efficient innate immune response,
thereby facilitating the host to eradicate the invaded microbial
pathogens. In the current study, we demonstrate that activation
of both TLR and NOD signaling in macrophages by a combined
stimulation of either the TLR2 agonist BLP or the TLR4
agonist LPS plus the NOD1 agonist Tri-DAP or the NOD2
agonist MDP augments not only the inflammatory response as
represented by the upregulated downstream NF-«kB activation
and increased proinflammatory cytokine and chemokine release,
but also the antimicrobial activity as represented by the
accelerated phagosome maturation and enhanced bacterial
killing. In line with our in vitro findings, activation of both
TLR and NOD signaling by a combination of TLR and NOD
agonists in vivo enhances serum proinflammatory cytokines and
accelerates clearance of bacteria from the circulation and visceral
organs, thus conferring protection against polymicrobial sepsis-
associated lethality.

Proinflammatory cytokines and chemokines, serving as the
major participants in innate immunity-initiated inflammatory
response, are essential for the elimination of microbial pathogens
from the body (1-3, 10, 12). We first examined whether activation
of both TLR and NOD signaling induced a strong inflammatory
response. In comparison with the response induced by LPS,
BLP, Tri-DAP, or MDP alone, a combined stimulation of
macrophages with LPS or BLP plus Tri-DAP or MDP maximized
the inflammatory response with markedly enhanced release
of proinflammatory cytokines TNF-a, IL-6, IL-12p70, and
chemokine CXCL2. Our results are consistent with previous
reports where co-stimulation of murine macrophages and/or
human monocytes/dendritic cells with agonists of TLR2/3/4/5/9
and NOD1/2 augments the inflammatory response with
synergistically increased production and release of inflammatory
cytokines including TNF-a, IL-1B, IL-6, IL-8, and IL-12 (13, 47—
50), and furthermore, LPS or LTA stimulation in combination
with MDP led to an augmented release of TNF-a and IL-6 not
only in naive macrophages but also in LPS- and LTA-tolerant
macrophages (51). Notably, our results differ considerably from
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FIGURE 7 | Activation of both TLR and NOD signaling protects mice against CLP-induced polymicrobial sepsis. C3H/HeN mice treated with PBS, LPS, Tri-DAP, and
LPS + Tri-DAP (A-C), or PBS, BLP, Tri-DAP, and BLP + Tri-DAP (D-F) for 6 h were subjected to CLP-induced polymicrobial sepsis. (A,D) Kaplan-Meier survival curve
shows significantly improved survival in mice received LPS + Tri-DAP compared to mice received PBS, LPS, or Tri-DAP alone (n = 18 per group) (A) and in mice
received BLP + Tri-DAP compared to mice received PBS, BLP, or Tri-DAP alone (n = 18 per group) (D) post septic challenge. (B,E) Data shown are the results of
peak serum levels of TNF-a at 2 h and IL-6 at 6 h post septic challenge. (C,F). Bacterial clearance from the blood and visceral organs collected at 12 and 24 h post
septic challenge was expressed as log CFU/ml. Data in (B,E), and (C,F) are mean =+ SD of five to six mice per time point and representative of three separate
experiments. *p < 0.05, “*p < 0.01 vs. mice received LPS, BLP, or Tri-DAP alone.

the previous findings, by revealing that deficiency in TLR  phosphorylation of p38, ERK, and JNK was associated with
(TLR2 or TLR4) and NOD (NODI or NOD2) predominantly  the increased cytokine response in LPS-tolerant macrophages
receded the amplified TNF-a release characterized in wild-type  after re-stimulation with MDP or KF1B, a NODI1 agonist
macrophages in response to co-stimulation with TLR and NOD  (51). However, we did not observe any further increase in
agonists, indicating that the augmented inflammatory response  phosphorylated MARK p38 in naive macrophages co-stimulated
observed in the present study is entirely dependent on intact by LPS or BLP plus Tri-DAP or MDP.

TLR and NOD signaling. We further examined whether the Receptor-associated recognition of invading microbial
crosstalk between TLR and NOD by co-stimulation with their =~ pathogens initiates the antimicrobial response of host innate
agonists led to an enhanced activation of TLR- and NOD-  immunity, and subsequently professional phagocytes such as

mediated signal transduction pathways. Although stimulation = macrophages ingest these pathogens via phagocytic receptors
of BMMs by LPS or BLP in combination with Tri-DAP or  andkill them within the phagocyte through a process of lysosome
MDP failed to activate the upstream pathways including TLR4,  fusion with the pathogen-containing phagosomes (35, 46, 52).
NOD1, NOD2, MyD88, IRAK1, RIP2, and CARDY, a vigorous =~ We first assessed whether macrophages co-stimulated with
activation of the downstream NF-kB pathway with markedly = TLR and NOD agonists developed an augmented antimicrobial
upregulated expression in phosphorylated IkBa and NF-kB p65  activity upon bacterial infection. Significantly increased uptake,
was observed in BMMs co-stimulated by LPS or BLP plus  phagocytosis, and intracellular killing of gram-positive S.
Tri-DAP or MDP. Moreover, a significantly enhanced nuclear  aureus and gram-negative S. typhimurium were observed in
transactivation of NF-kB p65 at both TNF-o and IL-6 promoters ~ macrophages co-stimulated with LPS or BLP plus Tri-DAP or
was evident in BMMs stimulated by the combination of TLR ~ MDP. Importantly, deficiency in either TLR2/4 or NOD1/2
and NOD agonists. Thus, the crosstalk between TLR and NOD  dramatically impaired the intracellular killing of S. aureus and
signaling triggers an augmented downstream NF-kB activation  S. typhimurium in macrophages co-stimulated with TLR and
with increased recruitment of NF-kB p65 to both TNF-a and ~ NOD agonists, demonstrating that TLR and NOD signaling are
IL-6 promoters, which provides the mechanistic explanation for ~ both essential for an efficient phagocyte-associated bactericidal
an amplified release of proinflammatory cytokines observed in  activity. The phagocytic receptors CR3 and FcyR contribute to
macrophages co-stimulated with TLR and NOD agonists. It has  phagocyte-related uptake, engulfment, and killing of invading
been reported that in addition to an enhanced NF-kB activation,  microbial pathogens, whereas defects in CR3 and/or FcyR are
substantial activation of MAPKSs including markedly upregulated  associated with an impaired antimicrobial response (53-55).
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Moreover, the event of phagosome maturation which is
typified by phagosomal acidification and phagosome/lysosome
fusion following the engulfment of microbial pathogens by
professional phagocytes is a critical step in the killing and
degradation of the ingested pathogens within the phagocyte,
and therefore plays a crucial role in innate immunity against
microbial infection (46, 52). We next asked whether activation
of TLR and NOD signaling results in enhanced phagocytic
receptor expression and accelerates phagosome maturation, thus
facilitating phagocytosis and killing of microbial pathogens.
By measuring the surface expression of CR3 and FcyR as
well as phagosomal acidification and phagolysosome fusion
in macrophages stimulated by a combination of LPS or BLP
with Tri-DAP or MDP, we confirmed significantly upregulated
phagocytic receptor expression and accelerated phagosome
maturation in these macrophages. We further revealed that
stimulation of macrophages by LPS or BLP in combination with
Tri-Dap or MDP strongly enhanced actin polymerization, an
event crucial for phagocyte-associated engulfment of microbial
pathogens (44), and substantially increased Rab10 and Stx1A,
two membrane-trafficking regulators involved in promoting
phagolysosome fusion (45), and Camp and Acp5, two lysosomal
enzymes responsible for killing of the ingested microbial
pathogens (46). Thus, we demonstrate for the first time that
in addition to inducing an augmented inflammatory response,
activation of both TLR and NOD signaling initiates an efficient
antimicrobial activity characterized by substantially increased
uptake, phagocytosis, and killing of the ingested bacteria via the
upregulation phagocytic receptor expression, promotion of actin
polymerization, acceleration of phagosome maturation, and
enhancement of membrane-trafficking regulators and lysosomal
enzymes.

The membrane-bound TLR2/4 and the cytosolic NOD1/2
play key roles in host innate defense-associated protection
against microbial infection by sensing the presence of microbial
pathogens including both extracellular and intracellular bacteria
(29, 31, 33, 34), while deficiency in either TLR2/4 or NOD1/2
show an increased susceptibility to infections caused by a
variety of bacteria (6, 9, 21, 23, 30). In the current study,
we found that activation of TLR and NOD signaling are both
required for innate immunity to induce a strong inflammatory
response, and simultaneously, an efficient antimicrobial activity.
The remaining question to be answered is whether activation
of both TLR and NOD signaling in vivo confers protection
against microbial sepsis. To address this, we treated mice
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