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a b s t r a c t

Viral particles have been detected in the underground biosphere
where they could be one of the main factors impacting microbial
diversity, biogeochemistry and evolution. To characterize the viral
component in the deep subsurface biosphere, we sequenced the
metagenome of subsurface aquifer located in the Tomsk region of
Russia, sampled via 2.8-km-deep borehole 5P. The de novo
assembly of metagenomics sequences yielded three circular
genomes assigned to bacteriophages of the order Caudovirales. The
annotated genome sequences of these bacteriophages have been
deposited in the GenBank database under the accession numbers
MK113949, MK113950 and MK113951.
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Specifications table
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Table 1
General characteristics of genome se

Parameter

Genome size (bp)
G þ C content (%)
Predicted genes
Genes with assigned functions
GenBank accession number
ubject area
 Biology

ore specific subject area
 Metagenomics

ype of data
 Genome sequences of viruses

ow data was acquired
 Shotgun DNA sequencing using Illumina HiSeq 2500 and MinION

(Oxford Nanopore)

ata format
 Analyzed complete genome sequences

xperimental factors
 Complete genome sequences of three viruses were assembled from

metagenome of groundwater

xperimental features
 The water sample from borehole 5P, drilled to a depth of 2.8 km, was

collected and then the total DNA was extracted for metagenome
sequencing.
ata source location
 Chazhemto village in the Tomsk region of Russia (58.0758N; 82.8374 E)

ata accessibility
 Data is submitted to NCBI GenBank and it is in the public repository.

The direct URL to data is https://www.ncbi.nlm.nih.gov/nuccore/
MK113949;
https://www.ncbi.nlm.nih.gov/nuccore/MK113950;
https://www.ncbi.nlm.nih.gov/nuccore/MK113951
elated research article
 None
R
Value of the data

� This data provides information about genetic potential of three viruses from the deep subsurface
aquifer.

� Data is applicable for comparative genomic studies of viruses of prokaryotes.
� Data will help to explore the diversity and ecological role of viruses in the deep subsurface

ecosystems.
1. Data

Viral particles have been increasingly detected in extreme habitats including the underground
biosphere. In such habitats, viruses are one of the main factors of microbial diversity, biogeochemistry and
evolution [1,2]. To determine the viral component in the underground biosphere of Western Siberia, we
sequenced the metagenome of a deep subsurface aquifer located in the Tomsk region of Russia, sampled
via an oil exploration borehole 5P, drilled to a depth of 2.8 km [3]. The aquifer presumably was formed in
the sedimentary rocks of the Mesozoic Era. The de novo assembly of metagenomics sequences yielded
three circular-mapping genomes assigned to the tailed bacteriophages of the order Caudovirales. The data
in Table 1 represents genome annotation summary, including genome size, GþC content and the number
of predicted genes of each bacteriophage genome.
quences of viruses.

Phage 5P_1 Phage 5P_2 Phage 5P_3

41,683 74,215 39,501
45.1 53.4 61.6
56 105 57
8 21 16
MK113949 MK113950 MK113951
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2. Experimental design, materials, and methods

2.1. Sample collection and preparation

Water samples were taken from a sampling line at the borehole 5P in April, 2016 [4]. Cells from
20 L of borehole water were collected on 0.22 μm cellulose nitrate membranes (Sartorius, Germany)
using a Sartorius filtration unit.
2.2. DNA extraction

The filters were frozen in liquid nitrogen and then ground and melted with TE buffer in a water
bath at 37 °C. The total DNA was extracted using Power Soil DNA Isolation Kit (MO BIO Laboratories
Inc, Carlsbad, USA). About 1 μg of total DNA was isolated.
2.3. Sequencing and assembly

Metagenomic DNA was sequenced using the Illumina HiSeq2500 platform according to the manu-
facturer’s instructions (Illumina Inc.,USA). The sequencing of a paired-end (2 � 250 bp) TruSeq DNA
library generated 57,579,354 read pairs. Primer and quality trimming were performed with
Cutadapt v. 1.17 [5] and Sickle v. 1.33 (https://github.com/najoshi/sickle), respectively. Cutadapt was
used with default settings, and Q33 score was used for Sickle. Trimmed reads were merged with
FLASH v1.2.11 [6]. The same metagenomics DNA was sequenced on MinION (Oxford Nanopore), using
1D Genomic DNA by ligation protocol. 1,418,419 raw MinION reads (about 1.5 Gb in total) were de novo
assembled into contigs using Miniasm v0.3 [7], and the assembly was polished using Racon 1.3.1 [8].
Illumina reads were mapped back to the assembled sequence using Bowtie 2 [9] and the mapping was
used to obtain improved consensus sequence by Pilon 1.22 software [10].
2.4. Identification and annotation of viral genomes

For each of the circular contigs reported by Miniasm gene search and annotation were performed
using the RAST server 2.0 [11], followed by manual correction by searching the National Center for
Biotechnology Information (NCBI) databases. Circular contigs containing genes encoding phage capsid
proteins were assigned to bacteriophages. All three obtained bacteriophages were classified as
members of the order Caudovirales on the basis of sequence similarity with known phage genomes.
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