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The frequency to which an organism is exposed to a particular type of face influences recognition
performance. For example, Asians are better in individuating Asian than Caucasian faces, known as the
own-race advantage. Similarly, humans in general are better in individuating human than monkey faces,
known as the own-species advantage. It is an open question whether the underlying mechanisms causing
these effects are similar. We hypothesize that these processes are governed by neural plasticity of the face
discrimination system to retain optimal discrimination performance in its environment. Using common
face features derived from a set of images from various face classes, we show that maximizing the feature
variance between different individuals while ensuring minimal variance within individuals achieved good
discrimination performances on own-class faces when selecting a subset of feature dimensions. Further, the
selected subset of features does not necessarily lead to an optimal performance on the other class of faces.
Thus, the face discrimination system continuously re-optimizes its space constraint face representation to
optimize recognition performance on the current distribution of faces in its environment. This model can
account for both, the own-race and own-species advantages. We name this approach Space Constraint
Optimized Representational Embedding (SCORE).

H
umans have more difficulty to identify individuals of a different race than their own1. For example, to
Asians with little exposure to Caucasians all Caucasian faces look alike. A large body of scientific evidence
exists describing discrimination advantages for the own face class as opposed to the other face classes, an

effect commonly known as the own-race advantage of face processing (also referred to as the other-race effect)2–5,
for an overview see6,7. Similarly, visual recognition performance of humans8,9, apes10–12 and monkeys8,13–17 is
biased toward their own as opposed to another species’ faces, referred to as the own-species advantage (or the
other-species effect)6. Inferior recognition performance of other faces arises at a subjective level (‘all faces look
alike’), and can also be objectively measured in terms of decreased accuracy and increased response latency. A
computational explanation for the own-race advantage has been up for debate18, while the nature of the own-
species advantage and its relationship to the own-race advantage have been unaddressed.

According to O’Toole19, a few basic elements characterize the core concept of a computational model under the
assumption that experience fundamentally shapes the representations of faces. In an attempt to build a unified
model for both the own-race and the own-species effects, we here take into account the following assumptions
(partly cited from19): (1) Face of different races [and species] comprise different statistical categories of faces. (2)
Within a given category of faces, a set of differentially weighted ‘‘features’’ is optimal for encoding faces in a
manner that makes faces within the category most discriminable. (3) The size and number of features, which can
be simultaneously employed for discriminating faces, is limited by neural resources. (4) The face feature repres-
entation slowly learns and optimizes to the combined distribution of exposed faces experienced over a longer time
frame. Thus, with exposure to many faces of a given race [or species] and a smaller number of faces of other races
[or species], perceptual learning enables observers to make optimal use of the features that are best for processing
faces from the category with which they have had the most experience, typically faces of their own race [and
species]. Hence, we explore in this study to what extent the difficulties in perceiving other races and species is
reflected in the deviation of selecting the optimal features for distinguishing faces of the own race and species from
the selection of other face classes, as it has been done previously with faces of different races20. This further sheds
light not only on whether the same underlying computational principle can explain both the own-race and the
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own-species advantages, but also to what extent a system is capable to
classify other-class when tuned to own-class face exemplars.

As proposed in an earlier model10, we assume that the neural
machinery for face discrimination has access to complex non-linear
face features, representing the facial features as extracted from high-
dimensional face space by means of sensory processing. While in this
previous model the facial features are artificially generated normal
distributions of feature samples, we here extract facial features using
topological methods21 and test the model predictions under the scen-
arios of the own-race and own-species advantages. We here show
that under assumption that the visual system is generically plastic
and under consideration of the exposure history, the own-race and
own-species advantages can be explained with the same underlying
computational mechanism. We thus conclude that face perception
underlies a life-long learning process that continuously optimizes the
recognition system to the changing environment.

Results
We used four sets of face pictures. The first was a collection of 66
chimpanzee photographs from 22 individuals and the second set
contained 54 photographs from 18 human (Asian) individuals. For
each individual we used three viewpoints (first and second sets: face
database 1, see methods). The third and fourth sets consisted of
rendered images from 3-D reconstructions of faces22. These face
images were of Caucasian and Asian races and contained 60 indivi-
duals from three viewpoints (third and fourth sets: face database 2,
see methods). In the following we use face database 1 to evaluate a
learning process toward another species and face database 2 to evalu-
ate a similar effect toward another race. From all face data sets we
extracted face features by implementing the topological methods
suggested by21. In Figures 1A and H typical face images are shown
together with the extracted features. Before feature extraction, faces
were vertically aligned. The features were computed on the face
image and then averaged arbitrarily along the horizontal dimension
to enhance the processing efficacy (Figures 1B, I), however, the exact
type of the face features used is not crucial for our method. Note that
eye, nose, and mouth regions are captured by characteristic feature
shapes.

We first tested whether the distribution of features in both were
indeed different between classes of faces (Figures 1D, K), as stated in
the assumptions above. A simple (and sufficient) way to show this is
by comparing the projections onto the first principle components of
the both data samples against each other (Figures 1C, J). It can be
seen clearly in the case of human and chimpanzee faces (species
comparison) that both data samples spread out toward different
directions (Figure 1C), indicating that the feature distributions of
chimpanzees and humans are indeed different at the principle com-
ponent explaining the greatest variance of feature distribution. A
closer look at the average profiles reveals that humans and chimpan-
zees show clear morphological differences in their facial feature char-
acteristics (Figure 1D). On the other hand, the differences across
races (Asians and Caucasians) are rather subtle (Figure 1K).
However, when using a more elaborated statistical method for testing
whether two multi-dimensional distributions are significantly differ-
ent (Maximum Mean Discrepancy23), we indeed found that both the
features derived from Caucasians versus Asians as well as Asians
versus Chimpanzees are significantly different (alpha level .001), in
agreement with our initial assumptions.

Further, the neural system has to optimize its representation to
achieve best discrimination of the type of faces it was already exposed
to (‘Optimized Representational Embedding’). Although the exact
neural implementations are of course not known, a reasonable way
would be to maximize the discrimination power of individuals while
taking the limitation of neural resources into account (‘Space
Constraint’). A simple way to achieve this is by selecting those poten-
tial feature dimensions which reduce the feature variance for face

images belonging to the same individuals (within-individual vari-
ance) and simultaneously maximizing the variance between indi-
vidual faces (between-individual variance). This approach is
known as the Fisher’s Linear Discriminant (LFD) (hence ‘‘Fisher-
faces’’) and was shown to be superior to an ‘‘Eigenface’’ method
(using the first few principle components for dimension reduction
instead)24. We name the general approach proposed here ‘Space
Constraint Optimized Representational Embedding’ (SCORE). In
Figures 1E, F, L and M both data sets are projected onto the first
two components using LFD. One notes that images of the same faces/
identities (same colors) tend to group together, potentially easing the
discrimination (in respect to other projections). Computing the dis-
tances of face exemplars of the same identities (‘within’) and of
exemplars of various identities (‘across’), we found a significantly
closer average distance for ‘within’ than ‘across’ in the species com-
parison (chimpanzee versus human faces) (within-across: F(1,279) 5

4320, p , .001; interaction within-across x classes: F(1,279) 5 259, p
, .001; chimpanzee: within: .09 1/2 .02, across: .19 1/2 .01 (mean
1/2 std), Figure 1G, left panel; human: within: .05 1/2 .02, across:
.21 1/2 .01 (mean 1/2 std), Figure 1G, right panel), as well as for
the race comparison (Asian versus Caucasian faces) (within-across:
F(1,719) 5 62591, p , .001; interaction within-across x classes:
F(1,719) 5 48.56, p , .001; Asian: within: .03 1/2 .01, across: .20
1/2 .001 (mean 1/2 std), Figure 1N, left panel; Caucasian: within:
.03 1/2 .01, across: .19 1/2 .001 (mean 1/2 std), Figure 1N, right
panel).

We next evaluated the discrimination performances the SCORE
system would achieve using a discrimination task. We divided each
data set into train and test sets, computed the LFD projection only on
the train set and selected the optimal features. The ratio of faces
stemming from the two classes of faces was constantly varied in
the train set to simulate various levels of experience with one and
the other class of faces. This process simulates long-term exposure
and adaption to a particular predominant face class in a given system
(Asians, Caucasians, humans, chimpanzees), where the features
space is optimized to the discrimination of behaviorally relevant
faces. To evaluate discrimination performance on the test set we
draw – analogous to a real experiment10,25 – two faces representing
two individuals, A and B, together with a third face image depicting
one of the first two individuals. The hypothetical subject then had to
report whether A or B was depicted on the third image. This judg-
ment was done on the basis of the similarity in the face feature
representation in the hypothetical neural system. In particular, all
three pictures were projected into the feature space (using the learned
weights from above) and if the distance in the feature space between
the first and third picture was nearer than between the second and
the third pictures, individual A was reported or otherwise B. In this
manner the expected performance could be computed on the whole
test set. This analysis revealed that indeed testing and training on two
different face classes reduced the system performances as opposed to
testing and training on the same classes (Figures 2A, D), reproducing
both the own-race and own-species effect, respectively.

We next quantified the size of the effect when using SCORE. We
define two factors: (1) the testing class, which is either identical with
the training class or different, and analogously (2) the training class.
We found own-race advantages for both Asian and Caucasian faces
above the other face class (Caucasian faces for a system tuned to
Asian faces and vice-versa), reflected in a significant effect of the
factor testing class F(1,399) 5 234, p , .001 and a non-significant
effect in the factor training class: F(1,399) 5 1.07, p 5 .30
(Figure 2D). Further we show that the performance clearly depends
on the exposure history, reflected in an increasing discrimination
rate with increasing own-face training ratio in both Asian
(Figure 2E) and Caucasian faces (Figure 2F). Similarly, we found
an own-species advantage for both human and chimpanzee faces
above the other face classes (chimpanzee faces for a system tuned
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Figure 1 | Species and race comparisons. (A,H). Exemplar faces. The chimpanzee face was contributed by the Great Ape Research Institute (GARI), the

human faces were contributed by Heinrich Bulthoff and the ScanLab at the Max Planck Institute for Biological Cybernetics, Tubingen, Germany (see

Methods and Acknowledgements for details). (A,B,H,I.) Feature extraction using topological features. (A,H.) The original faces (left column) and the

extracted features (right column). (B,I.) The horizontally average profile. (C–G,J–N.) Projections in features space. (C,J.) Principle components of human

and chimpanzee (C) and Asian and Caucasian faces (J). Distributions are different, thus a system has to adapt if either of the classes are new to the system.

(D,K.) Means (extracted in PCA) are also different. (E, F,L,M.) Chimpanzee and human (E,F) and Asian and Caucasian faces (L,M) projected with LFD.

Note that individuals are grouped together (same color). (G,N.) Distance in LFD space for chimpanzee and human (G) and Asian and Caucasian

faces (N).
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Figure 2 | Discrimination performances. (A,D.) The performances on the human and the chimpanzee (A) as well as the Asian and Caucasian face data

sets (D) are plotted. Notably, as expected, if the training set contained examples from only one species (A), the performance tested on the other species

degraded. A similar effect was observed for races (D). (B,C.) Change of the species ratio in the train set (from 1 (only chimpanzees) to 0 (only humans))

versus number of used dimensions in the feature space. Performances in color-code. (B.) Tested on chimpanzee faces, (C.) Tested on human faces. Note

that performance changes with the species ratio in the train set signifying the adaption of the recognition system to a change in the input distribution.

‘‘Old’’ faces get partly forgotten by this process (i.e. trained on humans, tested on chimpanzees is worse than trained on chimpanzees and tested on

chimpanzees). Accordingly, figures (E,F) show the change of race ratio in the train set versus number of used dimensions in the feature space. (G.) Cross-

validation: The performances on the race comparison (left panel) as well as the species comparison (right panel) are plotted. In addition, performances on

second other-class faces are shown in green boxplots. Notably, face samples come from both face databases (see methods) and y-axis label of (A, D and G)

do not correspond.
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to human faces and vice-versa) reflected in a significant effect of the
factor testing class F(1,399) 5 9.7, p , .01 and a non-significant effect
in the factor training class: F(1,399) 5 1.96, p 5 .16 (Figure 2A).
Similarly to the race comparison, the simulated recognition perform-
ance of faces from different species is critically shaped by the expo-
sure history: We found an increase in performance scores with
increasing ratio of own-species exposure (Figures 2B, C). When
relaxing the space constraint of the neural system and allowing for
more feature dimensions to be present simultaneously, we see per-
formance increases with increasing size of the face feature space for
both, the own-race and the own-species advantages. Performance
saturates around eight feature dimensions, however, the exact num-
ber necessary to reach the saturation level will likely depend on the
details of the implementation, e.g. the chosen face feature extraction
method and the number of represented faces.

Further, we cross-validated our model to demonstrate its efficacy:
The idea is to show that when the system is tuned to one particular
class (e.g. Asian faces) it not only exhibits a discrimination advantage
of own-race above other-race faces (e.g. Caucasian faces), but also
above other-species (chimpanzee) faces (factor testing class).
Moreover, we expect that with changing training ratio, e.g. a shift
from a predominant exposure to Asian faces to a predominant expo-
sure to Caucasian faces, discrimination of the other-species face class
(chimpanzee faces) remains unaffected. To test this, we compared
the factor testing class, here reflected as own-race (1), other-race (2)
and other-species (3) (corresponding to the color code in Figure 2G
left panel) and analogously the factor training class (right versus left
boxplots in Figure 2G, left panel). We found significant effects for
testing class (F(2,599) 5 6568, p , .001) and the factor training class
(F(1,599) 5 6.73, p , .01; Figure 2G, left panel). Analogously, when
the system is tuned to own-species (chimpanzee) faces, the discrim-
ination performances of human face classes should deteriorate (right
versus left boxplots in Figure 2G, right panel). We found an own-
species advantage above both other-species face classes. In addition,
with changing training ratio from a predominant exposure to chim-

panzee to Asian faces we found increased discrimination perform-
ance for Asian faces and a decreased performance for chimpanzee
faces, analogous to the above-mentioned case. Importantly, the sec-
ond other-species face class (Caucasian faces) remained unaffected
by the introduced change in exposure (chimpanzee to Asian).
Statistically, this is reflected in a significant effect of the factor testing
class (F(2,599) 5 584, p , .001) and a significant effect in the factor
training class (F(1, 599) 5 480, p , .001; Figure 2G, left panel).

To further quantify the computational origins of the observed
own-race and own-species advantages, we evaluated the overlap of
the feature distributions for the first few principle components. If the
overlap is small, distributions are very different and we expect large
own-race and own-species advantages because learned features do
not generalize to the other class. We quantified the surface shared
between the two distributions: While the overlap of chimpanzee and
human facial features remains relatively small (32.5%) at a contour
threshold of .1 (due to the perpendicular arrangement of component
axes) (Figure 3B, left panel), the overlap of Asian and Caucasian
facial features is larger (49.7%) (Figure 3A, left panel). Interes-
tingly, when increasing the contour threshold, and hence carving
out the core of the feature distributions, the quantity of overlap
equals out between Chimpanzee – Human and Asian – Caucasian
comparisons (contour threshold .25, species comparison: 47,3%; race
comparison: 50%, Figure 3A,B, middle panels). To estimate the
amount to which a system could use features of one face class to
classify examples of the other face class, we estimated the minimal
distance of each sample to each other sample of the other class
(Figure 3D). We found that chimpanzee-human and human-chim-
panzee distances are larger than Asian-Caucasian and Caucasian-
Asian distances (t(498) 5 7.74, p , .001; race distances 5 .18 1/
2 .20, species distances 5 .40 1/2 .43 (mean 1/2 std)), reflecting a
higher degree of possible feature transfer between Asian and
Caucasian than chimpanzee and human (Asian) faces. In other
words, the own-species advantage goes along with a large deviation
of the first principal components (angle 84.5 degree) (Figure 3B, left

Figure 3 | (A–D.) Feature transfer effect. (A.) Asian and Caucasian face feature distributions (1st PCs) are compared by calculating the proportional

overlap while varying the contour threshold of the distributions. (B.) Same as A with chimpanzee and human (Asian) faces. (C.) Direct comparison of PC

overlap of face classes between races and species. The proportional overlap of both the species and race comparisons are plotted against each other. In a

red-blue color graduation the contour threshold is indicated, ranging from .05 to .95. (D.) Minimal distance across classes. The minimal distance was

calculated across classes for both the species and the race comparison in both directions (from class 1 to 2 and from class 2 to 1, see x and y axes). Notably,

the minimal distance for the species comparison (blue) was larger than for the race comparison (red).
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panel), leading to less feature transfer between chimpanzee and
human faces (small overlap at large contour threshold; Figure 3B,
left panel, Figure 3C) and hence to a large own-species advantage
(Figure 2A–C). In contrast, the own-race advantage is accompanied
by a small deviation of the first principal components (angle 22.6
degree) (Figure 3A, left panel), leading to more feature transfer
between Asian and Caucasian faces (large overlap at large contour
threshold; Figure 3A, left panel) and hence to a small own-race
advantage (Figure 2D–F). In addition, we estimated the relative effect
sizes of the race and species comparisons by the following formula:
(scores (training class 1, testing class 1) - scores (training class 1,
testing class 2))/(scores (training class 1, testing class 1) 1 scores
(training class 1, testing class 2)). It turns out that the species com-
parison yielded a greater relative effect size (H5C 5 5.74, C5H 5

4.48) than the race comparisons (C5A 5 3.43, A5C 5 .79).
We further quantified to what extent the SCORE approach

explained the so-called Mirror Effect26 (Figure 4A,B), i.e. quicker
categorical decisions for other-race/species faces as opposed to
own-race/species faces. We hypothesize that the categorical decision
is made based on the comparison of representational examples in the
face space with the probe face to classify. It is possible that the neural
system needs more effort to categorize if representational examples
are likely to be distributed widely in the face space (and thus are
perceived to differ considerably) as opposed to when representa-
tional examples of a category are well localized in the face space
(and are thus perceived very similar). We thus assume that the mean
distance between test samples and all previously trained faces in the
face space is proportional to the response time in a categorization
task. We quantified the mean distance of a fixed number of test
samples with all trained samples for both categories (Asian versus
Caucasian) as a function of the changing training-ratio (e.g. 0%
Asian, 100% Caucasian to 100% Asian, 0% Caucasian), and normal-
ized the calculated mean distances to the distance for the own-class
effect (100% training on the same class as the tested classes). As
shown in Figure 4A, relative distance of the test samples with the
trained samples decreases for decreasing relative exposure to the
tested class during training. In other words, the less the neural system
was exposed to a particular face class, the less representational space
was allotted to this class. In turn, faces of that category appear more
similar (near in face space) and behavioral responses are presumably
quicker. We found this to be the case for both Caucasian and Asian
faces when trained on a mixture of these two classes (Figure 4A, left
panels). One-sample t-tests, comparing each position in the training

ratio (x-axis) and the feature space (y-axis) with the 0% training ratio
at given size of feature space (baseline), showed significant differ-
ences in mean distances, and thus showing the mirror effect
(Figure 4B, upper and lower left panel). However, when tested ana-
logously on the two categories chimpanzee and human faces,
ambiguous tendencies occurred: When tested on chimpanzee faces,
the mean distances showed an inverted u-shape function along the
variation in the training ratio (x-axis) and the size of feature space (y-
axis) (Figure 4A, upper right panel). Similarly ambiguous, the mean
distances were relatively large, when tested on human faces, irre-
spective of the training ratio and the size of feature space
(Figure 4A, lower right panel). Thus, the species comparison did
not reveal a systematic pattern of significance in accordance with
the Mirror Effect (Figure 4B, right panels).

Discussion
In the current study, we created a model under the hypothesis that
neural plasticity of the face discrimination system retains optimal
discrimination performance in its environment, i.e. the face discrim-
ination continuously updates its representation to all the faces
exposed to. If neural resources were limited, the face system could
be less selective in the choice of represented feature dimensions to
allow for the coding of a high variability of faces that then could be
discriminate in a similar fashion.

We used common face features derived from face images of vari-
ous classes and show that a face feature representation in the LFD
space achieved solid discrimination performances on own-class faces
when selecting a subset of feature dimensions. The selected subset of
features, however, does not necessarily lead to an optimal perform-
ance on the other classes of faces; effects known as the own-race and
own-species advantages. We followed a major trend of computa-
tional models on face perception representing faces in a face space
framework27. In the literature, a global analysis of faces was imple-
mented with principal components analysis (PCA) directly applied
on face images28–30 and a simplified model of an own-race advantage
was described as an optimal feature selection model31. We here first
extract facial features via topological methods, then apply PCA on
the extracted face profile vectors and optimize the spatial separation
of face identities in the representational space with LFD analysis.
Conceptually, we followed the idea of Furl20 and O’Toole19, using
both a generic contact hypothesis as well as a developmental contact
hypothesis algorithm to simulate the own-race advantage. The
authors showed that these experience-based algorithms, in contrast

Figure 4 | Mirror Effect. (A.) The relative change of distances between training and testing faces at given training ratio (x-axis) and size of feature space

(y-axis). (B.) Axes as in A. Data reflects the significant positions of relative changes as opposed to the baseline (0% training position at given size of feature

space, indicated by black vertical lines).
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to non-contact hypothesis algorithms, result in an own-race advant-
age. Following the idea of the contact hypothesis, a recent study32

compares a variety of trainable and non-trainable algorithms across a
variety of face classes, age classes and gender. The conclusion of this
study is that training the face recognition system on dataset well
distributed across all races is critical to reduce deficits for specific
demographic cohorts and that face discrimination performance on
races improves when trained exclusively on the same race (and age)
class. In another recent study, the mechanism of the underlying
algorithm effect was investigated, pointing out the need to under-
stand how the ethnic composition (ratio of faces belonging to differ-
ent race classes) of a training set impacts the performance of the
algorithm.

In our study, when quantifying the relative deterioration of
other-class as opposed to own-class faces, the own-species advantage
is of greater effect size than the own-race advantage. We followed the
question whether the own-race and own-species advantages can
be explained by the same underlying mechanism. We show that
the relative deterioration of performance scores is present in
both, the race as well as the species comparisons. The relative impair-
ment, indeed, reflects what has been recently reported in the
literature25. Hence, it is plausible to assume that the own-race and own-
species advantages are caused by the same fundamental mechanism.

We found absolute performance differences when comparing race
classes as opposed to species classes (Figures 2A–G). This can be
explained by the general quality of the stimuli: while the race faces
were based on 3D-models and rendered under controlled and stan-
dardized conditions (Figure 2D–G), the species faces were photo-
graphs that include a wider degree of variation of factors (Figure 2A–
C,G), such as the exact perspective, lighting condition, alignment of
the face inside the image canvas, and others. What looks like a lim-
itation in the methodological procedure at first glance, turns out to be
an interesting way of validating the model under more realistic, less
controlled conditions, like the species comparison. Further, given
certain restrictions, like the fact that there are no 3D models of
chimpanzee faces available, there is simply no way to account for
improvements in that aspect.

It can be argued if there is some sort of feature transfer between
two classes of faces. We accounted for this question by calculating
relative distances between individual faces of one class and all other
faces of the other class and by estimating the overlap of feature
distribution for two classes, showing that the distributions between
race classes are generally closer than those of species classes, which
seems plausible, given the morphological (and evolutionary) greater
distance of human and chimpanzee than Asian and Caucasian faces.
Given these facts, we might assume that there is indeed some sort of
feature transfer from Asian to Caucasian faces and vice-versa, while it
might be a rather challenging task for the face processing system to
use human-face tuning to account for chimpanzee faces and vice-
versa. In the literature, there are some interesting cases to illustrate
exactly this assumption: Captive chimpanzees, a rare case of indivi-
duals with an immense exposure to non-conspecific faces over dec-
ades of years, but only little exposure to conspecific faces, were tested
on discriminating chimpanzee and human faces10: Young chimpan-
zees (around 10 years of age) showed a clear advantage for chimpan-
zee faces above human faces; however, the advantage turned into a
disadvantage with increasing exposure to human faces and limited
exposure to chimpanzee faces: older chimpanzees (around 30 years
of age) showed an advantage for human above chimpanzee faces. In
other words the sensitivity toward one class of faces in early life
adapted toward another class of faces more strongly exposed to over
decades. These same chimpanzees showed a more pronounced face
inversion effect for the category of expertise12 and a more pronounce
left-chimeric face bias, reflecting more right hemispheric processing,
for the category of expertise11. Hence, tuning a system to two mor-
phologically strongly different face classes seems to be rather chal-

lenging and seems not to occur in biological systems. Indeed,
according to our SCORE approach, neural resources are limited
and thus features have to be updated. This implicates that the rep-
resentation of previously learned faces might change as well when the
current exposure changes dramatically. In other words, discrimina-
tion performance of the own-face class might decrease after an
almost exclusive long-term exposure to other-species faces. This view
is supported by the findings in the captive chimpanzees10–12.

On the other hand, face feature transfer seems likely across human
race classes, as illustrated by33: Caucasian participants showed a lar-
ger whole-face advantage (in comparison to using individual facial
parts) for own-race as opposed to other-race faces, while Asian par-
ticipants, living in a society predominantly populated by Caucasians,
showed an equal whole-face advantage for both types of faces33.
Accordingly, training with own-race faces improves processing of
other-race faces in patients with developmental prosopagnosia34 as it
does in healthy participants35,36. Hence, with increasing amount of
experience with the other-race class, the own-race advantage
decreases37,38, however, does not flip over into the other-race advant-
age, possible pointing to an additional strong priming component in
early years of life.

Our findings for the own-race advantage are generally in accord-
ance with the perceptual expertise hypothesis: The more exposure
with faces of different races, the more familiar the system becomes
with different races and the more the own-race advantage
diminishes39–43. However, since the own-race and own-species
advantages seem to be based on a morphological basis, as previously
shown for races44, and morphological species differences are gen-
erally larger, it is questionable whether experimentally the own-spe-
cies advantage diminishes with increasing experience. According
to10, the face perception system competes for one of the two face
classes. Importantly, in this latter case, the exposure to the own-face
class was extremely limited, potentially supporting a complete cross-
over effect from the conspecific to the heterospecific face class.

The own-race advantage (other-race effect) has been well-estab-
lished in the literature and appears very consistent. Aside from this
effect, there is a somehow paradoxical finding that, when categor-
izing faces by the race, other-race faces show an advantage45,46. This
effect has been demonstrated mainly in measuring response laten-
cies. It has to be noted that in order to discriminate faces of a specific
race or species, the system relies on identity-specific information; in
other words, the system solves the task at the subordinate-level of
categorization. To tell whether a face belongs to one race/species or to
another, requires race/species-specific information, and hence, oper-
ates at the basic-level of categorization. To address the above-
described mirror effect, the model needs to be interpreted from the
basic-level point of view: We define a categorical decision as the
product of a comparison with representational examples of that face
class in the Fisher-space. If we change the ratio of own- and other-
race/species faces in favor of other-race/species faces (i.e. more other-
race/species faces), then the more subtle differences in the other-rate/
species faces will be coded for and thus the representational space
enlarges. The increased dissimilarity between representational exam-
ples of the category likely results in an increase of difficulty to make a
categorical decision due to, for example, an increase of the search
area, while in naı̈ve system (tuned to one face class only, with small
sample size of other-race/species faces) the small search area with
only a few other-race/species faces is more distinctive. Hence, with
only a few representations of other-race/species faces, the variance
among these samples is rather small, while with increasing numbers
the variance increases. We here showed that, indeed, the distances
between representational examples increasingly changes as a func-
tion of relative number of other-race/species faces represented in the
Fisher-space. Indirectly, the distances reflect the processing speed for
a categorical decision: the larger the representational space of a face
class, the longer it takes to determine that a face belongs to that class.
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This assumption is in accordance with face space models by
Valentine47.

Together, feature-based approaches, using PCA-features19,20 and
LFD-representations, as proposed here, are used to explain the own-
race and own-species advantages by supervised classification meth-
ods. In Wallis48, the question about biological relevance has been
raised of implementing a layer of supervised training in the neural
network model that forces the system to focus on one face class49. At
the other end, an entirely unsupervised, self-organizing system has
been proposed, producing an effect similar to own-race advantage
and, interestingly, showed an interplay of the own-race advantage
and the degree of holistic processing48. Unfortunately, this model
uses abstract features, rather than features extracted from facial mod-
els or pictures. Here, we chose to extract facial features using topo-
logical methods and represented them in a LFD space, conceptually
describing the outcome of a self-organized process as mentioned
above. We acknowledge that the practical implementation of feature
extraction is somewhat arbitrary, especially the generation of profile
vectors, and is not without loss of information. We implemented
such a processing step to enhance the processing efficacy.
However, the main results should be robust to the changes in the
face features extraction method, as long as the faces features are rich
enough to discriminate faces of all classes. Conceptually, with the
features extraction step, the model therefore gains biological rel-
evance, as (1) training is equivalent to the exposure history and
not forcefully biased toward one face class, and (2) data samples
are actual facial features extracted from a variety of face classes.
Hence, we position the current work between models with explicit
supervised training and fully self-organized procedures.

In sum, with simple model assumptions we were able to simulate
both the own-race19 and the own-species advantages. We found that
experience (training) with one or the other class is the crucial factor;
hence the learning history builds the face feature space required for
successful discrimination of faces most exposed to.

Methods
We used 66 photographs of 22 chimpanzees and 54 photographs of 18 humans. We
used three viewpoints (approximately 0, 10 and 20 degrees) (face database 1). In
addition, we rendered images from 3-D reconstructions of faces22,50, consisting of
faces of 60 Caucasians and 60 Asians from three viewpoints each (210, 10 and 20
degrees). These face images were taken from the face database of the Max Planck
Institute for Biological Cybernetics (face database 2).

Facial feature extraction. We implemented facial feature extraction according to21,
making use of the topological features of faces to localize eyes, nose and mouth. With
the image taken as surface and values on the z-axis as image intensity, eyes, nose and
mouth are singularities in the image, forming valleys and peaks on the luminance
surface. The topological features for each face image were computed after luminance
histogram equalization across images and averaged horizontally to reduce the size of
the feature vector. Horizontally averaging was done to reduce the size of the feature
vector and was possible because faces in our database were of the same size and
aligned to the image frame. However, the exact method for reducing dimensionality
of the features should not affect our main results.

Training procedure. In general, we used 85% randomly selected face images for
training and the rest for testing. After feature extraction, each image was represented
by its feature vector. As described in the main text, we varied the amount of images
from different species/races in the train set to model different exposure ratios. The
‘‘training’’ here corresponded to calculating the Linear Fisher Discriminant [LFD]
directions, using the method described by24. In brief, the LFD calculates the directions
in the feature space, which minimize the variance (in feature space) between faces of
the same individual and simultaneously maximize the variance between faces of
different individuals. In this sense, if projecting the feature vectors on the principle
LFD direction, faces from the same individual group as close together as linearly
possible, while other individuals’ faces are as far apart as linearly possible. Thus, faces
from different individuals tend to be well separated. Finding the correct LFD
projection corresponds to a simple implementation of the face processing system that
optimizes its features to the exposure (experience) to best recognize a known
individual. To reduce the dimensions of the face features (in relation to the limited
amount of samples), we pre-processed the face features further with a principle
component analysis and keeping the first 20 components (as suggested in24). After
calculating the first few LFD dimensions (we vary the number of selected LFD
components in the figures), we projected the test data on these LFD components

(solely derived from the train set) and subsequently access the discrimination
performance of identifying faces from the same individual in a forced choice task.

Testing procedure. We evaluated the discrimination performance in a matching-to-
sample fashion, taking one face stimulus (A1) from the test set and comparing the
distances in the space of the LFD projections (see above) to another individual’s face
(B1) and to another face exemplar belonging to the same individual (A2). The picture
having the shorter distance was deemed as the same individual. This choice was
either correct or wrong, and the performance of the percentage of correct detections
could be evaluated. The test set was held separate and not used for training. The
training and testing procedure was repeated 100 times and average performances are
reported. We varied the face group ratio in the train set from 0 to 100% as well as the
number of LFD components being taken into account for discrimination. The
accuracy of the system depends on how well the test separates the two groups (same
versus other). Accuracy was measured as the area under the ROC (Receiver operating
characteristic) curve, with 1 being a perfect test and .5 being a worthless test.

Testing the Mirror Effect. The mean Euclidean distances among samples of training
and testing faces were quantified in the Fisher-space for each point in the training
ratio and for each size of feature space. The data was normalized to the overall
variance of the classes. We report the relative changes of distances among the samples.
We repeated this procedure 100 times for randomized train and test samples. With
one-sample t-tests, significance was tested for each position on the training ratio
(x-axis) and the size of feature space (y-axis) by comparing the 100 data samples to the
baseline (0% training ratio at given size of feature space).

General statistical testing. Dependent variables are the location of samples in the
PCA space, the Linear Fisher Discriminant (LFD) space and the area under the ROC
curve. We used two-way analysis of variance (ANOVA), one- and two-sampled
t-tests with unpooled variance estimate. To determine the similarity of the
distribution resulting from the 1st PCs, we calculated the kernel mean discrepancy
using bootstrapping (as described in23), comparing whether two samples can be
considered originating from the same underlying high-dimensional probability
distribution or not. Note that this test does not make any assumptions on the shape of
the distribution.

Additional note. We used face database 1 for the species comparison (Figure 2A–C)
and face database 2 for the race comparison (Figure 2D–F). We used the chimpanzee
faces of face database 1 and the Asian and Caucasian faces of face database 2 for the
cross-validation (Figure 2G).
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