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Abstract: In this review, we discuss the emerging role of Cellular Retinoic Acid Binding Protein 1
(CRABP1) as a mediator of non-canonical activities of retinoic acid (RA) and relevance to human
diseases. We first discuss the role of CRABP1 in regulating MAPK activities and its implication in
stem cell proliferation, cancers, adipocyte health, and neuro-immune regulation. We then discuss an
additional role of CRABP1 in regulating CaMKII activities, and its implication in heart and motor
neuron diseases. Through molecular and genetic studies of Crabp1 knockout (CKO) mouse and
culture models, it is established that CRABP1 forms complexes with specific signaling molecules to
function as RA-regulated signalsomes in a cell context-dependent manner. Gene expression data and
CRABP1 gene single nucleotide polymorphisms (SNPs) of human cancer, neurodegeneration, and
immune disease patients implicate the potential association of abnormality in CRABP1 with human
diseases. Finally, therapeutic strategies for managing certain human diseases by targeting CRABP1
are discussed.

Keywords: CRABP1; retinoic acid; neurodegeneration; inflammation; metabolism; cancer;
human disease; non-canonical; MAPK; CAMKII

1. Introduction: Canonical and Non-Canonical Activities of All-Trans Retinoic
Acid (atRA)

Vitamin A (also known as retinol) is an essential nutrient required for almost all
physiological processes [1]. The profound effects of vitamin A are elicited mainly through
atRA, as well as its various isomers. Through decades of studies, it has been established that
atRA, as the principal active metabolite of vitamin A, executes its activities through binding
to its nuclear receptors, RA receptors (RARs), which usually pair with Retinoid X Receptors
(RXRs), can bind the cis isomers of atRA. These RAR/RXR pairs, in various combinations,
act to regulate the transcription of numerous target genes that harbor RA response elements
(RAREs) in their regulatory regions [2,3]. RAR/RXR pairs often also act together with
other transcription factors to confer further specificity in the expression of target genes,
resulting in the tight regulation of specific cellular processes such as proliferation [4],
differentiation [5], apoptosis [6], and other physiological functions. These ultimately ensure
the homeostasis of most organ systems/physiological processes [2,7]. Dysregulated RA
signaling often leads to disease conditions [8–10]. These RAR-mediated activities of RA,
which occur in the nucleus to regulate the execution of genetic programs, generally span
an extended period of time (days to years) and are referred to as canonical activities of
RA [11]. An extensive body of work has determined that the cellular retinoid-binding
proteins (CRABPs) I and II facilitate these canonical activities of RA. Rigorous biochemical
studies have characterized classical CRABP1 functions in RA binding, sequestration, and
metabolism via cytochrome (CYP) P-450 enzymes [12,13], (reviewed in-depth in [14–17])
while CRABP2 is responsible for the transport of RA to the nucleus [14,15,18,19].

In 2008, a study first reported a novel activity (effect) of atRA that occurred
rapidly (within minutes) to alter the protein phosphorylation status of a transcription
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factor TR2 in maintaining stem cell proliferation and stemness potential [20]. Subsequent
studies [21–23] further documented similar activities of atRA that shared several features:
(1) RAR-independence, (2) occurring in the cytosol without altering gene expression, and
(3) rapid (typically within minutes) action. These novel activities of atRA were collectedly
referred to as “non-canonical” and were later found to be mediated by the Cellular Retinoic
Acid Binding Protein 1 (CRABP1) [22]. These CRABP1-mediated non-canonical activities
of atRA were ultimately validated in careful studies of Crabp1 knockout (CKO) mice and
cultures, which also revealed the physiological/disease relevance of CRABP1 [24–33].

Extensive molecular and cell biological studies have identified specific cytosolic sig-
naling pathways that can be targeted by CRABP1 in a cell context-dependent manner.
It is believed that CRABP1 functions as a signal integrator by forming various specific
RA-regulated signaling protein complexes (signalsomes) in different cells to modulate spe-
cific cellular processes/functions. Below we summarize two validated CRABP1-mediated,
non-canonical RA signaling pathways, and discuss evidence/implications for the role of
CRABP1-signalsome in human diseases.

2. CRABP1-Signalsomes

CRABP1 is the most highly conserved retinoid-binding protein among all the known
binding proteins and nuclear receptors for retinoids. CRABP1 binds, specifically, atRA
with a high affinity (<1 nM) [34–37]. Given its high affinity toward atRA and cytosolic
distribution, CRABP1 has been proposed and shown to sequester the poorly soluble RA
from the aqueous cytosolic environment [12–17,30]. This led to the belief that CRABP1
would function to control RA availability in the cell, which indeed was supported by several
molecular studies, by altering the expression level of CRABP1, that documented subsequent
changes in the expression of RA-responding genes [38,39]. As introduced earlier, CRABP1
could participate in RA metabolism by delivering RA to CYP P-450 metabolic enzymes and
microsomes via protein-protein interactions and substrate channeling [15,40]. However,
the physiological role of CRABP1 in mediating the newly observed, non-canonical activity
has remained largely elusive. Only recently, studies of CKO mice and cultures in various
physiological/pathological conditions (see the following section) began to shed light on
multiple functional roles of CRABP1 in modulating specific cellular processes, which
contributed to the “non-canonical” activity. The fact that CRABP1 is important for multiple
signaling pathways is consistent with the extremely high conservation of its amino acid
sequence across animal species. Figure 1 shows the reported amino acid sequence alignment
of CRABP1 among five animal species including human [41], pig [42], rat [43], mouse [44],
and bovine [45]. Importantly, there is only a single residue, at position 86, that is not
conserved, with alanine in human and pig sequences and proline in mouse, rat, and bovine
sequences (Figure 1).
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(ERK). Activation of this signaling pathway generally leads to cell proliferation and 
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ation in CRABP1-deleted hippocampus), which was consistent with the CKO mouse be-
havior indicating improved memory function [25]. Importantly, the hippocampus is 
among the tissues where CRABP1 is most highly expressed, especially in the NSC-rich 
region of the dentate gyrus. Thus, CRABP1 can participate in the homeostatic control of 
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The extreme conservation of CRABP1 during evolution would suggest important
functional constraints. The evidence for this notion was obtained in careful studies of
CKO mouse phenotypes (see later). Mechanistic details were provided in biochemical
and cellular studies that first revealed specific context-dependent “binding partners” of
CRABP1, which were rigorously defined according to at least two criteria: (a) specific and
direct binding to CRABP1, which could be validated in vitro, and (b) forming specific cy-
tosolic protein complexes that could be validated in vivo. Functional consequences of these
CRABP1-containing protein complexes were each found to be capable of modulating certain
specific cytosolic signaling pathways in a particular cell type. These CRABP1-containing
protein complexes are therefore referred to as CRABP1-signalsomes. Currently, two types of
CRABP1-signalsomes have been identified, which are discussed in the following sections.

2.1. CRABP1-MAPK (RAF-MEK-ERK) Signalsome in Stem Cells, Cancers

A specific Crabp1-signaling complex was first proposed after studying embryonal
carcinoma (EC) and embryonic stem (ES) cells that were stimulated by a physiological
concentration (10 nM) of atRA to modulate their proliferation/differentiation (reviewed
in [46,47]). The initial study detected a very rapid (within minutes) response of these cells to
atRA administration, which occurred in the cytosol and involved a mitogen-activated pro-
tein kinase (MAPK) pathway to modify target proteins for specific post-translational modifi-
cations [20–23]. This atRA-elicited signal was found to involve CRABP1, and could rapidly
(within minutes) alter (dampen) the activity of the initiating kinase of the MAPK pathway,
which is the rapidly Accelerated Fibrosarcoma (RAF) kinase and is a cell membrane-
anchored kinase activated by the mitogenic signal Ras GTPase [48]. The MAPK kinase
signaling cascade is comprised of Ras GTPase which activates RAF, then mitogen-activated
protein kinase kinase (MEK), and then extracellular-signal-regulated kinase (ERK). Ac-
tivation of this signaling pathway generally leads to cell proliferation and growth for
stem/progenitor cells [48]. Through biochemical and molecular studies, it is now estab-
lished that CRABP1 competes with Ras by directly interacting with RAF at its Ras-binding
domain, thereby dampening MAPK signal propagation and ultimately modulating (re-
ducing) cell proliferation of ES, EC, and neural stem cell (NSC) [22,25,29]. The proposed
mechanistic model for CRABP1-MAPK signalsome is shown in Figure 2.

To this end, the physiological/pathological relevance of CRABP1 is most evident
in cancers. For instance, the CRABP1 gene has been reported as a tumor suppressor
or an oncogene in animals and humans [15,49–61]. In comparing CKO and wild-type
ESCs, as well as in gain- and loss-of-functional studies of cancer cell models, it was found
that CRABP1 was involved in modulating cell cycle control [22]. By competing with
Ras for forming complexes with RAF/MEK, atRA-CRABP1 dampened mitogen-activated
ERK activity and suppressed cell cycle progression by expanding the G1 phase [22,29].
This supports the notion that CRABP1 can be a tumor suppressor. Additional evidence
supporting a functional role for CRABP1 in stem cell proliferation was obtained from
studying CKO mice that were found to have expanded NSC pools (as a result of enhanced
NSC proliferation in CRABP1-deleted hippocampus), which was consistent with the CKO
mouse behavior indicating improved memory function [25]. Importantly, the hippocampus
is among the tissues where CRABP1 is most highly expressed, especially in the NSC-rich
region of the dentate gyrus. Thus, CRABP1 can participate in the homeostatic control of the
NSC pool in the brain. Readers are referred to an in-depth review of this CRABP1-regulated
signaling pathway by Nagpal and Wei [62].

2.2. Crabp1-MAPK Signalsome in Metabolism and Immunity

Lin et al. first observed that CKO mice exhibited increased high-fat diet (HFD)-induced
obesity and insulin resistance (IR), suggesting a protective role for CRABP1 against the
development of metabolic disorders. A molecular study of CKO mice elucidated an under-
lying mechanism for this metabolic phenotype that, in normal adipocytes, CRABP1 could
negatively regulate ERK activity to inhibit adipogenesis and adipose hypertrophy [28].
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Therefore, CKO mice are more prone to HFD-induced obesity and IR. To this end, it has
been reported that pharmacological doses of RA could inhibit adipogenesis and protect
against obesity, and this was attributed, primarily, to RAR-mediated activities [63–67].
These recent studies of CKO models revealed CRABP1 as an additional player in mediating
physiological activities of atRA regarding metabolic homeostasis and the maintenance of
healthy adipose tissue [28].
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Figure 2. CRABP1-MAPK signalsome. The action of CRABP1-signalsome in growth-factor stimulated
MAPK activity is mediated by its direct competition with Ras, resulting in dampened MAPK activa-
tion. CRABP1: Cellular Retinoic Acid Binding Protein 1, RA: retinoic acid, RAF: rapidly Accelerated
Fibrosarcoma, MEK: mitogen-activated protein kinase kinase, ERK: extracellular-signal-regulated
kinase.

In examining the systemic inflammatory status/potential of CKO mice, it was found
that HFD-fed CKO mice all had increased systemic inflammation, indicated by invading
immune cells in adipose tissue [28], increased inflammatory driver Receptor Interacting
Protein 140 (RIP140) (gene name Nrip1) [68] in the blood [31], elevation in inflammatory
cytokines, and significantly enhanced macrophage M1 polarization (unpublished). Previous
studies also indicated that CKO mice had overall increased inflammation in the heart,
indicated by increased cardiac fibrosis [26], and an altered anxiety and stress response in
their HPA axis [32]. To this end, CRABP1 was found to be involved in exosome secretion
from CRABP1-expressing neurons. Specifically, the RIP140-containing exosome population
was significantly expanded in the blood and cerebral spinal fluid (CSF) of CKO mice,
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due to, in part, increased exosome secretion from CKO neurons [31]. Importantly, these
neuron-derived RIP140-containing exosomes could be engulfed by macrophages to increase
their inflammatory M1 polarization, thereby increasing systemic inflammation. This study,
by monitoring the intercellular transfer of the inflammatory driver, RIP140, demonstrates
exosome secretion as a potent means to transfer neuronal inflammation into systemic
inflammation; mechanistically, this study identifies CRABP1 as an important regulator
of exosome secretion from specific CRABP1-expressing neurons, which also involves the
MAPK-ERK signaling in these neurons [31].

2.3. CRABP1-CaMKII Signalsome in Cardiomyocytes and Motor Neurons (MNs)

A different CRABP1-signaling complex was identified from studying deteriorated
heart function of CKO mice [26,27], and their premature weakening in motor function [33].
The expression study confirmed CRABP1 expression in cardiomyocytes [26] (relevant
to the CKO heart phenotype) and motor neurons (relevant to the CKO motor function
phenotype) [33]. This signaling complex is comprised of CRABP1 and calcium-calmodulin-
dependent kinase 2 (CaMKII), an enzyme critical to calcium signaling/handling and highly
enriched in both cardiomyocytes [69] and neurons [70,71]. It is known that CaMKII reg-
ulates contraction in cardiomyocytes [69] and long-term potentiation in neurons [70,71],
respectively. Both types of cells are highly dependent upon calcium homeostasis for their
functions where CaMKII is a key mediator of calcium signaling [72]. All the CaMKII
isoforms have a conserved architecture comprised of the kinase, regulatory, and associ-
ation/oligomerization domains, and share the same activation mechanism through the
binding of calmodulin to the calmodulin-binding domain (CaMBD) within its regulatory do-
main. CaMKII activation occurs when intracellular (Ca2+) increases and binds calmodulin.
Ca2+-calmodulin then binds and activates CaMKII, which is often marked by phospho-
rylation at threonine 286/7 (T286/7), depending on the CaMKII isoform [73,74]. In vitro
data showed that CRABP1competes with calmodulin by directly interacting with CaMKII
at the CaMBD [26,27]. Therefore, CRABP1 could dampen Ca2+/Calmodulin activated
CaMKII activity. Since over-activation of CaMKII is a major trigger of the death/damage of
cardiomyocytes [75] and neurons [76], by dampening CaMKII over-activation, CRABP1
can play a protective role in maintaining the health of both the heart and neurons. These
are elaborated on in the following section. The proposed mechanistic model for CRABP1-
CaMKII signalsome is shown in Figure 3.

2.3.1. CRABP1-CaMKII Signalsome in Cardiomyocytes

CKO mice naturally and gradually exhibited cardiac hypertrophy, reflected in their
significantly depressed heart function in older animals [26]. Using the isoproterenol (ISO)-
induced cardiomyopathy model for heart failure [77,78], studies showed that CKO mice
were more sensitive/vulnerable to ISO treatment. Acute, high-dose ISO treatment acti-
vates beta-adrenergic receptors to induce acute cardiomyocyte contractions, triggering
a pathological condition of heart overactivation. Chronic ISO treatment induces more
severe cardiac hypertrophy, and, eventually, fibrosis and necrosis occur, mimicking heart
failure in human patients [77,78]. Interestingly, in the acute ISO treated model, CKO mice
were more sensitive and exhibited a significantly increased CaMKII activity marked by
elevated T286 phospho-status and phosphorylation of the CaMKII cardiac substrate, PLN.
These were supported by molecular studies described above, that CRABP1 dampened
CaMKII activation by competing with calmodulin for its binding to CaMKII [26]. In a
subsequent study [19], it was found that pretreatment with atRA before chronic ISO ad-
ministration could attenuate ISO-induced heart damage and CaMKII activity in the wild
type, but not the CKO mice [27]. These studies clearly demonstrated a protective role for
CRABP1, as well as the potential application of CRABP1-ligand such as RA, in certain heart
damage/diseased conditions.
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Figure 3. CRABP1-CaMKII signalsome. Upon cardiac or neuronal stimulation and subsequent
intracellular Ca2+ increase to activate CaMKII, CRABP1 directly competes with calmodulin (CaM)
to dampen CaMKII enzyme activity to ultimately modulate cardiac and/or neuronal stimulation.
CRABP1: Cellular Retinoic Acid Binding Protein 1, RA: retinoic acid, CaMKII: calcium-calmodulin-
associated dependent kinase 2.

2.3.2. Crabp1-CaMKII Signalsome in MNs

CRABP1 expression is tissue and cell-type specific. In the central nervous system, it is
specifically and highly expressed in spinal cord MNs [33]. These neurons project to and
innervate, primarily, muscles to form tightly regulated structures called neuromuscular
junctions (NMJs) [79]. Neuronal activity from MNs is propagated through NMJs to elicit
muscle contraction, and calcium signaling/handling (mediated by CaMKII) is critical to the
function of both presynaptic (MN) [80–82] and post-synaptic (muscle) [83,84] compartments.
MNs release neurotransmitters such as acetylcholine to induce muscle contraction, and
express Agrin, a proteoglycan essential for NMJ development and maintenance [79,85].
Crabp1 is specifically expressed in the presynaptic compartment, comprised of MNs, but is
not expressed in the post-synaptic muscle compartment [33]. This study identified CRABP1-
CaMKII signaling in MNs, which contributed to the regulation of Agrin expression and its
downstream target, the muscular LRP4-MuSK signaling that maintained AChR clusters
and healthy NMJ [79,86]. By comparing to wild-type mice, CKO mice were found to exhibit
age-dependent more profound motor deterioration, reflected in their significantly reduced
grip strength compared to the age-controlled group. Detailed histological studies revealed
more severely damaged NMJs in CKO mice as compared to wild-type mice, characterized
by irregular NMJ morphology, fragmentation, and reduced number. Consistently, in the



Nutrients 2022, 14, 1528 7 of 15

CKO spinal cord tissues, CaMKII activity was significantly increased as compared to WT
spinal tissues. Pathological CaMKII activation (overactivation) occurs in multiple disease
states of the nervous system, frequently referred to as excitotoxicity [76]. In MN1 culture
(a spinal MN cell line), inhibiting CaMKII via KN-93 (mimicking CRABP1 dampening
effect) increased their Agrin expression, consistent with the reduction in Agrin detected in
CKO NMJ tissues. It is concluded that CRABP1, in MNs, can target CaMKII to dampen its
over-activation, which provides a protective mechanism against over-activation of CaMKII
that could lead to MN degeneration. Importantly, re-expressing CRABP1 in young (before
disease onset) CKO mice could partially rescue their motor deficits and correct CaMKII
activity and Agrin expression.

3. Crabp1 in Two Common Human Diseases: Cancer and Neurodegeneration

CRABP1 has been studied mostly in the context of nutrition, in particular vitamin A
metabolism and homeostasis. The increasingly reported biological functions of CRABP1
as described above are all very different from the canonical RAR-mediated effects that
typically alter genome programming and gene expression. The physiological relevance of
these CRABP1-mediated effects has been illustrated in both CKO mice and tissue culture
systems which model various human diseases. The multiple functions of CRABP1 would
predict numerous disease conditions where CRABP1 can be involved. Indeed, CKO mice
exhibited multiple phenotypes mimicking human diseases [24–32]. In tissue cultures, it is
possible to examine the effects of its best-known ligand, atRA, in eliciting non-canonical
activities through CRABP1, and to demonstrate holo- and apo-CRABP1’s functions in
specific cell types. In a genetically manipulated mouse model such as CKO, it is possible
to illustrate how CRABP1 can participate in physiological processes and prevent diseased
conditions/progression. However, given the technical difficulty in manipulating vitamin A
and RA status in mice, the contribution of endogenous RA to the prevention of diseases, via
CRABP1, remains elusive. Nevertheless, the implication of CRABP1 in human diseases can
be uncovered by mining the available human data sets and literature, which has yielded
some interesting information supporting a potential role for CRABP1 in human diseases.
Below, we discuss several human studies/data sets that have revealed altered expression
or protein sequence of CRABP1 in human patients. First, the reported genetic association of
CRABP1 in various human diseases is summarized in Table 1, followed by a discussion on
specific implications in cancers, neurodegeneration, and other rare diseases. The relevant
accession IDs of CRABP1 expression studies from the EMBL-EBI Expression Atlas Data
Repository [87] are provided in Table 1.

Table 1. Changes in CRABP1 detected in human patients.

Cancer Type CRABP1 Status Reference

Breast Cancer Over-Expression [61]
Prostate Cancer Over-Expression [60]

Mesenchymal & Neuroendocrine Tumors Over-Expression [59]
Head and Neck Squamous Cell Carcinoma (HNSCC) Over-Expression [58]

Colorectal Cancer Silenced
(Promoter Hypermethylation) [57]

Thyroid Cancer
Silenced

(Promoter Hypermethylation) [56]

Reduced Expression [54]

Ovarian Cancer
Silenced

(Promoter Hypermethylation) [53]

Reduced Expression [52]

Esophageal Squamous-Cell Carcinoma (ESCC) Silenced
(Promoter Hypermethylation) [51]

Renal Cell Carcinoma Reduced Expression [50]

Acute myeloid leukemia (AML) Silenced
(Promoter Hypermethylation) [49]
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Table 1. Cont.

Neurodegenerative Diseases CRABP1 Status Reference

Amyotrophic Lateral Sclerosis (ALS) Reduced Expression [88]
Spinal Muscular Atrophy (SMA) Reduced Expression [89]

Late-Stage Age-Related Macular Degeneration (AMD) Reduced Expression [90]

Immune Disorders CRABP1 Status Reference

Multiple Sclerosis Reduced Expression [91]

Cutaneous Lupus Erythematosus (CLE) Reduced Expression [92]
# E-MTAB-5542

Psoriasis Reduced Expression [93]
# E-GEOD-52471

Vitiligo Reduced Expression [94]
# E-GEOD-65127

Inflammatory Bowel Disease (IBD) Silenced
(Promoter Hypermethylation) [95]

Other Diseases CRABP1 Status Reference

Moyamoya Disease (MMD) Increased Protein Level [96]
Diabetic Neuropathy Increased Expression [97]

HIV Therapy-Associated Lipodystrophy and
Metabolic Syndrome Inhibited Function [98]

# EMBL-EBI Expression Atlas Data Repository Accession ID.

3.1. CRABP1 in Cancers

Dysregulation of CRABP1 expression in cancers is a well-documented phenomenon
(Table 1; [15,49–61]). Furthermore, cancer databases such as The Cancer Genome Atlas
(TCGA) and cBioPortal [99,100] for Cancer Genomics have revealed numerous single
nucleotide polymorphisms (SNPs) in patients across various cancers. These SNPs could
result in various defects in CRABP1 such as synonymous mutation, splicing alternation,
missense mutation, and augmented expression levels. Figure 4a lists SNPs present in
patients from various cancer types that occurred in the −3 kb upstream regulatory region,
which could affect CRABP1 expression levels; Figure 4b lists SNPs in the coding region that
could alter the CRABP1 sequence. However, no experimental data have been provided
to validate the “disease association” of these SNPs. Nevertheless, given the conservation
of CRABP1 across mammals, any alterations in CRABP1 caused by these SNPs could
potentially disturb CRABP1 functions and normal cellular processes especially proliferation
which could impact tumor formation or progression.

3.2. CRABP1 in Neurodegeneration

CRABP1 expression has been found to be reduced in the following neurodegener-
ative disease conditions: amyotrophic lateral sclerosis, spinal muscular dystrophy, and
age-related macular degeneration. Data mining of the ALS Variant Server (http://als.
umassmed.edu/, accessed on 31 January 2022) revealed several SNPs present in ALS
patients that are located in the upstream regulatory region or in the coding region of
CRABP1 (Figure 5a,b). These SNPs in ALS patients could potentially alter CRABP1 levels
or functions, thereby contributing to disease initiation or progression. However, experi-
ments are needed to verify the disease relevance of these SNPs. Interestingly, a study by
Jiang et al. identified CRABP1 as the most significantly suppressed gene in ALS pa-
tients’ motor neurons (MNs) as compared to healthy subjects, suggesting that CRABP1
may play a role in ALS etiology. This is consistent with the severe motor degeneration
phenotype of CKO mice in older age groups [33]. It would be interesting to experimentally
examine the potential contribution of SNPs identified from the AVS database in various
neurodegenerative diseases.

http://als.umassmed.edu/
http://als.umassmed.edu/
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The importance of CRABP1 in neurons, particularly MNs, is further supported by the
finding that the mouse Crabp1 gene is tightly regulated by sonic hedgehog (Shh) [30], a
potent inducer of motor neuron differentiation [101]. It appears that Shh activates glioma-
associated oncogene homolog 1 (Gli1) that binds the Gli target sequence in Crabp1′s
regulatory region, thereby up-regulating Crabp1 expression [30]. Therefore, for MN differ-
entiation and function, proper expression of CRABP1 is important.
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3.3. CRABP1 in Rare Human Diseases

Altered CRABP1 level or function has also been observed in other diseases. In Moy-
amoya Disease (MMD), a vascular disease characterized by progressive occlusion of cere-
bral arteries [102], CRABP1 protein level was found to be increased in the CSF of MMD
patients [96]. Kim et al. speculated that the increase in CRABP1 during MMD progression
might disrupt the regulatory activity of retinoids on growth factor signaling responsible for
arterial occlusion [96]. A study by Hur et al. also speculated an increase in CRABP1 as a
potential biomarker of diabetic neuropathy [97]. CRABP1 has also been implicated in HIV
therapy associated with lipodystrophy and metabolic disorder. Carr et al. proposed that the
toxic effects on adipose and metabolism associated with the use of HIV-1 protease inhibitors
were, in part, due to these inhibitors’ direct binding and inhibiting CRABP1 function [98].
However, no experimental data have been presented to substantiate or support a role for
CRABP1 in these rare human diseases.

4. Conclusions and Future Directions

The CRABPs have been established as key players in RA binding, sequestration,
metabolism, and nuclear transport to RARs. In addition to these classical functions, novel
roles in the CRABPs have also been observed, such as CRABPII in RNA transcript sta-
bilization [103,104] and as a tumor suppressor in breast cancer [105,106]. Here, we have
reviewed the novel functions of the CRABP1 as signalsomes, particularly in the physiolog-
ical contexts of (1) MAPK regulation in growth, cancer, metabolism, and immunity and
(2) CaMKII regulation in cardiomyocyte and motor neuronal function.

Clinically, RA and its analogs have long been proposed for therapeutic applications in
managing different diseases [107,108]. Through decades of studies, most of these efforts
have not proven to be fruitful because of the wide spectrum of retinoid toxicities. This has
presented a particularly serious concern in using retinoids to manage chronic diseases such
as metabolic/inflammatory/neurological diseases [109–113]. The most efficacious appli-
cation of retinoids has been in topical application, such as for treating acne vulgaris [114]
and in aggressively treating severe or end-stage cancer patients, particularly an aggressive
form of leukemia (acute myeloid leukemia) [115]. Most other attempts have proven to
be not successful due to toxic side-effects which are caused by the RAR/RXR-mediated
activities. Given that CRABP1 is specifically expressed in limited types of cells and only in
certain stages of cell differentiation, and that CRABP1 participates in very specific signaling
pathways, it might be more feasible by targeting CRABP1 using selective ligands that
do not act on RARs or RXRs. This strategy exploits the collected evidence, as reviewed
here, that CRABP1 mediates non-canonical RA signaling pathways that are cell type- and
context-specific.

Currently, two novel CRABP1-selective compounds, C3 and C4, have been docu-
mented, which have been shown to modulate, specifically, the MAPK signaling pathway in
CRABP1-expressing cells [24,31]. The efficacy of C3 and C4 has been demonstrated to in-
duce apoptosis (in cancer cells) [24] and regulate exosome secretion (in neurons) [31]. These
in vitro results would encourage further exploitation of this potential therapeutic strategy,
such as in managing cancers and inflammation. Other groups have recently explored
the use of synthetic ligands to target CRABP1. Tomlinson et al. determined the crystal
structures of CRABP1 bound to fatty acids and a synthetic retinoid, DC645 [116]. DC645
appeared to bind CRABP1 in a manner similar to that of RA, and the binding resulted in
minimal structural changes in CRABP1. Interestingly upon ligand binding, side-chains on
the beta-sheet surface underwent conformational re-arrangements. Therefore, structural
information obtained from these biophysical studies supports our fundamental hypothesis
that CRABP1 signalsome acts, primarily, through its surface interactions that involve the
beta-sheet face of CRABP1. Zheng et al. determined that Maprotiline can directly bind and
inhibit CRABP1, resulting in dampened ERK-mediated SREBP2 activity and ultimately
reducing tumor growth in a hepatocarcinoma xenograft model [117].
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Additionally, the possibility of targeting CRABP1, such as by gene or cell therapy,
is underscored by clinical data of human studies which have clearly implicated that a
reduction in CRABP1 level was correlated with disease severity or its progression. To
correct this deficiency, gene therapy (to deliver CRABP1-expressing vector) may be carried
out to target implicated tissues. Further, a cell therapy-based strategy may also be feasible.
For instance, CRABP1-expressing adipocytes may be locally delivered to adipose tissues to
help correct the abnormally expanded obesity.

For future studies, the most important task would be to identify and develop CRABP1-
selective and signaling pathway-specific ligands that do not elicit RAR-mediated toxicity.
In addition to synthetic compounds, it would be of great interest to identify and study
compounds derived from naturally occurring sources, such as plants and meats. These
naturally occurring ligands, if present, would be very useful to the understanding and ap-
plication of nutrients that may enhance the potential physiological and protective functions
of CRABP1 signalsomes. It would also be of great interest to identify other components
and networks that may comprise new CRABP1 signalsomes which remain to be uncovered.
Finally, a more systemic investigation into human diseases where CRABP1 could play a role
is needed. Given that CKO mice have CRABP1 deleted from birth, their disease spectrum
may not reflect the entire spectrum of human diseases involving CRABP1. Human genetic
association studies can provide important clues into this important research direction, and
may uncover more physiologically important CRABP1-signalsomes that can also deliver
non-canonical activities of RA.
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