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Simple Summary: Hepatocellular carcinoma (HCC) is one of the mostly lethal cancers, with a
prognosis which is still very poor. Novel reliable biomarkers, useful in early diagnosis and prognosis
assessment, are urgently needed in order to improve HCC patient survival. In recent years, several
studies focused on liquid biopsy, the molecular analysis of circulating cancer by-products, as a source
of novel biomarkers. Extracellular vesicles, circulating tumor cells, cell-free DNA and non-coding
RNA provided very interesting results in a large number of studies published recently, but none of
them has entered the clinical routine. In this review we will summarize the available evidence on
these novel circulating biomarkers as diagnostic, prognostic, and predictive tools. Liquid biopsy
proved to be a very useful source of biomarkers, some of which will probably be applied soon in
clinical practice.

Abstract: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death
worldwide. Diagnostic, prognostic, and predictive biomarkers are urgently needed in order to
improve patient survival. Indeed, the most widely used biomarkers, such as alpha-fetoprotein
(AFP), have limited accuracy as both diagnostic and prognostic tests. Liver biopsy provides an
insight on the biology of the tumor, but it is an invasive procedure, not routinely used, and not
representative of the whole neoplasia due to the demonstrated intra-tumoral heterogeneity. In recent
years, liquid biopsy, defined as the molecular analysis of cancer by-products, released by the tumor
in the bloodstream, emerged as an appealing source of new biomarkers. Several studies focused
on evaluating extracellular vesicles, circulating tumor cells, cell-free DNA and non-coding RNA as
novel reliable biomarkers. In this review, we aimed to provide a comprehensive overview on the
most relevant available evidence on novel circulating biomarkers for early diagnosis, prognostic
stratification, and therapeutic monitoring. Liquid biopsy seems to be a very promising instrument
and, in the near future, some of these new non-invasive tools will probably change the clinical
management of HCC patients.

Keywords: hepatocellular carcinoma; liquid biopsy; biomarkers; diagnosis; prognosis; extracellular
vesicles; circulating nucleic acids; circulating tumor cells

1. Introduction

According to the International Agency for Research on Cancer, in 2018 primary liver
tumors ranked as the sixth most common cancer and the fourth leading cause of cancer-
related death worldwide [1]. These figures are predicted to increase in the coming decades
and it is estimated that more than 1 million people will die due to liver cancer in 2030 [2].
Hepatocellular carcinoma (HCC) account for 85% of all primary hepatic malignancies. The
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majority of HCC cases occur in patients with underlying liver diseases, mainly due to
chronic hepatitis B or C virus (HBV and HCV) infections, alcohol abuse, aflatoxin exposure,
or non-alcoholic liver disease (NAFLD) [3]. Despite the recommendation of all available
guidelines to apply a regular surveillance in patients at risk, HCC is often diagnosed in
advanced stages when curative therapies are no longer feasible. As a consequence, despite
the remarkable progresses in therapy, the prognosis of HCC patients remains dismal, with
a 5-years survival rate ranging around 20% [4].

Currently, according to guidelines, liver biopsy has a limited role in the management
of HCC patients. This is due to the fact that, in patients with liver cirrhosis, a non-invasive
diagnosis in the presence of typical imaging features (hypervascularity in the arterial phase
and wash-out in portal venous and/or delayed phases) has high specificity. On the other
hand, biopsy is indicated for patients without cirrhosis or for cirrhotics with lesions not
showing the peculiar and specific radiologic appearance [5]. In most cases liver biopsy,
which is associated with a small but still present risk of bleeding and tumor seeding, is
unnecessary. Nevertheless, the debate on a more widespread use of liver biopsy is still
open [6], with the expansion in recent years of therapeutic possibilities and in consideration
of the identification of molecular markers of susceptibility to available systemic treatments,
in an attempt of tailoring first and subsequent lines of therapy [7]. However, a high degree
of spatial and temporal heterogeneity is present in HCC. Some somatic mutations occur
early during tumorigenesis and propagate in many clones, whereas later mutations are
present only in some clones (spatial heterogeneity) [8]. Moreover, different therapies select
rare mutants and treatment-resistant clones, leading to the development of several genetic
backgrounds at different times (temporal heterogeneity) [9,10]. Therefore, a single biopsy
is unlikely to represent the entire biology of the tumor, thus limiting the utility of tissue
sampling, beyond confirming the diagnosis [11].

The European Association for the Study of the Liver (EASL) recognizes as an urgent
unmet need the identification of reliable biomarkers, for risk stratification and early HCC
detection, prediction of prognosis, and of response to therapy (in particular to systemic
treatments) [5]. Despite its unsatisfactory performance in early diagnosis and prognos-
tication [12–16], alpha-fetoprotein (AFP) is still the most widely used biomarker in the
clinical management of patients with HCC. Other protein biomarkers, such as des-λ-
carboxyprothrombin [17], glypican-3 [18], osteopontin [19], Golgi protein-73 [20], and
squamous cell carcinoma antigen [21–23] have been evaluated, with erratic results. In the
spectrum of circulating molecules derived from the primary tumor (“HCC circulome”),
other biomarkers emerged as appealing tools in overcoming the limitations of conventional
biomarkers and of tissue biopsy in diagnosis and prognosis. Liquid biopsy is defined as the
molecular analysis of circulating cancer by-products, such as extracellular vesicles (EVs),
circulating tumor cells (CTCs), and circulating tumor nucleic acids (Figure 1). In recent
years, a large evidence has been published, paving the way for the use of liquid biopsy as a
source of reliable biomarkers for early tumor detection, prognostic stratification, disease
monitoring and evaluation of response to treatment. Considering that these non-invasive
biomarkers will probably revolutionize the management of patients with HCC in the
near future, with this review we aimed to provide a comprehensive overview of the most
relevant available data on the role of liquid biopsy in HCC.
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Figure 1. Liquid biopsy is the molecular analysis of cancer by-products released in the bloodstream. Novel potential bi-
omarkers are represented by circulating nucleic acids, extracellular vesicles (EVs), and circulating tumor cells (CTCs). 
(Adapted from Labgaa et al. [24]). 
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grouped in “cell-free DNA” (cfDNA) and “cell-free RNA” (cfRNA). cfDNA can be found 
in circulation as short nucleosome-associated fragments or long fragments incapsulated 
in EVs, while cfRNA is usually detected in association with proteins, proteolipid com-
plexes, and EVs due to its relative instability [25]. 

The analysis of circulating nucleic acids represents a very promising liquid biopsy 
strategy for getting information on liver tumors. Beyond the utility in risk prediction, early 
detection, and monitoring treatment response, cfDNA and cfRNA are optimal candidates 
for tumor molecular profiling. Unlike tumor biopsy, their ability to mirror tumor hetero-
geneity represents a powerful tool to identify point mutations, aberrant methylation and 
chromosomal aberrations conferring drug resistance and guiding molecular target ther-
apy [26]. 

2.1. Cell-Free DNA 
The original discovery of cfDNA from sera of healthy individuals dates back to 1948. 

Following the demonstration of high serum concentration of cfDNA in patients with gas-
trointestinal cancers [27], its potential role as tumor marker emerged when KRAS muta-
tions were identified in cfDNA from patients with colorectal and pancreatic cancers [28–
30]. From this starting point, a large number of studies has been conducted focusing on 
the utility of cfDNA analysis also in HCC (Table 1). 

2.1.1. Cell-Free DNA Amount and Integrity 
The easiest way to use circulating DNA as a biomarker is through the evaluation of 

its total amount, since a high level of cfDNA in blood reflect cancer growth and tumor 
burden [31–38]. In 2006, Iizuka et al. [31] demonstrated that cfDNA was able to identify 
HCC in a cohort of HCV positive patients with a sensitivity of 69.2% and a specificity of 
93.3% (AUC = 0.90), both higher than those of AFP. These early results are in line with 
previous data from our research group: the total amount of cfDNA achieved a sensitivity 
of 91%, a specificity of 43%, and an AUC of 0.69 in discriminating HCC from CLD and 
cirrhotic patients [34]. Since cfDNA is not specific for liver cancer, several studies reported 

Figure 1. Liquid biopsy is the molecular analysis of cancer by-products released in the bloodstream. Novel potential
biomarkers are represented by circulating nucleic acids, extracellular vesicles (EVs), and circulating tumor cells (CTCs).
(Adapted from Labgaa et al. [24]).

2. Circulating Nucleic Acids

Circulating nucleic acids, released in the bloodstream through active secretion or
following apoptosis, necrosis or lysis of tumor cells and circulating tumor cells, can be
subgrouped in “cell-free DNA” (cfDNA) and “cell-free RNA” (cfRNA). cfDNA can be found
in circulation as short nucleosome-associated fragments or long fragments incapsulated in
EVs, while cfRNA is usually detected in association with proteins, proteolipid complexes,
and EVs due to its relative instability [25].

The analysis of circulating nucleic acids represents a very promising liquid biopsy
strategy for getting information on liver tumors. Beyond the utility in risk prediction,
early detection, and monitoring treatment response, cfDNA and cfRNA are optimal can-
didates for tumor molecular profiling. Unlike tumor biopsy, their ability to mirror tumor
heterogeneity represents a powerful tool to identify point mutations, aberrant methylation
and chromosomal aberrations conferring drug resistance and guiding molecular target
therapy [26].

2.1. Cell-Free DNA

The original discovery of cfDNA from sera of healthy individuals dates back to 1948.
Following the demonstration of high serum concentration of cfDNA in patients with gas-
trointestinal cancers [27], its potential role as tumor marker emerged when KRAS mutations
were identified in cfDNA from patients with colorectal and pancreatic cancers [28–30].
From this starting point, a large number of studies has been conducted focusing on the
utility of cfDNA analysis also in HCC (Table 1).

2.1.1. Cell-Free DNA Amount and Integrity

The easiest way to use circulating DNA as a biomarker is through the evaluation of
its total amount, since a high level of cfDNA in blood reflect cancer growth and tumor
burden [31–38]. In 2006, Iizuka et al. [31] demonstrated that cfDNA was able to identify
HCC in a cohort of HCV positive patients with a sensitivity of 69.2% and a specificity
of 93.3% (AUC = 0.90), both higher than those of AFP. These early results are in line
with previous data from our research group: the total amount of cfDNA achieved a
sensitivity of 91%, a specificity of 43%, and an AUC of 0.69 in discriminating HCC from
CLD and cirrhotic patients [34]. Since cfDNA is not specific for liver cancer, several studies
reported an increased diagnostic accuracy when its determination was combined with
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other biomarkers (i.e., AFP) [32,33,38]. cfDNA have an average size of ~180 base pairs
and its fragmentation is a nonrandom process, since liver cfDNA has been found to end
at specific genomic coordinates [39]. Interestingly, shorter cfDNA was found in HCC
patients compared to non-cancer patients, probably reflecting that not only apoptosis,
but also necrosis of tumor cells contributes to the pool of circulating DNA [40,41]. Some
researchers demonstrated that the evaluation of length and integrity of cfDNA achieved a
diagnostic accuracy comparable to that of AFP [36,42]. The measure of cfDNA total amount
or integrity may also be useful as a prognostic biomarker. In their seminal study, Tokuhisa
et al. [43] demonstrated that higher levels of cfDNA after liver resection in patients with
HCV-related HCC were associated with an increased risk of metastases (adjusted hazard
ratio [HR] = 4.5, 95% CI 1.3–14.9) and poorer overall survival (OS) (adjusted HR = 3.4,
95% CI 1.5–7.6). Several other subsequent studies confirmed that patients with high levels
of cfDNA had a worse prognosis after different treatments (liver transplantation, liver
resection and sorafenib) [34,44,45]. Moreover, a poorer OS was also demonstrated in
patients with decreased cfDNA integrity (adjusted HR = 1.86, 95% CI 1.20–2.88) in the
study by El-Shazly et al. [36].

When dealing with cfDNA amount as a cancer biomarker, it should be noted that
the circulating DNA does not derive only from tumor cells. More precisely, the fraction
of cfDNA directly attributable to the presence of cancer is named circulating tumor DNA
(ctDNA) [46]. Although patients with cancer have higher cfDNA levels compared to
healthy subjects, ctDNA represent a small proportion of the total amount and its level
depend on disease burden, stage, cellular turnover and treatment response [47]. Moreover,
high quantities of cfDNA are not cancer specific, being also elevated in inflammatory
and autoimmune diseases (cirrhosis, chronic hepatitis, systemic lupus erythematous, and
rheumatoid arthritis), in pregnancy, and after physical exercise [27,47]. This low specificity
may scale back the role of whole cfDNA quantification as diagnostic biomarkers. Neverthe-
less, a remarkable study demonstrated that the cell and tissue of origin of cfDNA could be
inferred by the analysis of the position of nucleosomes [48]. Snyder et al. demonstrated that
since nucleosomes, the basic unit of chromatin, are placed in different positions depending
on the cell type, nucleosome footprint in cfDNA could be useful to determine the relative
contribution of cancer cells to the total circulating DNA pool [48].

2.1.2. Mutations

The majority of studies on cfDNA focused on mutational analysis and epigenetic
characteristics, such as its methylation signature. HCC, when compared to other solid
tumors, has a lower mutational burden [49]. The main driver somatic mutations affect
telomere integrity (TERT promoter, 44%), cell cycle (TP53, 31%), and WNT signaling
(CTNNB1, 27%) [50]. Less commonly AXIN1, ARID1A, ARID2, BAP1, RB1, and KEAP1
are mutated (5–10%) [50]. In addition, genetic alterations may be present, including
broad chromosome gains and losses with high-level DNA amplifications of chromosomes
6p21 and 11q13, loci corresponding to VEGFA and CCND1/FGF19, respectively [49]. A
relevant proportion of the mutations found in HCC biopsies are also detectable in cfDNA
(43–83%) [45,51]. According to Howell et al. [52], all the mutations found in the plasma
cfDNA matched with tissue mutations, while only 71% of mutations on tumor tissue
were found in circulating DNA. When dealing with mutational analysis of cfDNA, we
must keep in mind that mutations are more easily identified in advanced disease. In
a recent study, at least one mutation in cfDNA was found in almost all (6/7) patients
with a tumor ≥5 cm or with metastases, while only 9% of mutations were detected in
the cfDNA of patients with smaller, not metastatic HCC [53]. Others reported that, in
48 patients, at least one type of mutation among TP53 (c.747G > T), CTNNB1 (c.121A > G,
c.133T > C), or TERT (c.1-124C > T) was documented in 56.3% of patients; only 22.2% of
patients had matched mutations in HCC tissue, while none of these mutations were found
in non-tumoral liver tissue or in peripheral mononuclear cells [54]. In parallel to what
was found in HCC tissue, TP53 is the most commonly mutated gene in cfDNA [55]. In
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particular, TP53 c.747G > T (p.R249S) mutation appears to be highly specific, since Cohen
et al. [56] found it in approximately 20% of HCC blood samples and, conversely, in only
3–4% of pancreatic and stomach cancer samples and in none of more than 800 healthy
controls. Although confirming a very high specificity (100%), another study showed a
very poor sensitivity (7.6%) for the analysis of TP53 R249S mutation alone in cfDNA [57].
In order to overcome this limitation, the accuracy of TP53 mutation in association with
other mutations in a diagnostic panel was evaluated [58–60]. Qu et al. demonstrated that a
score including several cfDNA mutations (TP53, TERT, CTNNB1 and AXIN1, and HBV
integrations), in combination with protein biomarkers (AFP and DCP), age and gender
efficiently identified early-stage HCC in a high-risk HBsAg-seropositive population [60].
Sensitivity and specificity, 85% and 93% in the training cohort, were even better in the
validation cohort (100% and 94%, respectively) [60]. Moreover, the positivity of TP53 R249S
mutation in cfDNA proved to be useful also as prognostic biomarker in a large study
involving 895 HCC patients, being a predictor of poorer OS and shorter progression-free
survival (PFS) in patients with or without liver resection [61].

The human telomerase reverse transcriptase (TERT) gene encodes for the catalytic
subunit of telomerase, which acts together with multiple molecules to maintain telomere
homeostasis and chromosomal integrity [62]. The mutations found in TERT promoter lead
to TERT reactivation and cell immortalization. Male patients with HCV and/or alcoholic
related cirrhosis have a higher prevalence of TERT promoter mutations both in tumor
tissue and in cfDNA [63], providing the rationale for TERT promoter mutations analysis
in cfDNA for early detection in some populations at risk of developing HCC. In addition,
presence of TERT promoter mutation in cfDNA has been associated with poor prognosis
after different treatments [58,63–65].

2.1.3. Methylation/Epigenetics

Changes in DNA methylation, particularly in the CpG islands of tumor suppres-
sor genes, have been demonstrated to be pivotal in HCC development [66]. Analysis
of the methylation pattern of cfDNA may have a value as diagnostic and prognostic
biomarker, and might reveal information about tumor size, risk of metastatic spread, and
recurrence [67]. Alterations in DNA methylation patterns in HCC tumor tissue after liver
resection have been described for many genes. In particular, hypermethylation was found
in p15, CDKN2A (encoding for p16), glutathione S-transferase (GSTP1), Ras association do-
main family 1A (RASSF1A), APC, SOCS1, SOCS3, TIMP3, blood vessel epicardial substance
(BVES), and Homeobox A9 (HOXA9) genes, while hypomethylation in long interspersed
element-1 (LINE-1) repetitive sequence [67–73]. However, only a proportion of cfDNA
carried the same methylation patterns: hypermethylation of GSTP1 and RASSF1A was
found in 50% and in 70–93% of cases respectively, while hypomethylation of LINE-1 in ap-
proximately 67% of cases [71,72]. Nevertheless, a large number of studies investigated the
diagnostic accuracy of the methylation patterns in several different genes, demonstrating a
diagnostic accuracy comparable or even superior to that of AFP. A very high diagnostic
accuracy could be obtained with methylation scores, which combine methylation patterns
in different genes. Wen et al. [74] demonstrated that a methylation score derived from the
analysis of more than 10 genes achieves a sensitivity of 94% and a specificity of 89%. Lu
et al. [75] obtained an AUC of 0.87 analyzing the methylation of APC, COX2, RASSF1A,
and miR-203, compared to an AUC of 0.56 for AFP. In another study, the methylation
of RASSF1A, BVES, and HOXA9 achieved a 73.5% sensitivity and a 91.1%, specificity,
with an AUC of 0.83 [70]. A very high diagnostic accuracy in distinguish HCC patients
from cirrhotics (sensitivity/specificity 95%/86%, AUC = 0.93) was reported by Kiesel et al.
for a score composed by the analysis of HOXA1, EMX1, ECE1, AK055957, PFKP, and
CLEC11A methylation in a discovery, phase I pilot and phase II clinical validation cohort
study [76]. Cai et al. developed and validated a non-invasive diagnostic model based
on Genome-wide mapping of 5-hydroxymethylcytosines in cfDNA achieving an AUC
of 0.85 in distinguish early HCC from chronic liver disease (CLD), thus outperforming
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AFP (AUC = 0.69) [77]. The methylation analysis of cfDNA demonstrated to be useful
also in predicting prognosis. RASSF1A methylation was positively correlated with tumor
size, while LINE-1 hypomethylation was associated with HCC progression and patients’
survival. The combination of these two genes methylation status was able to predict tumor
recurrence after liver resection [71]. The role of LINE-1 hypomethylation in predicting poor
prognosis was also confirmed by other researchers [78,79].

In a very interesting recent study including 1098 HCC patients and 835 controls, the
authors constructed a diagnostic model with 10 methylation markers in cfDNA, achieving
a sensitivity of 85.7% and a specificity of 94.3% in the training cohort (560 normal samples
and 715 HCC) [80]. In the validation cohort (275 normal samples and 383 HCC) the model
demonstrated a sensitivity of 83.3% and a specificity of 90.5%, thereby differentiating HCC
patients from normal controls with an AUC of 0.966 [80]. In the same study, the prognostic
score, which was based on the evaluation of the methylation profile of 8 different genes,
was associated with higher mortality both in the training (HR = 2.41, 95% CI 1.90–3.03) and
in the validation cohort (HR = 1.55, 95% CI 1.25–1.92) [80].

In the chapter of epigenetic biomarkers, nucleosomes and extracellular histones are
also emerging. Nucleosomes, beyond being fundamental for genome compaction in the
nucleus, may regulate genes expression through their composition and post-translational
modifications [81]. Their circulating levels are increased in stroke, trauma, and sepsis [82].
In addition, circulating nucleosome demonstrated a remarkable diagnostic and prognostic
performance in several human malignancies, including pancreatic [83], lung [84], colorec-
tal [85], and breast cancers [86]. Moreover, circulating histones have been demonstrated
to be key mediators of lethal sepsis [87] and liver inflammatory injury [88]. Some stud-
ies demonstrated an involvement of macro histone variants (in particular macroH2A1)
in modulating HCC progression and stem cell differentiation [89,90]. There is still poor
evidence about circulating nucleosomes and cell-free histones/histone complexes as liquid
biopsy biomarkers in HCC. Nevertheless, some interesting results have been achieved in
obesity and metabolic fatty liver disease (MAFLD), both risk factors for HCC development.
A strong correlation between fatty liver index (a predictor of MAFLD based on BMI, waist
circumference, triglycerides, and GGT) and high levels of circulating nucleosomes have
been found in obese patients with MAFLD [91]. Moreover, a circulating histone signa-
ture (depletion of histone variants macroH2A1.1 and macroH2A1.2, individually or in
complex with H2B) identified the severity of steatosis in subjects with lean MAFLD [92].
These encouraging results, together with the simple methodology of the determination
(ELISA), could pave the way to the evaluation of circulating nucleosomes and cell-free
histones/histone complexes as diagnostic and prognostic biomarkers in HCC.

Overall, a large body of evidence has been produced supporting the great potential of
cfDNA as diagnostic and prognostic biomarker in HCC. However, it should be considered
that current data largely derive from proof-of-concept retrospective studies, lacking ade-
quate controls (not always including patients at risk of developing HCC, i.e., cirrhotics) and
including only a minority of cases with early-stage HCC, which would be candidates for cu-
rative treatment options. Moreover, an additional concern regards the lack of standardized
protocols for pre-analytical sample preparation, purification, and analysis. Although the
use of cfDNA as a liquid biopsy currently presents several limitations in the early detection
of HCC, due to the very low amount of cfDNA in the early stages, these approaches may
probably dramatically change HCC surveillance. Indeed, a study published more than
10 years ago demonstrated that aberrant methylation of cfDNA fragments was detected up
to 9 years before the diagnosis achieved with standard methodology [93].
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Table 1. Studies on cell-free DNA (cfDNA) as biomarker in HCC patients.

Diagnosis

Study cfDNA Property Number of Patients Comparator Main Findings (Sensitivity/Specificity, AUC)

cfDNA Amount or Integrity

Iizuka et al., 2006 [31] Total amount
52 HCC

30 CLD (HCV)
16 healthy subjects

AFP (cut-off 10.2 ng/mL)
DCP (cut-off 29.5 ng/mL)

AFP: 69.2%/72.7% (0.79)
DCP: 73.1%/75% (0.73)

cfDNA: 69.2%/93.3% (0.90); p < 0.05 vs. both AFP and DCP

Ren et al., 2006 [35] Total amount and chromosome 8p
allelic imbalance (D8S258 or D8S264)

79 HCC
20 LC

20 healthy subjects
AFP (cut-off 20 ng/mL)

Total amount of cfDNA: HCC vs. healthy subjects:
52%/95%; 0.80

Allelic imbalance at D8S258 in the plasma of 62% of
patients

Allelic imbalance at D8S264 in the plasma of 60% of
patients

High cfDNA concentration + allelic imbalance abnormal in
8/24 patients with low AFP

El-Shazly et al., 2010 [36] Total amount and integrity
25 HCV-related HCC

25 CLD (HCV)
15 healthy subjects

AFP (cut-off 20 ng/mL)
HCC vs. CLD

cfDNA amount: 72%/68%, 0.57
cfDNA integrity: 88%/92%, 0.75

Huang et al., 2012 [32] Total amount
72 HCC

37 LC or CLD
41 healthy subjects

NR

HCC vs. healthy subjects: 90.3%/90.2%; 0.949
HCC vs. CLD: 59.7%/78.4%; 0.705

cfDNA + AFP (HCC vs. healthy subjects): 95.1%/94.4%;
0.974

Piciocchi et al., 2013 [34] Total amount
66 HCC
35 LC

41 CLD (HCV)
AFP (cut-off 14 ng/mL)

HCC vs. LC+CLD:
cfDNA: 91%/43%; 0.69

AFP: 45%/83%; 0.64

Chen et al., 2013 [33] Total amount 39 HCC
45 healthy subjects NR

ctDNA: 56.4%/95.6%; 0.742
AFP: 53.8%/91.1%

cfDNA + AFP: 71.8%/86.7% (p < 0.05 vs. ctDNA + AFP +
AFU group)

cfDNA + AFP + AFU: 89.7%/64.4% (p < 0.05 vs. ctDNA +
AFP)

Huang et al., 2016 [42] ctDNA integrity
53 HCC

15 benign liver diseases
22 healthy subjects

AFP (cut-off 20 ng/mL)
cfDNA integrity: 43.4%/100%; 0.705

AFP: 50.9%/100%; 0.605
cfDNA integrity + AFP: 79.2%/100%

Marchio et al., 2018 [37] Total amount, TP53 R249S mutation by
digital droplet PCR

149 HCC
164 CLD

49 healthy
AFP (cut-off 10 ng/mL)

cfDNA amount: AUC = 0.585
AFP: AUC = 0.805

Proportion of droplets with TP53 R249S: AUC = 0.827 (p >
0.05 vs. AFP)

Yan et al., 2018 [38] Total amount 24 HCC
62 CLD (HBV) AFP (cut-off 80.5 ng/mL)

cfDNA amount: 62.5%/93.6%; 0.82
AFP: 47.8%/93.2%; 0.67

cfDNA + AFP + age: 87%/100%; 0.98
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Table 1. Cont.

Diagnosis

Study cfDNA Property Number of Patients Comparator Main Findings (Sensitivity/Specificity, AUC)

Mutations

Igetei et al., 2008 [57] TP53 R249S mutation 85 HCC
77 healthy subjects AFP (cut-off 400 ng/mL)

Sensitivity/specificity: 7.6%/100%
Patients with HCC and AFP measurements: 16.7% overall,

20% without increased AFP (p > 0.05)

Xu et al., 2015 [94] Copy number variation: gain in 1q, 7q
and 19q; loss in 1p, 9q and 14q

31 HCC
8 LC or CLD AFP (cut-off 10 ng/mL)

Copy number variation score:
All HCCs: 83.9%/100% (AUC = 0.95)

HCCs ≤ 5 cm: 68.8%/100%
Low AFP: 7/10 positive

Liao et al., 2016 [58] TERT, CTNNB1 or TP53 mutations 41 HCC
10 healthy subjects AFP (cut-off 20 ng/mL)

Sensitivity 23% and 13% in high vs. low AFP group,
respectively (p = 0.70)

Specificity 90%

An et al., 2019 [95] ctDNA mutations (139 somatic
mutations)

26 HCC
10 LC

10 CLD
NR

cfDNA: AUC = 0.917
Mutation number: AUC = 0.876

cfDNA (cfDNA concentration times variant allele
frequency): AUC = 0.871

Maximal variant allele frequency: AUC = 0.802
AFP: AUC = 0.783

Cai et al., 2019 [96] Fraction of single nucleotide or copy
number variants 34 HCC NR

cfDNA: sensitivity, 100%
AFP: sensitivity, 56%

AFP-L3: sensitivity, 50%
DCP: sensitivity, 82%

Qu et al., 2019 [60]

HCCscreen: mutations in ctDNA (HVB
integrations, TP53, CTNNB1, AXIN1
and TERT promoter), AFP, DCP, age

and sex

Training: 65 HCC, 70 CLD
Validation: 24 HCC, 307 CLD None

Training cohort (AFP or US positive suspected
individuals): 85%/93%, 0.928

Validation cohort (AFP and US negative individuals):
24/331 patients tested positive and eventually 4/24

develop HCC. None of the negative patients develop HCC.
Sensitivity/specificity: 100%/94%

Xiong et al., 2019 [59]
Mutations in TP53, ARID1A, FLCN,

SETD2, PTEN, BUB1B, CTNNB1, JAK1,
AXIN1, EPS15 or CACNA2D4

37 HCC
6 healthy subjects AFP (cut-off 400 ng/mL)

cfDNA mutations overall: 65%/100%, 0.92
AFP negative: 73%/100%, 0.96
AFP positive: 53%/100%, 0.86

Methylation/epigenetics

Chu et al., 2004 [97] p16 methylation 46 HCC
23 LC AFP (cut-off 20 ng/mL) Overall cohort (sensitivity/specificity): 48%/83%

Normal AFP (sensitivity): 44%

Yeo et al., 2005 [98] RASSF1A methylation 40 HCC
10 healthy subjects AFP (cut-off 20 ng/mL) Overall (sensitivity/specificity): 43%/100%

Low AFP (sensitivity): 36%
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Chan et al., 2008 [99] RASSF1A methylation
63 HCC

63 CLD (HBV)
50 healthy subjects

AFP (cut-off 20 ng/mL)
RASSF1A methylation detected in:

93% HCC (50% among normal AFP); 58% CLD; 8% healthy
subjects

Iizuka et al., 2011 [100] SPINT2 and SRD5A2 methylation
Training cohort: 108 HCC, 56

CLD
Validation cohort:112 HCC, 146

CLD

AFP (cut-off 20 ng/mL)
DCP (cut-off 40 mAU/mL)

Methylation of SPINT2 and SRD5A2 + AFP + DCP
(sensitivity/specificity): 82.4%/82.1% (training cohort);

73.2%/87.7% (validation cohort)
AUC = 0.72 for ≥5 cm HCC and 0.89 for >5 cm HCC

AFP alone (sensitivity/specificity): 57.4%/85.7% (training
cohort)

DCP alone (sensitivity/specificity): 60.2%/89.3% (training
cohort)

Sun et al., 2013 [101] TFPI2 methylation
43 HCC

24 CLD (HBV)
26 healthy subjects

AFP (cut-off 400 µg/L)

TFPI2 methylation (sensitivity/specificity):
HCC vs. healthy: 46.5%/80.8%

HCC vs. CLD: 46.5%/83.3%
AFP alone (sensitivity): 54%

TFPI2 + AFP (sensitivity): 61%

Han et al., 2014 [102] TGR5 promoter methylation
160 HCC

88 CLD (HBV)
45 healthy subjects

AFP (cut-off 20, 200 and 400
ng/mL)

TGR5 methylation frequency: HCC 48%, CLD 14% and
healthy subjects 4%

HCC vs. CLD (sensitivity/specificity)
TGR5 alone: 48.1%/86.4%

TGR5 methylation + AFP (200 ng/mL): 68.1%/78.4%
AFP (200 ng/mL): 30.6%/92.1%

Huang et al., 2014 [103] INK4A promoter methylation 66 HCC
43 CLD AFP (cut-off 200 ng/mL)

INK4A methylation: sensitivity, 74.2%
AFP: sensitivity, 45.5%

INK4A methylation + AFP: sensitivity, 80.3% (p < 0.05 vs.
AFP)

Ji et al., 2014 [104] MT1M and MT1G methylation
121 HCC

37 CLD (HBV)
31 healthy subjects

AFP (cut-off 20 ng/mL)

MT1M or MT1G methylation:
HCC vs. CLD: 90.0%/81.1%, 0.86

HCC vs. healthy: 90.9%/83.9%, AUC = NR
AFP alone: HCC vs. CLD: 56.0%/62.1%

Kuo et al., 2014 [105] HOXA9 methylation 40 HCC
34 healthy subjects AFP (cut-off 10 ng/mL) HOXA9: 73.3%/97.1%, 0.835

HOXA9 or AFP: 94.6%/97.1%

Li et al., 2014 [106] IGFBP7 promoter methylation
136 HCC

46 CLD (HBV)
35 healthy subjects

AFP (cut-off 20 ng/mL)
IGFBP7: 65%/83%, 0.740

AFP: 57%/52%, 0.618
IGFBP7 + AFP: 85%/41% (p < 0.05 vs. AFP)
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Kanekiyo et al., 2015 [107] RASSF1A, CCND2, CFTR, SPINT2,
SRD5A2 and/or BASP1 methylation 125 HCC (HCV) AFP (cut-off 20 ng/mL)

DCP (cut-off 40 ng/mL)

Serum methylation score:
Positive in 41% high vs. 48% low AFP

Positive in 42% high vs. 46% low DCP (p > 0.05 for both)

Wen et al., 2015 [74]

Methylation score: RGS10, ST8SIA6,
RUNX2, VIM, CACNA1C, TBX2, SOX9

5’end), NEDD4L intron), ALX3,
ZNF683 (3’ end), KCNQ4 (i), ERG,

PTPN18 (intron), SYN2, LINC00682 (3’
end), CPLX1 (intron), FLJ42709, UBD (3’

end), SNX10 (3’ end), TRPS1 (intron)

36 HCC
17 CLD

38 healthy subjects
AFP (cut-off 20 ng/mL)

Two cfDNA methylation scores, either score positive
(sensitivity/specificity):
Training set: 93%/91%

Validation set: 100%/80%
Combined cohort: 94%/89%

Sensitivity 100% in patients with low AFP (n = 10)

Dou et al., 2016 [108] CDH1, DNMT3b or ESR1 promoter
methylation

183 HCC
47 LC

126 CLD (HBV)
50 healthy subjects

NR

Methylation frequency:
HCC: CDH1 31%, DNMT3b 41%, ESR1 31%

CLD: <10% for all 3 genes
Healthy subjects: 0%

HCC vs. CLD
Methylation of any gene (AUC): 0.75; AFP (AUC): 0.63

HCC vs. LC
Methylation of any gene (AUC): 0.73; AFP (AUC): 0.62

Hu et al., 2017 [109] UBE2Q1 hypomethylation
80 HCC
40 LC

40 CLD (HBV)
20 healthy subjects

AFP (cut-off 20, 200 and 400
ng/mL)

UBE2Q1 methylation: 66.3%/57.5%, 0.619
AFP alone: 53.8%/87.5%, 0.668

UBE2Q1 methylation + AFP: 53.8%/87.5%, 0.760

Lu et al., 2017 [75] Methylation score: APC, COX2,
RASSF1A and miR-203

203 HCC
104 CLD

50 healthy subjects
AFP (cut-off 20 ng/mL)

In HBV-related HCC:
Methylation score: 84.1%/83.0%, 0.87

AFP: 50.9%/62.1%, 0.56

Xu et al., 2017 [80]
Methylation score: cg10428836,

cg26668608, cg25754195, cg05205842,
cg11606215, cg24067911, cg18196829,
cg23211949, cg17213048, cg25459300

1098 HCC
835 healthy subjects AFP (cut-off 25 ng/mL)

Training set: 85.7%/94.3%, 0.97
Validation set: 83.3%/90.5%, 0.94

AFP, AUC 0.82 (p < 0.05 vs. cfDNA)

Dong et al., 2017 [70] RASSF1A, APC, BVES, TIMP3, GSTP1,
HOXA9 methylation

98 HCC
75 LC

90 CLD (HBV)
80 healthy subjects

AFP (cut-off 20 ng/mL)

HCC vs. CLD
RASSF1A, BVES and HOXA9 methylation: 73.5%/91.1%,

0.834
RASSF1A, BVES and HOXA9 methylation + AFP:

83.7%/78.9%, 0.852

Oussalah et al., 2018 [110] SEPT9 methylation

Derivation cohort:
51 HCC
135 CLD

Validation cohort:
47 HCC
56 CLD

NR

Derivation cohort:
SEPT9 methylation: 94.1%/84.4%, 0.94

Validation cohort:
SEPT9 methylation: 85.1%/87.9%, 0.93

AFP alone (AUC): 0.85 (p = 0.002 vs. SEPT9 methylation)
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Kisiel et al., 2019 [76] Methylation score: HOXA1, EMX1,
ECE1, AK055957, PFKP, CLEC11A

116 HCC
80 CLD

98 healthy subjects
AFP (cut-off 10 ng/mL)

HCC vs. LC: 95%/86%, AUC 0.93 (no improvement with
addition of AFP)

HCC vs. healthy: 95%/95%
Sensitivity based on cancer stage: 75% (BCLC stage 0), 93%

(A/B), 100% (C/D)

Cai et al., 2019 [77] 5-hmC modifications in ctDNA
1204 HCC

392 LC or CLD
958 healthy subjects

AFP (cut-off 20 ng/mL)

Early-stage HCC vs. CLD (AUC):
5-hmC based score: 0.873 (training cohort) and 0.846

(validation cohort)
AFP: 0.793 (training cohort) and 0.692 (validation cohort)

Prognosis

Study cfDNA Property HCC Patients Stage /Treatment Main Findings

cfDNA Amount/Integrity

Ren et al., 2006 [35] Total amount and chromosome 8p
allelic imbalance (D8S258 or D8S264) N = 79

TNM stage I+II/III+IV:
62%/38%

Treatment: NR

Better 3-years DFS associated with low cfDNA (p = 0.008),
allelic imbalance at D8S258 (p = 0.004), allelic imbalance at

D8S264 (p = 0.01).
Better 3-years OS associated with low cfDNA (p < 0.0001)

and allelic imbalance at D8S258 (p = 0.02).
AI at D8S258 + higher cfDNA associated with better 3-year

DFS (p < 0.0001) and 3-year OS (p < 0.0001).

Tokuhisa et al., 2007 [43] Total amount N = 87
TNM stage I/II/III+IV:

46%/44%/10%
Treatment: LR

High cfDNA associated with:
Poorer OS: HR = 3.4 (1.5–7.6) adjusted for tumor size

Higher recurrence in distant organs: HR = 4.5 (1.3–14.9)
adjusted for tumor grade

Similar DFS (p = 0.19)

El-Shazly et al., 2010 [36] Total amount, integrity N = 25
TNM stage I/II/III/IV:

12%/32%/48%/8%
Treatment: NR

OS:
cfDNA amount: adjusted HR = 0.54 (0.20–1.60)
cfDNA integrity: adjusted HR = 1.86 (1.20–2.88)

Piciocchi et al., 2013 [34] Total amount N = 66 Stage: 59% Milan in
Treatment: NR

Patients with high cfDNA levels showed a significantly
shorter OS (24 vs. 37 months; p = 0.03). cfDNA was also an

independent predictor of survival (HR = NR; p = 0.02)

Ono et al., 2015 [45] Total amount N = 46
Stage: T1/T2/T3/T4

24%/39%/33%/4% (all N0/M0)
Treatment: LR or LT

Presence of cfDNA associated with:
Increased recurrence (p = 0.01)

Increased extrahepatic metastases (p = 0.04)
Similar OS (p = 0.07)

Increased risk of microscopic vascular invasion: adjusted
HR = 6.10 (1.11–33.33)
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Park et al., 2018 [111] Total amount N = 55
TNM stage I/II/III/IV:

23%/23%/27%/27%
Treatment: radiotherapy

Higher post-RT cfDNA levels associated with:
Similar OS (p = 0.15)
Similar PFS (p = 0.26)

Increased hepatic failure: adjusted HR = 2.41 (1.06–5.46)
Decreased local control: adjusted HR = 1.96 (0.57–6.81)

Oh et al., 2019 [44] Total amount, genomic instability and
VEGFA amplification N = 151

BCLC stage B/C:
3.3%/96.7%Treatment:

sorafenib

Higher amount of cfDNA associated with:Shorter TTP: HR
= 1.71 (1.20–2.44), adjusted for AFP

Shorter OS: HR = 3.50 (2.36–5.20), adjusted for AFP and
MVIGenomic instability associated with:

Shorter TTP: HR = 2.09 (1.46–3.00), adjusted for AFP
Shorter OS: HR = 3.35 (2.24–5.01), adjusted for AFP and

MVI

Mutations

Liao et al., 2016 [58] TERT, CTNNB1 or TP53 mutations N = 41
Stage: 42% > 5 cm, 27% multiple
tumors, 61% vascular invasion

Treatment: LR

Presence of mutations associated with:
Lower recurrence-free survival (p < 0.001); unadjusted
analysis only. This was confirmed also in patients with

vascular invasion (p = 0.003).

Jiao et al., 2018 [63] TERT mutations N = 218
TNM stage I/II/III+IV:

41.3%/23.4%/35.3%
Treatment: NR

Decreased OS in patients with TERT mutations (p = 0.006),
but not significant association (p = 0.19) after adjustment

for tumor stage.
In patients with HCC on LC, trend toward significance

after adjustment for tumor stage (p = 0.051)

An et al., 2019 [95] Any mutation N = 26 TNM stage I/II + III
Treatment: LR

Presence of cfDNA post-resection associated with shorter
DFS (8.3 months vs. unreached; HR = 7.66, p < 0.0001).

Improved DFS in patients with high vs. low clearance rate
(17.5 vs. 6.7 months; HR = 3.16, p = 0.02).

Portal vein tumor thrombosis was the other independent
prognostic factor.

Cai et al., 2019 [96] Fraction of single nucleotide or copy
number variants N = 34 Stage: NR

Treatment: LR

Presence of mutated cfDNA postoperatively:
Decrease relapse-free survival (p < 0.0001)

Decrease OS (p < 0.0001)
Combination of cfDNA and DCP further increased

predictive power

Oversoe et al., 2020 [64] TERT promoter mutations N = 95
BCLC stage A/B/C/D:

9%/5%/74%/12%
Treatment: variable

TERT promoter mutation associated with:
Higher mortality: adjusted HR = 2.16 (1.20–3.88).

No difference in survival when the analysis was restricted
to sorafenib treated patients.
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Hirai et al., 2020 [65] TERT promoter mutations N = 130
TNM stage II + III/IV: 41%/59%

Treatment: systemic therapy
(66%), TACE (34%)

Presence of TERT promoter mutations associated with:
Poorer OS: adjusted HR = 1.94 (1.18–3.24)

The worse survival was demonstrated even considering
patients treated with systemic therapy and TACE

separately

Shen et al., 2020 [61] TP53 R249S mutation N = 895

TNM stage I + II/III + IV:
67%/33% (cohort 2)

Treatment: with (cohort 2)
or without (cohort 3) LR

TP53 R249S mutation associated with:
Cohort 2

Poorer OS: adjusted HR = 1.79 (1.27–2.52)
Poorer PFS: adjusted HR = 1.74 (1.24–2.45)

Cohort 3
Poorer OS: adjusted HR = 1.63 (1.30–2.06)
Poorer PFS: adjusted HR = 2.03 (1.60–2.59)

Kim et al., 2020 [112] Total amount and MLH1
single-nucleotide variant N = 107

BCLC stage 0 + A/B + C + D:
48%/52%

Treatment: variable

Patients with low cfDNA + MLH1 wild-type had the
longest OS, while patients with high cfDNA + MLH1

mutated had the shortest OS.

von Felden et al., 2020
[113] PI3K/mTOR pathway mutations N = 61 BCLC stage B/C: 30%/70%

Treatment: CPI or TKI

Mutations in PI3K/mTOR pathway associated with:
Poorer PFS (adjusted p = 0.01) in TKI treated patients

No association with outcome following CPI

Methylation/epigenetics

Tangkijvanich et al., 2007
[78] LINE-1 hypomethylation N = 85 CLIP score 0–2/3–5: 48%/52%

Treatment: NR
LINE-1 hypomethylation associated with poorer OS:

adjusted HR = 1.74 (1.09–2.79)

Huang et al., 2011 [114] APC or RASSF1A methylation N = 72
TNM stage I + II/III + IV:

24%/76%
Treatment: NR

RASSF1A methylation: adjusted HR = 3.26 (1.48–7.21)
APC methylation: poorer OS on univariate analysis, but p

= n.s. after adjustment

Kanekiyo et al., 2015 [107] RASSF1A, CCND2, CFTR, SPINT2,
SRD5A2 and/or BASP1 methylation N = 125

TNM stage I + II/III + IV:
46%/54%

Treatment: LR

Methylation of ≥3 genes:
Decreased OS: adjusted HR = 2.18 (p < 0.001)

Decreased DFS: adjusted HR = 4.20 (p < 0.001)

Liu et al., 2017 [71] LINE-1 hypomethylation and RASSF1A
promoter hypermethylation N = 75

Stage: 47% ≥ 5 cm (reported
only in 49 patients), 16% portal

vein thrombosis, 15% lymph
node metastases
Treatment: LR

LINE-1 hypomethylation associated with:
Higher DFS (unadjusted p = 0.002) and OS (unadjusted p =

0.01)
RASSF1A hypermethylation no associated with DFS (p =

0.41) and OS (p = 0.83)
LINE-1 hypomethylation + RASSF1A hypermethylation

associated with:
Shorter DFS (p = 0.0001) and OS (p = 0.05).

LINE-1 hypomethylation independently associated with
poor OS (p = 0.045)
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Xu et al., 2017 [80]

Methylation of 8 genes: SH3PXD2A,
C11orf9, PPFIA1, chromosome 17:78,
SERPINB5, NOTCH3, GRHL2, and

TMEM8B

N = 1049
680 in validation set

39 in training set

TNM stage I/II/III/IV:
16%/16%/52%/12%

Treatment: NR

High risk prognostic score associated with poorer OS:
Training set: adjusted HR = 2.41 (1.90–3.03)

Validation set: adjusted HR = 1.55 (1.25–1.92)

Yeh et al., 2017 [79] LINE-1 hypomethylation N = 172
BCLC stage 0 + A/B + C:

36%/64%
Treatment: NR

LINE-1 hypomethylation was associated with:
Shorter OS: adjusted HR = 1.77 (1.12–2.79)

Li et al., 2018 [115] IGFBP7 promoter methylation N = 155
TNM stage I + II/III + IV:

63%/37%
Treatment: LR

Methylation of IGFBP7 associated with:
Increased recurrence: adjusted HR = 4.99 (1.51–16.47)

Poorer OS: adjusted HR = 3.86 (2.07–7.20)

Chen et al., 2020 [116] CTCFL hypomethylation N = 43 (+347 HCC from TCGA
Atlas)

Stage: 63% size <5 cm, 91%
single tumor, 5%

metastasesTreatment: NR

CTCFL hypomethylation associated with:
Higher risk of postoperative recurrence (p = 0.03)

Poorer OS (p = 0.006)

Abbreviations: AFP, alpha-fetoprotein; AFU, α-L-fucosidase; AUC, area under the curve; BCLC, Barcelona Clinic Liver Cancer; CLD, chronic liver disease; CPI, checkpoint inhibitors; CT, computed tomography;
DCP, des-λ-carboxyprothrombin; DFS, disease-free survival; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HR, hazard ratio; LC, liver cirrhosis; LR, liver resection; MVI,
macroscopic vascular invasion; NR, not reported; OS, overall survival; PFS, progression-free survival; RFA, radiofrequency ablation; TACE, transarterial chemoembilization; TARE, transarterial radioembolization;
TCGA, The Cancer Genome Atlas; TKI, tyrosine kinase inhibitors; TNM stage, tumor, nodes, metastases stage; TTP, time to progression; 5-hmC, 2-hydroxymethylcytosine.
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2.2. Cell-Free Non-Coding RNA

Long and short species of RNA are present in the cell-free non-coding RNA group,
both with an extensive involvement in gene expression regulation. The RNA molecules
with a length of >200 base pairs are classified as long non-coding RNAs (lncRNAs), several
of which are involved in cancer progression. HULC, MEG3, HOTAIR, HOTTIP, MALAT-1,
and MVIH are deregulated in HCC, and may be useful as biomarkers [117–128]. lncRNA-
CTBP, in a panel with other RNA-based biomarkers, showed high sensitivity and specificity
in differentiating HCC from cirrhosis and healthy controls [129]. Circulating levels of
LINC00152, XLOC014172, and RP11-160H22.5 were able to distinguish HCC patients from
cirrhotics, chronic hepatis, and healthy subjects, with very high accuracy when combined
with AFP (AUC of 0.986 for HCC vs. chronic hepatitis and 0.985 for HCC vs. healthy
controls) [130]. lncRNAs may also be useful as prognostic biomarkers, since they have
been shown to predict recurrence after liver transplantation, development of metastases,
recurrence-free, and overall survival [120,124–128].

Among short non-coding RNAs, which are generally ~28 base pairs long, microRNAs
(miRNAs) are the most extensively studied biomarkers in HCC in recent years, with a
role in the diagnosis and in prognosis prediction. miRNAs generally bind to 3’UTR of
the target mRNA, resulting in down-regulation of gene expression through translational
repression and/or mRNA degradation. More than 70 miRNAs have already been proposed
as candidate biomarkers [25]. Table S1 summarizes the most relevant studies on miRNAs
as HCC biomarkers.

In the diagnostic setting, highly expressed miRNAs (miR-21, miR-199 and miR-122)
seem to be the most promising for the diagnosis of HCC when considered individually,
due to their elevated specificity [131]. For instance, Tomimaru et al. [132] demonstrated
that miR-21 yielded an AUC of 0.773 with 61.1% sensitivity and 83.3% specificity in
differentiating HCC from chronic hepatitis, and an AUC of 0.953 with 87.3% sensitivity and
92.0% specificity in differentiating HCC from healthy volunteers (in both cases superior
to AFP). However, in the long run the diagnostic power of a single miRNA turned out to
be limited and various panels consisting of more than one circulating miRNA have been
evaluated. Lin et al. [133] demonstrated that a seven miRNAs classifier (miR-29a, miR-29c,
miR-133a, miR-143, miR-145, miR-192, and miR-505) had a greater AUC compared to
AFP in identifying small size and early-stage HCC, detecting also AFP-negative tumors.
Another panel consisting of miR-122, miR-192, miR-21, miR-223, miR-26a, miR-27a, and
miR-801 was able to distinguish with high accuracy between HCC and healthy controls
(AUC = 0.941), chronic hepatitis B (AUC = 0.842), and liver cirrhosis (AUC = 0.884) [134].
Interestingly enough, in a recent study the determination of eight miRNAs showed a
sensitivity of 97.7% and a specificity of 94.7% in identifying the presence of HCC among
patients at risk, with almost all cancers (98%) diagnosed in early stages [135].

Moreover, circulating miRNAs have a prognostic and predictive significance. Low
levels of circulating miR-1, miR-122, miR-26a, miR-29a, and miR-223-3p and high levels
of miR-155, miR-96, and miR-193-5p were associated with poor prognosis [136–141]. In
a recent study, the whole miRNome profile was evaluated in 116 patients with HCC
and six miRNAs were identified as prognostic factors; in particular, low levels of miR-
424-5p and miR-101-3p and high levels of miR-128, miR-139-5p, miR-382-5p, and miR-
410 were associated with lower survival rates [142]. After surgical resection, miR-224
and miR-500 levels decreased [143,144], miR-148a was up-regulated [145], and increased
levels of serum miR-1246 could predict early tumor recurrence (<12 months) [146]. High
expression of miR-122 as well as low levels of miR-26a and miR-29a have been found to
be poor prognostic markers in patients undergoing radiofrequency ablation [138,147] and
some authors found that miRNAs evaluation could predict response to TACE [148,149]
or sorafenib [150,151]. Recently, a study evaluating plasma samples from participants to
the registrative trial of regorafenib (RESORCE) identified 9 plasma miRNAs (miR-30a,
miR-122, miR-125b, miR-200a, miR-374b, miR-15b, miR-107, miR-320, and miR-645) whose
levels were significantly associated with OS [152].
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3. Extracellular Vesicles

Extracellular vesicles (EVs) are small membrane vesicles released by cells in extracellu-
lar environment in normal physiology and in pathological conditions [153]. EVs transport
a variety of bioactive molecules, including mRNA, miRNAs, proteins, and lipids, that can
be transferred among cells both in the environment in which they are released, as well
as at distant sites, regulating various cell responses [153,154]. Considered their ability of
altering intracellular pathways [155–158], cancer cells can use EVs to take advantage in
proliferation [159].

EVs are generally classified in small (exosomes) and large EVs (ectosomes, also called
microparticles (MPs) or microvesicles) [160]. Although small and large EVs may be dis-
tinguished by some of the expressed markers, such as CD63, HSP70, CD9, CD81, and
integrins [161,162], the border between these two entities is not sharp [25]. The growing
number of studies providing evidence for a key pathophysiological role of EVs in various
aspects of liver diseases and the fact that EVs are released in the systemic circulation,
where they are remarkably stable, provide the background to consider their assessment
and quantification in blood as a novel form of liquid liver biopsy [66]. Several studies
demonstrated a potential role of EVs as biomarkers in HCC patients (Table 2).

First reports showed that HCC patients had a higher level of circulating EVs compared
to controls [163] and the determination of total amount of EVs provided slightly better
sensitivity and specificity compared to alpha-fetoprotein (AFP) in HCC diagnosis [164].
A specific form of large EVs expressing surface AnnexinV, EpCAM, ASGPR1, and CD133
was identified by Julich-Haertel et al. [165] as a marker able to distinguish HCC and
cholangiocarcinoma from other cancer types, cancer-free cirrhotic patients, and healthy
subjects. Sensitivity, positive predictive value, and area under the curve (AUC) in the
distinction between HCC and cirrhosis were 80%, 73%, and 0.744, respectively [165].

Going beyond the simple determination of the total amount of EVs, the researchers
subsequently focused on analyzing their content. Arbelaiz et al. [166] demonstrated
that galectin-3-binding protein (LG3BP) and polymeric immune receptor (PIGR) had
higher diagnostic accuracy (AUC of 0.904 and 0.837, respectively) compared to AFP
(AUC = 0.802). Other promising molecules are exosomal AFP and GPC3 mRNA [167],
hnRNPH1 mRNA [168], and long non-coding RNAs (lncRNAs) [169–172]. In particular,
Xu et al. [170] obtained AUCs of 0.894 and 0.885 in derivation and validation cohorts, re-
spectively, with the combination of two lncRNAs (ENSG00000258332.1 and LINC00635). In
another study, a machine learning based score (“HCC classifier”) with 8 lncRNAs markers
showed very promising AUCs (0.953 in training cohort, 0.983 in validation cohort and
0.963 in testing cohort) [171]. Several other researchers focused their attention on exosomal
miRNAs [173–177]. Some studies found similar diagnostic accuracies for AFP and EVs
miRNAs [173,175], while others demonstrated the superiority of the latter [174,176].

A lower number of studies investigating EVs in the prognostic field are available,
and most of them focused on the evaluation of exosomal miRNAs, in particular after
surgical therapies (liver resection or liver transplantation) [177–183]. The only miRNA
included in more than one study was miR-21, and its high levels have been repetitively
associated with increased risk of disease progression and poorer survival [182,184,185].
Other studies demonstrated that low levels of exosomal miR-718, miR-125b, miR-638 and
miR-320a [177–179,181] and high exosomal miR-665 and miR-10b [180,182] were associated
with worse prognosis.

EVs and their content are promising candidate biomarkers in patients with HCC for
diagnosis and prognosis prediction. Nevertheless, additional larger prospective studies
should be conducted to definitely establish their role as liquid biopsy.
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Table 2. Studies on extracellular vesicles (EVs) as biomarkers in HCC patients.

Diagnosis

FStudy EVs Property Number of Patients Comparator Main Findings (Sensitivity/Specificity, AUC)

Wang et al., 2013 [164] Total amount
55 HCC;
40 LC;

21 healthy subjects
AFP (cut-off 20 ng/mL)

Sensitivity/specificity: 88.9%/62.6% for EVs and 85.7%/40.0% for AFP
TNM stage I vs. cirrhosis: AUC = 0.83 (p < 0.01 vs. AFP)
TNM stage II vs. cirrhosis: AUC = 0.94 (p < 0.01 vs. AFP)

Cheng et al., 2015 [163] Total amount
12 HCC;
11 CLD;

6 healthy subjects
NR EVs concentration higher in HCC patients vs. healthy controls or

cirrhotics. No differences in EVs concentration based on AFP levels.

Julich-Haertel et al., 2017 [165] Tumor-associated MPs

Explorative study: 22 HCC, 26 CCA, 5
LC, 18 IH, 53 CLD, 18 controls.

Validation study: 86 HCC, 38 CCA, 49
LC, 10 NSCLC, 19 CRC, 26 IH, 173

CLD, 58 controls.

NR

Explorative study. HCC vs. controls
AnnexinV +, EpCAM + taMPs: 81.8%/66.7%, 0.833

AnnexinV +, EpCAM +, CD147 + taMPs: 72.7%/82.3%, 0.739
Validation study. HCC vs. controls

AnnexinV +, EpCAM + taMPs: 76.5%/63.3%, 0.769
AnnexinV +, EpCAM +, CD133 + taMPs: 69.8%/41.4%, 0.626

AnnexinV +, EpCAM +, ASGPR1 +, CD133 + taMPs: 80.0%/50.0%, 0.744
Validation study. Cirrhosis vs. HCC

AnnexinV +, EpCAM +, ASGPR1 + taMPs: 81.4%/46.9%, 0.732

Arbelaiz et al., 2017 [166] EV proteins (LG3BP and PIGR)
29 HCC;
43 CCA;
30 PSC;

32 healthy subjects
AFP

HCC vs. controls
LG3BP: 96.6%/71.8%, 0.904
PIGR: 82.8%/71.8%, 0.837
AFP: 82.1%/64.0%, 0.802

Abd El Gwad et al., 2018 [169] lncRNA-RP11-513I15.6, miR-1262
and RAB11A

60 HCC;
42 CLD;

18 healthy subjects
NR

96.7%/95.0% for lncRNA-RP11-513I15.6
95.0%/80.0% for miR-1262

75.0%/73.3% for RAB11A mRNA
100.0%/76.7% for lncRNA-RP11-513I15.6 + miR-1262 + AFP

Pu et al., 2018 [173] miR-21-5p and miR-144-3p
24 HCC;
16 CLD;

17 healthy subjects
NR

miR-21-5p: AUC = 0.442
miR-144-3p: AUC = 0.747

miR-144.3p/miR-21-5p ratio: AUC = 0.780
AFP: AUC = 0.626

Wang et al., 2018 [167] AFP and GPC3 mRNA 40 HCC;
38 healthy subjects AFP (cut-off 20 ng/mL)

EV AFP mRNA: AUC = 0.947
EV GPC3 mRNA: AUC = 0.979

AFP protein: AUC = 0.936
AFP and GPC3 mRNA: AUC = 0.995

Wang et al., 2018 [174] miR-122, miR-148a and miR-1246
68 HCC;
53 LC;

50 CLD;
64 healthy subjects

AFP

Cirrhosis vs. HCC (all stages). AUC:
miR-122: AUC = 0.816
miR-148a: AUC = 0.891
miR-1246: AUC = 0.785

AFP: AUC = 0.712
miR-122 + miR-148a + AFP: AUC = 0.931
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Table 2. Cont.

Diagnosis

FStudy EVs Property Number of Patients Comparator Main Findings (Sensitivity/Specificity, AUC)

Xu et al., 2018 [170] lncRNAs (ENSG00000258332.1
and LINC00635)

60 HCC (+55 in validation cohort);
85 LC;

96 CLD (+60 in validation cohort);
60 healthy subjects (+60 in validation

cohort)

AFP (cut-off 20 µg/L)

HCC vs. CLD
First cohort:

ENSG00000258332.1: 71.6%/83.4%, 0.719
LINC00635: 76.2%/77.7%, 0.750

AFP: 54.7%/75.3%, 0.666
All 3 markers: 83.6%/87.7%, 0.894

Second cohort:
ENSG00000258332.1: 73.5%/80.5%, 0.718

LINC00635: 79.6%/75.2%, 0.731
AFP: 52.5%/74.1%, 0.634

All 3 markers: 84.5%/85.3%, 0.885

Xu et al., 2018 [168] hnRNPH1 mRNA
88 HCC;
67 LC;

68 CLD;
68 healthy subjects

AFP (cut-off 20 ng/mL)

HCC vs. CLD
hnRNPH1 mRNA: 85.2%/76.5%, 0.865

AFP: 69.3%/87.9%, 0.785
hnRNPH1 + AFP: 87.5%/84.8%, 0.891

HCC vs. cirrhosis
hnRNPH1 mRNA: 86.4%/54.0%, 0.647

AFP: 46.6%/88.3%, 0.674
hnRNPH1 + AFP: 50.3%/91.0%, 0.749

Zhang et al., 2019 [175] miR-212
78 HCC;
95 LC;

58 CLD;
70 healthy subjects

NR

HBV-related HCC vs. healthy subjects
miR-212: 70.0%/95.0%, 0.89

AFP: 0.85
Non-HBV-related HCC vs. healthy subjects

miR-212: 89.0%/62.0%, 0.79
AFP: 0.84

Li et al., 2019 [171] lncRNAs
71 HCC;
37 CLD;

94 healthy subjects
AFP (cut-off 10 ng/mL)

Support vector machine model (HCC classifier with 8 markers)
Training cohort: 84%/94%, 0.953

Validation cohort: 89%/91%, 0.983
Testing cohort: 85%/95%, 0.963

Lu et al., 2020 [172]
lncRNAs:

ENSG00000248932.1
ENST00000440688.1
ENST00000457302.2

200 HCC;
200 CLD;

200 healthy controls
NR Three lncRNAs: AUC = 0.96/0.53 in training/validation cohorts

Three lncRNAs + AFP: AUC = 0.97/0.87 in training/validation cohorts

Sorop et al., 2020 [176] miR-21-5p and miR-92a-3p
48 HCC;
38 LC;

20 healthy subjects
AFP AFP alone: AUC = 0.72

miR-21-5p + miR-92a-3p + AFP: AUC = 0.85 (p < 0.05 vs. AFP)

Hao et al., 2020 [177] miR-320a
104 HCC;
55 CLD;

50 healthy subjects
NR HCC vs. healthy subjects: 77.9%/80.0%, 0.86

HCC vs. CLD: 76.1%/81.8%, 0.83
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Table 2. Cont.

Diagnosis

FStudy EVs Property Number of Patients Comparator Main Findings (Sensitivity/Specificity, AUC)

Prognosis

Study EVs Property Number of Patients Stage/Treatment Main Findings

Sugimachi et al., 2015 [178] miR-718 and miR-1246 N = 66 (6 in exploratory and 59 in
validation analysis)

Stage: 34% beyond Milan
criteria

Treatment: LT

Recurrence post-LT: 6/42 in the low and 0/11 in the high miR-718 groups
(p = n.s.). Patients with tumor diameter ≥3 cm: greater recurrence with

high miR-718 (p = 0.0002).
No association with recurrence for miR-1246

Liu et al., 2017 [179] miR-125b N = 128
TNM stage I/II–III:

37.5%/62.5%
Treatment: LR

Low miR-125b associated with:
Lower time-to-recurrence: HR = 0.14 (0.08–0.27); p < 0.001

Poorer OS: HR = 0.33 (0.18–0.62); p < 0.001

Qu et al., 2017 [180] miR-665 N = 30
TNM stage I–II/III–IV:

20%/80%
Treatment: LR

Patients with high miR-665 showed lower OS (p < 0.05; HR not reported)

Shi et al., 2018 [181] miR-638 N = 126
TNM stage I + II/III + IV:

53%/47%
Treatment: LR

Low miR-638 levels associated with:
Poorer OS (adjusted HR = 2.80, 1.24–4.31; p = 0.01)

Suehiro et al., 2018 [184] miR-122 and miR-21 N = 75 (57 with LC) Stage: NR
Treatment: TACE

miR-21 and miR-122 not associated with survival in the entire cohort.In
LC group, high miR-122 ratio (after/before TACE) associated with poorer

OS: adjusted HR = 2.72 (1.04–8.02); p = 0.04

Abd El Gwad et al., 2018 [169] RAB11A mRNA N = 60 BCLC stage early: 90%
Treatment: NR

Low levels of RAB11A mRNA are associated with longer recurrence-free
survival: adjusted HR = 0.36 (0.15–0.88), p = 0.03

Lee et al., 2019 [185] miR-21 and lncRNA-ATB N = 79

TNM stage
I–II/III–IV:40.5%/59.5%

Treatment: 10 LR, 5 LT, 24
ABL, 9 TACE, 17 SOR and

14 BSC

High miR-21 and lncRNA-ATB independent predictors of mortality (HR =
2.87 and 2.17, respectively; all p < 0.05).

High miR-21 and lncRNA-ATB independent predictors of disease
progression (HR = 2.53 and 2.55, respectively; all p < 0.05).

Tian et al., 2019 [182] miR-21 and miR-10b N = 124
Stage: 79% monofocal,

35% ≤ 3 cm
Treatment: LR

Poorer disease-free survival with:
High miR-21: adjusted HR = 2.45 (1.25–4.78); p = 0.009

High miR-10b: adjusted HR = 2.55 (1.30–4.99); p = 0.006

Hao et al., 2020 [177] miR-320a N = 104
TNM stage: 37.5%/62.5%

Treatment: LR (+/−
adjuvant chemotherapy)

Low miR-320a associated with poorer OS and DFS.
Low miR-320a independent predictor of mortality: adjusted HR = 2.97

(1.56–4.63); p = 0.008

Luo et al., 2020 [183] circAKT3 N = 124
TNM stage I–II/III–IV:

44%/37%
Treatment LT/LR: 19/81%

Patients with high circAKT3 have:
Higher tumor recurrence rates (HR 3.14, 1.29–6.21; p = 0.01)

Higher mortality (HR 1.89, 1.04–3.01; p = 0.048)

Abbreviations: AFP, alpha-fetoprotein; AUC, area under the curve; BCLC, Barcelona Clinic Liver Cancer; CCA, cholangiocarcinoma; CLD, chronic liver disease; CRC, colorectal carcinoma; DFS, disease-free
survival; EVs, extracellular vesicles; HCC, hepatocellular carcinoma; HR, hazard ratio; IH, inguinal hernia; LC, liver cirrhosis; lncRNA, long non-coding RNA; LR, liver resection; LT, liver transplantation;
miR, microRNA; MPs, microparticles; NSCLC, non-small cell lung carcinoma; NR, not reported; OS, overall survival; PSC, primary sclerosing cholangitis; TACE, transarterial chemoembolization; taMPs,
tumor-associated microparticles; TNM stage, tumor, nodes, metastases stage.
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4. Circulating Tumor Cells

Metastatization is a complex and largely unknown process requiring the ability for
cancer cells to escape from the primary tumor, survive in the circulation, and then settle in
a new organ. Circulating tumor cells (CTCs) are key players in cancer dissemination. Con-
sidering that CTCs are present in the order of one per billion of blood cells in patients with
metastatic disease, there have been some initial obstacles in their study [186]. Nevertheless,
technical and methodological advances in the last years led to a significant expansion of
publications aimed at investigating their role as candidate biomarkers (Table 3).

Platforms for the detection of CTCs are based on their known biological and physical
properties, and can grossly be divided in immunoaffinity-based and biophysical property-
based enrichment [187]. Immunoaffinity-based CTCs enrichment techniques use antibodies
against cell surface markers bounded to the device or a magnetic substance. The enrichment
can be positive when CTCs are captured with antibodies against tumor specific antigens
expressed on CTC surface, or negative when hematopoietic cells in the background are
depleted by using antibodies against CD45 [188]. The CellSearch™ system (Veridex)
captures CTCs using an immunomagnetic separation system with antibodies against
EpCAM and cytokeratin coated onto ferrofluid beads and has been approved by the US
Food and Drug Administration for use in patients with breast, prostate and colorectal
cancers [189,190]. Other developed detection systems include CTC-Chip™ [191], CTC-
iChip™ [192], and NanoVelcro™ [193]. These methods rely on tumor expression of the
target proteins and their role is limited for cancers that do not typically express them. Only
about one third of CTCs in HCC are positive for EpCAM and cytokeratin [194,195], and
even if CellSearch™ became the most popular detection system, it could be of limited
application in HCC. Moreover, given that epithelial markers such as EpCAM are often
downregulated or lost during epithelial-to-mesenchymal transition (EMT) [196], CTC with
EMT phenotype which have strong metastatic potential could not be detected by positive
enrichment methods that target epithelial markers. Therefore, strategies targeting stem cell
markers (CD133), mesenchymal markers (vimentin), and cancer specific antigens (such
as HER2, PSMA, ASGPR, Hepar 1, and carbamoyl phosphate synthetase 1) have been
developed [197,198]. The biophysical methods to isolate CTCs rely on their typical features
such as large size, mechanical plasticity, and dielectric mobility properties, employing
centrifugation and filters or flow devices with channels of varying size or nature. Although
the advantage of avoiding the challenges of targeting numerous tumor specific epitopes,
these methods may be less cancer-specific.

As far as the diagnostic value of CTCs analysis is considered, published studies
showed that CTCs may have a role in differentiating HCC from controls. A major concern
when dealing with CTCs analysis as diagnostic biomarker is the fact that, since their levels
correlate with tumor burden [199], the sensitivity in early-stage disease may be too low.
Nevertheless, Guo et al. [200] in a large study investigating a CTC-derived PCR score
(quantifying the expression of cancer-related genes in blood), demonstrated a sensitivity
of 72.5%, a specificity of 95%, and an AUC of 0.88 (compared with 57%, 90%, and 0.77 of
AFP at a cut-off of 20 ng/mL). In addition, this score performed well also in patients with
early-stage HCC (AUC of 0.92 in BCLC stage 0 and 0.86 in BCLC stage A).

CTCs evaluation combined with AFP provided incremental performance with respect
to AFP alone in identifying HCC patients. In a study, the AUC in the discrimination of
CLD and HCC patients was 0.67 for AFP (cut-off 400 ng/mL), 0.77 for CTCs (detected with
CanPatrol™), and 0.82 for the combination of both [201]. Guo et al. reported that CTCs,
defined by the expression of EpCAM mRNA, had a sensitivity of 42.6% and an AUC of
0.70 in discriminating HCC from CLD and healthy controls, while AFP (cut-off 400 ng/mL)
demonstrated a lower sensitivity (39.5%; AUC not reported); the combination of CTCs and
AFP increased sensitivity to 73% and the AUC to 0.86 [202].

Considering that CTCs are extremely rare in the circulation and that their number
tends to be proportional to tumor volume, which make their detection in early-stage disease
challenging [199], they are probably more useful for prognostication rather than for early
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diagnosis. Indeed, several evidences emerged linking CTCs enumeration with prognosis
of HCC patients. A landmark study in 2004 demonstrated that the presence and number of
CTCs, identified and enumerated based on their morphology, were associated with shorter
survival [203]. Subsequent studies using CellSearch™ showed that the detection of EpCAM
positive CTCs was associated with an higher tumor recurrence rate after liver resection [204]
and with a worse prognosis [205,206]. The independent prognostic value of CTCs amount
was confirmed even with other CTCs enrichment technologies, such as ImageStream
flow cytometry, which uses a panel of markers and generates high resolution images of
isolated CTCs [195,207]. Beyond simple enumeration, other reports have investigated
the prognostic impact of subgroups of CTCs, divided according to cell surface markers,
RNA expression, or genomic aberrations. The identification of CTCs with cancer stem
cell-like or mesenchymal surface markers is useful to predict tumor recurrence [208–211].
Other studies demonstrated that CTCs with detectable AFP mRNA were associated with a
higher risk of metastatic dissemination [212], whereas CTCs with aneuploid chromosome
8 predicted shorter survival in patients treated with surgical resection [213]. The interesting
study by Ha et al. [214] introduced the concept of ∆CTC, which is defined as the variation
in CTCs enumeration after surgery, and is an independent factor of lower survival and
recurrence after hepatectomy.

Cancer cell dissemination seems to be promoted by treatment, in particular surgical
therapies. Liver manipulation is associated with a release of CTCs [215] and the anterior
as compared to the conventional surgical approach is associated with a lower release
of CTCs as well as better survival [216]. In liver transplantation for HCC, five steps
to minimize CTCs dissemination and thereby reduce the risk of recurrence have been
described [217]. This approach in transplantation assumes even more importance as
an association between CTCs detection and recurrence after transplantation has been
demonstrated [218,219]. Overall, data consistently reported that the number of CTCs is
a surrogate of poor prognosis, predicting higher recurrence and lower survival. A recent
metanalysis and data from experimental models led to the same conclusions [220,221].

Considered that CTCs detection methods are costly and time consuming, the applica-
tion of CTCs enumeration in clinical practice requires a clear advantage to be established.
Probably, this is an unrealistic goal and therefore phenotypic characterization of CTCs may
be more useful, since tissue-based biomarkers that could be of help in treatment choice
and monitoring are currently lacking. Moreover, it is clear from several studies that CTCs
are a heterogeneous population and that they may reflect tumoral heterogeneity better
than a tissue biopsy [187,195]. The CTC pERK/pAkt phenotype has recently been reported
to predict sensitivity to sorafenib [222], while the presence of CTCs positive for PD-L1 is
associated with response to checkpoint inhibitors [223]. Considered that result, it could be
imagined that phenotyped CTCs will be useful surrogates for guiding enrichment trials
with molecular targeted therapies. Moreover, methods for collecting living CTCs from
HCC patients and culture them into three-dimensions spheroid-like structures have also
been developed, with the possibility to bring personalized medicine to a new level. In this
scenario, Zhang et al. [224] explored individual sensitivity to sorafenib and oxaliplatin after
collecting and culturing CTCs, and the evaluation of multiple therapeutic candidates in
patients’ CTC-derived xenografts may become a future reality [66].

Even if the use of CTCs analyses as biomarkers in guiding clinical decisions has
huge potential, perhaps the most innovative and relevant contribution of CTC studies
will be in advancing our understanding of the biology of metastatic disease as well as the
development of treatment strategies. The analysis of CTCs at a molecular level, facilitated
by the advancements in sequencing technologies, may lead to the identification of new
mutations responsible for tumor metastatization and resistance to drugs [225]. Moreover,
other insights in metastatic spread have been achieved analyzing the spatial distribution of
CTCs in the bloodstream. An interesting study analyzed and compared CTCs collected in
HCC patients from different vessels (peripheral veins and arteries, portal vein, and hepatic
veins). The greatest number of CTCs was demonstrated in hepatic veins, with a dramatic
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reduction in peripheral vessels after passage through the lungs. Moreover, there was a
phenotypic heterogeneity in CTCs isolated from different sites, being predominantly epithe-
lial into the hepatic vein and EMT-transformed when isolated in peripheral vessels [226].
The CTC burden and the presence of CTC clusters in both hepatic and peripheral veins
predicted lung and liver metastases.

Although the rapid evolution in technologies supporting CTCs detection, isolation
and characterization and the very promising results in the studies so far published, the
clinical application of CTCs as biomarkers is hindered by the different methodologies
applied by single researchers. Indeed, few studies have been reproduced by more than one
research group. Before the incorporation of CTCs evaluation in trials and clinical practice,
standardized protocols with reproducible results, currently lacking in HCC, are needed.
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Table 3. Studies on use of circulating tumor cells (CTCs) as biomarkers in HCC patients.

Diagnosis

Study CTCs Definition Number of Patients Comparator Main Findings (Sensitivity/Specificity, AUC)

Yao et al., 2005 [227] CD45 (−) EpCAM (+) then AFP
mRNA

49 HCC
36 CLD or LC

18 healthy subjects
AFP (cut-off 20 ng/mL)

AFP mRNA (sensitivity/specificity): 72.1%/66.7%
Low AFP: sensitivity, 75%

High AFP: sensitivity, 71% (p > 0.05)

Guo et al., 2007 [228] CD45 (−) and EpCAM (+), then
AFP mRNA

44 HCC
7 healthy subjects AFP (20 ng/mL)

AFP mRNA (sensitivity): 72.7%; 50% in patients with
AFP < 20 ng/mL and 86.7% in patients with AFP >1000

ng/mL (p < 0.05)

Xu et al., 2011 [229] ASGPR (+)
85 HCC

37 CLD or benign liver diseases
20 healthy subjects

AFP (cut-off 20 or 100 ng/mL)
CTCs (sensitivity/specificity): 81%/100%

No significant differences in CTCs level according to
AFP values

Liu et al., 2013 [210] CD45 (−) and ICAM-1 (+) 60 HCC AFP (cut-off 20 ng/mL) High levels of CTCs in 83.3% of AFP + and 16.7% of AFP
negative patients (p = 0.14)

Sun et al., 2013 [204] CellSearch™
123 HCC

5 CLD
10 healthy subjects

AFP (cut-off 400 ng/mL)

≥2 CTCs/7.5 mL:
Overall (sensitivity/specificity): 41.5%/100%

High AFP: sensitivity, 54.7%
Low AFP: sensitivity, 31.4% (p = 0.009)

Bahnassy et al., 2014 [230] CD45 (−) and either CK19, CD90
or CD133 (+)

70 HCC
30 CLD (HCV)

33 healthy subjects
AFP ratio (undefined)

CTCs have poorer performances compared to AFP. HCC
vs. CLD:

AFP ratio: 95.7%/90.5%, 0.99
CK19 (+) CTCs: 87.1%/82.5%
CD90 (+) CTCs: 81%/89.6%
CD133 (+) CTCs: 40%/6.3%

Fang et al., 2014 [231] CellSearch™
42 HCC
10 CLD

10 healthy subjects
AFP (cut-off 40 ng/mL)

CTCs (sensitivity/specificity): 74%/100%
Sensitivity 89% among patients with high AFP and 61%

among those with low AFP (p = 0.08)

Guo et al., 2014 [202] † CellSearch™ and quantitative
PCR for EpCAM in CD45 (−) cells

122 HCC
25 CLD or LC (HBV)

24 benign tumors
71 healthy subjects

AFP (cut-off NR)
HCC vs. other groups:

EpCAM-mRNA (+) CTCs: 42.6%/96.7%, 0.70
EpCAM-mRNA (+) CTCs + AFP: 73%/93.4%, 0.86

Kelley et al., 2015 [194] CellSearch™ 20 HCC
10 CLD AFP (400 ng/mL)

CTC detection in 7 of 20 (35%) HCC patients and 0 of 9
CLD (p = 0.04).

AFP ≥ 400 ng/mL: sensitivity 70%
AFP < 400 ng/mL: sensitivity 10% (p = 0.008)
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Table 3. Cont.

Diagnosis

Study CTCs Definition Number of Patients Comparator Main Findings (Sensitivity/Specificity, AUC)

Zhou et al., 2016 [232] CD45 (−) EpCAM-mRNA (+) 49 HCC AFP (cut-off 400 ng/mL)
Any CTCs (sensitivity):

Overall: 34.6%
Low vs. high AFP: 28.2% vs. 60% (p = 0.06)

Kalinich et al., 2017 [233]
PCR assay: AFP, AHSG, ALB,

APOH, FABP1, FGB, FGG, GPC3,
RBP and TF

63 HCC
31 CLD

26 healthy subjects
AFP (cut-off 100 ng/mL)

PCR score +: 9 of 16 (56%) untreated HCC patients, 1 of
31 (3%) CLD and 2 of 26 (7.6%) healthy subjects.

15 patients with both PCR score and AFP available: 4
(27%) PCR score +, 1

(7%) AFP +, 5 (33%) PCR score + and AFP +
6 patients within Milan criteria: 2 (33%) PCR score + and

0 (0%) AFP +

Bhan et al., 2018 [234]
CD45 (−) and hydrodynamics,

followed by HCC score based on
gene expression

54 HCC
39 CLD

10 healthy subjects
AFP (cut-off 20 ng/mL)

HCC score outperformed AFP in identifying HCC vs.
CLD (sensitivity/specificity): HCC score: 85%/95%

AFP: 55%/100%

Guo et al., 2018 [200] † CTC detection panel: PCR for
EpCAM, CD133, CD90 and CK19

Training and validation cohorts:
395 HCC

301 CLD and LC (HBV)
210 healthy subjects

AFP (cut-off 20 ng/mL)

Validation cohort (sensitivity/specificity, AUC):
HCC vs. other groups:

CTC detection panel: 72.5%/95%, 0.88
AFP: 57%/90%, 0.77

CTC detection panel + AFP: 76%/95%, 0.89
Early-stage HCC vs. other groups:

CTC detection panel: 71.8%/95%, 0.87
AFP: 53.4%/90%, 0.74

CTC detection panel + AFP: 80.9%/87%, 0.88
AUC in different stages: 0.92 (BCLC 0), 0.86 (BCLC A),

0.91 (BCLC B), 0.86 (BCLC C)
In AFP negative patients: 77.7%/95%, 0.89

Xue et al., 2018 [235]

CellSearch™ and iFISH (either
CD45 (−) CK (+) DAPI (+) and

hybridization signal for CEP8 ≥2
or CD45 (−) CK (−) DAPI (+) and
hybridization signal for CEP8 > 2)

30 HCC
10 healthy subjects AFP (400 IU/mL)

CTCs measured by CellSearch™ (sensitivity/specificity):
26.7%/100%

CTCs measured by iFISH (sensitivity/specificity):
70/100%

Low AFP: sensitivity, 90%
High sensitivity, 30% (p = 0.002)
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Table 3. Cont.

Diagnosis

Study CTCs Definition Number of Patients Comparator Main Findings (Sensitivity/Specificity, AUC)

Yin et al., 2018 [236] CanPatrol™ 80 HCC
10 healthy subjects AFP (cut-off 20 ng/mL)

Overall cohort (sensitivity/specificity):
Any CTCs: 77.5%/100%

Twist (+) CTCs: 67.5%/100%Low AFP: sensitivity, 35.3%
or 17.7% for any CTCs or Twist (+) CTCs, respectively (p

< 0.001)
High AFP: sensitivity, 88.9% or 71.8%for any CTCs or

Twist (+) CTCs, respectively (p < 0.001)

Cheng et al., 2019 [201] CanPatrol™ 113 HCC
57 benign liver lesions AFP (cut-off 400 µg/L)

CTCs outperformed and provided incremental benefit to
AFP.AFP: 44.3%/89.5%, 0.67

Total CTCs (≥3): 62%/89.5%, 0.77
Total CTCs or AFP: AUC = 0.82

Prognosis

Study CTCs Definition HCC Patients Stage/Treatment Main Findings

Vona et al., 2004 [203] Size (diameter > 25 µm) N = 44
Stage: 39% multinodular, 39%

tumor ≤3 cm, 45% PVT, no EHS
Treatment: NR

Patients with CTCs/circulating tumor microemboli had
poorer OS (p = 0.01)

No significant association with survival in multivariate
analysis.

Fan et al., 2011 [208] CD45 (−) CD90 (+) CD44 (+) N = 82
TNM stage I/II/III/IV:

5%/34%/34%/27%
Treatment: LR

CTCs predicted recurrence (sensitivity/specificity):
65.9%/80.5%

CTCs (>0.01%) independently associated with poorer:
Median recurrence-free survival (6.0 vs. >46.5 months)

2-years recurrence-free survival (22.7% vs. 64.2%)
2-year OS (58.5% vs. 94.1%) (p < 0.001 for all)

Liu et al., 2013 [210] CD45 (−) ICAM-1 (+) N = 60
Stage: tumor size >5 cm 72%,

multifocal 12%
Treatment: LR

High proportion of ICAM-1 (+) CTCs associated with:
Poorer DFS: adjusted HR = 7.15 (2.99–17.05)

No independent association with OS: adjusted HR = 2.28
(0.95–7.82)

Nel et al., 2013 [237]

CTCs: CD45 (−), DAPI (+),
EpCAM (+), ASGPR1 (+)

Mesenchymal: either N-cadherin
(+) or vimentin (+)

Epithelial: pan-CK (+)
Mixed: CK (+) and either

N-cadherin (+) or vimentin (+)

N = 11 Stage: NR
Treatment: various (SIRT in 45%)

Vimentin (+)/CK (+) ratio >0.5 associated with a longer
TTP: 1 vs 15 months (p = 0.03)

N-cadherin (+)/CK (+) ratio <0.1 associated with a
shorter TTP: 1 vs 15 months (p = 0.03)
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Table 3. Cont.

Diagnosis

Study CTCs Definition Number of Patients Comparator Main Findings (Sensitivity/Specificity, AUC)

Sun et al., 2013 [204] CellSearch™ N = 123 BCLC stage 0-A/B-C: 82%/18%
Treatment: LR

Presence of CTCs (>2/7.5 mL) before surgery associated
with:

Increased risk of recurrence: adjusted HR = 5.20
(2.65–10.21)

Cheng et al., 2013 [209] Magnetic cell sorting and PCR for
Lin28B N = 96 BCLC stage A/B-C: 55%/45%

Treatment: LR

Lin28B positive CTCs associated with:
Decreased RFS: adjusted HR = 2.25 (1.01–4.99)
Early recurrence (<1 year): adjusted HR = 2.65

(1.02–6.86); also true in earlier stages

Schulze et al., 2013 [205] CellSearch™ N = 59
BCLC stage A/B/C:

15%/53%/32%
Treatment: NR

Detection of CTCs was associated with lower OS at the
Kaplan-Meier analysis (p = 0.02)

Guo et al., 2014 [202] CellSearch™ and quantitative
PCR for EpCAM in CD45 (-) cells N = 299

Stage: NR
Treatment: LR 53%, TACE 25%,

RT 22%

EpCAM mRNA (+) CTCs associated with worse
outcomes

Surgery: shorter TTR; adjusted HR = 2.9 (1.6–5.3)
TACE: shorter PFS; unadjusted HR = 3.8 (1.4–10)
RT: shorter PFS; unadjusted HR = 5.1 (1.4–18.5)

Nel et al., 2014 [238]
CD45 (−), EpCAM (+), DAPI (+),
pan-CK (+) and IGFBP1 mRNA

(+)
N = 25

TNM stage II/III/IV:
28%/48%/24%

Treatment: SIRT

Low expression of IGFBP1 mRNA in CTCs discriminate
progression from disease control (sensitivity 80%,

specificity 80%, AUC = 0.8).
Low IGFBP1 mRNA in CTCs correlated with shorter TTP

(p = 0.04)

Li et al., 2016 [222]
Density-based, CD45 (−), pan-CK

(+) and either pAkt1/2/3 or
pERK1/2 (+)

N = 109 Stage: advanced
Treatment: sorafenib

High proportion of pERK (+) pAkt (−) CTCs associated
with longer PFS: adjusted HR = 9.39 (3.24–27.19)

Ogle et al., 2016 [195] CD45 (−), morphology, size N = 69

BCLC stage A/B/C/D:
16%/7%/73%/4%

Treatment: LT 6%, LR 4%, ABL
10%, IAT 39%, sorafenib 13%, BSC

28%

Presence of CTCs (>1/4 mL) at any time (N = 69):
Shorter OS: adjusted HR = 2.34 (1.015.43)

Shorter TTP (p = 0.006)
Presence of CTCs post-treatment (N = 29):

Shorter OS: adjusted HR = 6.16 (1.71–22.33)
Shorter TTP (p = 0.002)

Zhou et al., 2016 [232] EpCAM mRNA (+) N = 49 BCLC stage 0-A/B-C: 90%/10%
Treatment: LR

High EpCAM mRNA (+) CTCs associated with increased
risk of recurrence: adjusted HR = 6.69 (1.94–22.88)

von Felden et al., 2017 [206] CellSearch™ N = 57 BCLC stage A/B: 92%/8%
Treatment: LR

CTCs status was independently associated with
increased risk of recurrence: adjusted HR = 3.1 (1.0–9.4)
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Guo et al., 2018 [200] CTC detection panel: PCR for
EpCAM, CD133, CD90 and CK19 N = 395

Training:
BCLC stage 0-A: 66%

Treatment: LR 98%, TACE 2%
Validation:

BCLC stage 0-A: 48%
Treatment: LR 67%, TACE 33%

CTC detection panel was associated with shorter TTR:
Training cohort: adjusted HR = 2.69 (1.62–4.48)

Validation cohort: adjusted HR = 3.13 (1.36–7.19)
Association remained significant in patients with

negative AFP and with early-stage (BCLC 0-A) tumor

Qi et al., 2018 [211] Can Patrol™ N = 112
BCLC stage 0/A/B/C:
10%/39%/21%/30%

Treatment: LR

CTCs associated with HCC recurrence:
CTC count: adjusted HR = 1.02 (1.01–1.04)

Mesenchymal CTC percentage: adjusted HR = 1.02
(1.01–1.03)

Mesenchymal > epithelial CTC percentage: adjusted HR
= 1.00 (0.99–1.02)

Mesenchymal = epithelial CTC percentage, mesenchymal
< epithelial CTC percentage, epithelial CTC percentage

not associated with recurrence at univariate analysis.

Sun et al., 2018 [226] CellSearch™ N = 73 BCLC stage 0-A/B-C: 77%/23%
Treatment: LR

Presence of CTCs in different vascular sites.
Association with intrahepatic recurrence:

Peripheral veins: adjusted HR = 0.77 (0.14–5.19)
Peripheral arteries: adjusted HR = 2.54 (0.87–7.42)

Peripheral veins CTCs with clusters: adjusted HR = 3.48
(1.40–8.61)

Association with lung metastasis:
Hepatic vein CTCs: adjusted HR = 0.59 (0.04–9.54)

Intrahepatic inferior vena cava CTCs: adjusted HR = 0.67
(0.10–4.40)

Hepatic vein CTCs with clusters: adjusted HR = 42.2
(3.73–477.8)

Wang et al., 2018 [239] CanPatrol™ N = 62 BCLC stage 0-A/B-C: 37%/63%
Treatment: LR

Association with early recurrence:
Total CTCs: unadjusted HR = 2.95 (1.18–7.35); NS after

adjustment
Mesenchymal CTCs: unadjusted HR = 4.74 (2.04–11.01);

adjusted HR = 3.45 (1.39–8.56)
Mixed CTCs: unadjusted HR = 2.94 (1.31–6.59); NS after

adjustment
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Yu et al., 2018 [215] CellSearch™ N = 139 BCLC stage 0+A/B+C: 40%/60%
Treatment: LR

4 categories: 1) persistently (+); 2) preoperatively (+) but
postoperatively (−); 3) preoperatively (−) but

postoperatively (+); 4) persistently (−).
For a 1-point increase in category:

DFS: adjusted HR = 0.53 (0.41–0.68)
OS: adjusted HR = 0.48 (0.36–0.66)

Ye et al., 2018 [240] CanPatrol™ N = 42 BCLC stage A-B/C-D: 81%/19%
Treatment: LR

Pre-operative CTC count not associated with OS and PFS
Post-operative CTC count (>5):

Poorer PFS: adjusted HR = 6.89 (1.64–29.0)
No independent association with OS: adjusted HR =

15.65 (0.80–304.64)
Increase of post-operative CTC count:

Poorer PFS: adjusted HR = 39.58 (4.22–371.64)

Wang et al., 2018 [213] SE-iFISH N = 14 Stage: NR
Treatment: NR

Detection of small CTCs with triploid chromosome 8
showed shorter DFS (p = 0.007); HR not reported

Court et al., 2018 [241] NanoVelcro™ N = 80

BCLC stage A/B/C/D:
18%/28%/43%/11%

Treatment: ABL, TACE, SIRT,
systemic therapy, BSC

Total CTCs were associated with:
Shorter TTR in patients with early stage: univariate HR =
9.7 (2.08–45.19); no significant association in multivariate.

Shorter PFS in patients with advanced disease:
univariate HR = 2.09 (1.11–3.96); multivariate HR =2.09

(1.11–3.96)
Vimentin (+) CTCs independently associated with:

Poorer OS: adjusted HR = 2.21 (1.38–3.56)
Poorer PFS in patients with advanced disease: adjusted

HR = 2.16 (1.33–4.42)
Trend toward fast TTR in patients with early stage:

adjusted HR = 2.45 (0.91–6.57)

Shen et al., 2018 [242] CellSearch™ N = 97 BCLC stage A-B/C: 56%/44%
Treatment: TACE

CTC count independently predicted OS:
High vs. low level group: adjusted HR = 2.82 (1.22–6.53)

Intermediate vs. low group: adjusted HR = 1.30
(0.63–2.69)
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Ha et al., 2019 [214] Tapered slit platform (detection
based on size and morphology) N = 105 BCLC stage 0/A: 19%/81%

Treatment: LR

Presence of pre- and post-operative CTCs not associated
with recurrence.

Positive ∆CTC (increase of CTC after surgery):
Shorter RFS: adjusted HR = 2.28 (1.06–4.90)

No associations with OS

Hamaoka et al., 2019 [243] Glypican-3 (+) N = 85
Stage: median tumor number 1

and median size 25 mm
Treatment: LR

CTCs associated with:
Higher risk of microscopic portal vein invasion: adjusted

OR = 14.6 (3.3–106.0)
Shorter DFS (p = 0.02)
Shorter OS (p = 0.047)

Wu et al., 2019 [244]
CD45 (−) and abnormal

chromosome 8 amplification by
FISH

N = 155
BCLC stage A/B/C:

38%/14%/48%
Treatment: TACE

Presence of pre-TACE CTCs associated with poorer OS:
adjusted HR = 2.84 (1.41–5.73)

Chen et al., 2020 [218] CD45 (-) and imFISH N = 50
TNM stage I/II/III/IV:

8%/32%/58%2%
Treatment: LT

CTCs detection was associated with recurrence post-LT:
adjusted HR = 5.41 (1.13–25.87)

Zhou et al., 2020 [245] Size and deformability N = 137 BCLC stage 0-A/B-C: 57%/43%
Treatment: LR

Presence of CTCs:
Independently associated with microvascular invasion:

adjusted HR = 1.76 (1.34–2.30)
Shorter OS (19.2 months vs. not reached; p = 0.005)

Winograd et al., 2020 [223] CD45 (−), DAPI (+), CK (+),
PD-L1 (+) N = 87

BCLC stage A/B/C/D:
25%/25%/41%/8%

Treatment: various; checkpoint
inhibitors 14.3%

Detection of CTCs expressing PD-L1:Associated with
poorer OS (≥4 PD-L1

(+) CTCs): adjusted HR = 3.22 (1.33–7.79)
Predicted response to checkpoint inhibitors

Wang et al., 2020 [246] CellSearch™ N = 344
BCLC stage 0-A/B-C:

73.8%/26.2%
Treatment: LR ± adjuvant TACE

After propensity score matching, in CTC positive
patients’ adjuvant TACE provide benefits in:

TTR (45.8 vs. 9.8 months, p < 0.001)
OS (not reached vs. 36.4 months; p < 0.001)

Wang et al., 2020 [219] ChimeraX®-i120 platform N = 193 Stage: Milan-in 60%
Treatment: LT

Post-operative CTC count ≥1 independently associated
with tumor recurrence: adjusted HR = 2.67 (1.50–4.74)

† Cohort of Guo et al., 2014 [202] and Guo et al., 2018 [200] may overlap. Abbreviations: AFP, alpha-fetoprotein; ABL, ablation; AUC, area under the curve; BCLC, Barcelona Clinic Liver Cancer; BSC, best
supportive care; DC, disease control; DFS, disease-free survival; EHS, extrahepatic spread; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HR, hazard ratio; IAT, intra-arterial
therapies; LR, liver resection; LT, liver transplantation; OS, overall survival; OR, odds ratio; NS, not significant; NR, not reported; PFS, progression-free survival; PVT, portal vein thrombosis; RFS, recurrence-free
survival; RT, radiotherapy; SIRT, selective internal radiation therapy; TACE, transarterial chemoembolization; TTP, time to progression; TTR, time to recurrence.
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5. Conclusions and Future Perspectives

The identification of reliable non-invasive biomarkers that could allow a personalized
management of HCC patients has become a key priority in the last years. Circulating
markers that can integrate or eventually replace percutaneous liver biopsy, overcoming its
limitations, are crucial. In addition, HCC detection at early stages, when it is susceptible
to potentially curative treatments, and prediction of response to therapy are critical to
improve patient survival. Although fewer data are available for HCC compared to other
malignancies, numerous recent publications demonstrated very interesting and promising
results regarding liquid biopsy role in diagnosis, prognosis, and prediction of response to
treatment. cfDNA, cfRNA, EVs, and CTCs emerged as attractive liquid biopsy candidates
because they fulfil many of the major characteristics of an ideal biomarker. To date, the
closest approach to reaching the introduction in clinical practice, after the necessary large
and prospective studies, is cfDNA methylation profiling for early detection of HCC in
patients at risk. Mutational profiling of cfDNA and CTCs analyses are dependent on
tumor burden and therefore likely more useful in intermediate or advanced settings as
prognostic and predictive tools. Even tough fewer data are currently available, the analysis
of EVs could provide biomarkers at every HCC stage and has the advantage to provide
functional information (e.g., interactions between cancer cells and tumor microenvironment
or distant cells).

Although the large amount of encouraging data collected in recent years predict a
bright future for liquid biopsy in HCC, its widespread clinical application is yet not on the
horizon. The majority of data supporting its utility derives from proof-of-concept studies,
mainly retrospective, and not validated by different researchers. The main limitation that
hinders the routine application of liquid biopsy is the lack of standardization, absence of
accepted standard operating procedures, and the lack of comparability between existing
approaches [47]. The standardization of pre-analytical, analytical, and post-analytical
variables should be addressed. Considering for instance cfDNA analysis, the avoidance
of white blood cells (WBC) lysis during blood collection and processing is important to
prevent dilution of tumor circulating fragments with non-tumoral DNA (pre-analytical
phase). Moreover, transportation, processing and storage temperature are also critical,
impacting on WBC stability and cfDNA degradation. Since cfDNA has a short half-life
and there are time-dependent changes of DNA in blood collection tubes (because of the
degradation from DNase activity), plasma should be isolated within an hour from collection
(analytical phase). Considered the relevance of these and other variables on the final results,
the standardization of methodological protocols is an essential step to take in order to
integrate liquid biopsy in the everyday clinical practice.

With the aim of identifying clinically useful diagnostic biomarkers, studies should
include as controls only patients at risk of developing HCC (i.e., cirrhotics or high risk
chronic hepatitis patients), who represent the ideal target for surveillance [5]. This is not
trivial, also considering that it could make more difficult the identification of specific
diagnostic biomarkers. In fact, chronic hepatitis and cirrhosis are pre-cancerous conditions
in which some of the molecular modifications found in overt HCC are already in place.
For instance, during the progression of liver damage the pattern of DNA methylation
changes over time in multiple hepatic cell types, and the release of methylated cfDNA
from dying hepatocytes has been demonstrated to be a useful approach to evaluate fibrosis
grade [247,248]. In order to have a chance of being introduced in clinical practice, liquid
biopsy biomarkers should be specific enough to distinguish early-stage HCC from simple
cirrhosis, a condition in which the molecular pathways leading to cancer may be already at
least in part activated. In addition, when tumor burden is low, highly sensitive tests are
necessary to overcome the limitation posed by the small amount of circulating cancer by-
products. Even though these new liquid biopsy strategies represent very promising tools,
another not negligible consideration should be done about their costs. While currently
used biomarkers (AFP) are measured with unexpensive and simple methods, EVs isolation
and analysis, cfDNA mutational profiling and epigenetic analysis, and CTCs enrichment
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methods require devoted personnel and are all costly and time consuming. Nevertheless,
such limitations will likely be overcome by advances in technology that will make these
determinations easier and accessible to most laboratories.

Once these new generation reliable biomarkers will be developed and validated, the
final step will be to determine the optimal way to integrate them in the clinical management
of patients with HCC. The replacement of currently used tools in the management of HCC
patients by liquid biopsy biomarkers is unrealistic, but they will likely be integrated in the
process, providing a stronger predictive power. An interesting approach in surveillance,
which remains to be evaluated in ad hoc studies, could be the combined evaluation of
liquid biopsy biomarkers with the currently used periodic liver ultrasonography. Given
the possibility of minimally invasive repeated sampling, liquid biopsies can enable real-
time monitoring of disease during therapy and could supplement imaging information to
provide a more careful assessment of the tumor. Hopefully, in the future, the analysis of
circulating HCC by-products will also allow personalized molecular targeted therapy. In
order to achieve these important goals, not only prospective observational trials should be
conducted, to correlate liquid biopsy biomarkers with clinical outcome, but also interven-
tional studies, in which cfDNA, EVs, and CTCs analysis will prompt therapeutic decisions,
are necessary.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13092274/s1, Table S1: Studies on use of microRNAs (miRNAs) as biomarkers in HCC.
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