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Introduction

Respiratory syncytial virus (RSV) is the major cause of respiratory disease in infants and young

children; it is also a significant problem in the elderly [1, 2]. RSV is a nonsegmented, negative

strand RNA virus (nsNSV). Like other viruses in this group, the genome is a template for two

distinct processes: transcription, which yields capped and polyadenylated mRNAs, and replica-

tion, which yields an encapsidated antigenome RNA. The antigenome, in turn, acts as a template

for genome synthesis (Fig 1A; [3]). RSV encodes its own RNA-dependent RNA polymerase,

which is responsible for both transcription and replication. This presents an intriguing puzzle,

namely, how does the RSV polymerase perform both activities from the same template?

What distinguishes transcription and replication?

Transcription and replication are both initiated from a promoter in the leader (le) region at

the 3´ end of the genome [4–6]. During transcription, the polymerase is able to generate

mRNAs by responding to gene start (gs) and gene end (ge) signals that flank each gene (Fig 1A)

[7]. The gs signal directs the polymerase to initiate RNA synthesis. By analogy with related

viruses, its complement at the 5´ end of the nascent RNA also has a function, directing the

polymerase to add a methylated cap [8–10]. The ge signal directs the polymerase to polyadeny-

late and release the mRNA [7]. The polymerase can then scan the genome to locate the next gs
signal and reinitiate RNA synthesis [11]. Some polymerase disengage from the template at

each gene junction, resulting in a decreasing abundance of transcripts from the 3´ to the 5´

end of the genome [12]. This simple arrangement allows the viral genes to be expressed at

appropriate levels relative to each other. During replication, the polymerase disregards the ge
sequences as it moves along the genome, allowing it to proceed to the end of the genome to

produce antigenome RNA. The trailer (tr) promoter at the 3´ end of the antigenome then sig-

nals genome synthesis (Fig 1A). The ability of the polymerase to override the ge signals as it is

producing the antigenome is probably due to replicative RNA becoming encapsidated with

nucleoprotein (N) as it is synthesized [13–15]. Thus, encapsidation is a key factor distinguish-

ing transcription and replication.

One promoter, two processes: How does the polymerase become engaged in

either transcription or replication?

The answer lies in the fact that the promoter contains two initiation sites, one for each process.

The first 11 nucleotides of the le are sufficient to signal initiation of RNA synthesis, and studies
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using a minigenome system showed that both transcription and replication depend on le
nucleotides 3, 5, 8, 9, 10, and 11, a motif that bears strong similarity to a gs signal (although it

is not identical) [6, 16, 17]. Primer extension analysis of le transcripts from RSV-infected cells

showed that they were initiated either opposite the 3´ terminus of the genome at position 1U,

or opposite the gs-like signal at 3C (Fig 1B; [17]). The RNA initiated at 1U can be encapsidated

to produce antigenome. In contrast, RNA initiated at 3C is not efficiently encapsidated and is

released after a short distance (approximately 25 nucleotides). The polymerase can then reini-

tiate RNA synthesis at the first gs signal to begin transcription [17, 18]. Synthesis of the short le
RNA provides a mechanism by which the polymerase can break its association with the 3´ pro-

moter and access the internal gs signal, which contains the sequence required for it to synthe-

size capped mRNA.

Can the same polymerase initiate transcription and replication?

The core polymerase consists of the large polymerase subunit (L) and a cofactor, the phospho-

protein (P; [19, 20]. These proteins are sufficient for RNA polymerization, but other viral pro-

teins, M2-1 and N protein, are required for transcription and replication, respectively [21, 22],

raising the possibility that a different polymerase complex initiates at each site. For example, if

an L-P-N complex were specifically able to initiate at 1U, this could explain why RNA initiated

from this site is encapsidated, whereas RNA initiated from 3C is not. However, M2-1 is only

required for transcription elongation and does not affect initiation [23], and in vitro studies

showed that L-P complexes were capable of initiating at either 1U or 3C in the absence of M2-

1 or N [20, 24, 25]. Therefore, the L-P complex alone can initiate transcription or replication

and then mature into a fully competent transcriptase or replicase during elongation. Recruit-

ment of N protein appears to depend on the sequence at the 5´ end of the nascent RNA, with

the 5´ AC playing a key role [6, 15, 26]. This explains why RNA initiated at 1U becomes encap-

sidated and elongated, whereas RNA initiated at 3C is not.

But how does the polymerase initiate from two different sites in the

promoter?

The mechanism by which the RSV polymerase initiates at 1U or 3C was initially hinted at

with minigenome assays. If position 1U of the promoter was substituted with a C residue or

deleted, the polymerase was still able to perform RNA replication at approximately 60% of

wild-type levels. The replication products were initiated at the wild-type position 1 with a non-

templated, wild-type ATP, such that templates containing a mutated tr promoter of sequences

3´_GCUC. . . and 3´ GGCUC. . . yielded products of 5´ ACGAG. . ., a result that was con-

firmed using an in vitro assay [25, 27]. Likewise, minigenome studies in which the first C resi-

due of a gs sequence was mutated showed the polymerase retained a strong preference for

initiating mRNAs with GTP [28]. These studies indicate that the polymerase has an innate

affinity for ATP and GTP, independently of the template nucleotides. There is evidence that

the second nucleotide in the replication product (NTP2), CTP, also binds the polymerase inde-

pendently of template sequence [25, 26]. In vitro studies revealed that varying ATP or GTP

concentrations affected initiation at 1U or 3C. Increasing ATP augmented initiation from 1U

and diminished initiation at 3C, whereas increasing GTP concentration had the opposite

effect, indicating that these NTPs compete for the same binding site on the polymerase.

Although the concentration of CTP had a strong effect on the efficiency of initiation from 1U,

it did not affect initiation from 3C, suggesting that it binds a different site [25]. Together, these

data suggest the model shown in Fig 1C. According to this model, the polymerase has two

binding sites for NTP1 and NTP2. The NTP1 site has affinity for ATP or GTP, and CTP can

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007548 February 28, 2019 2 / 8

research agreement with AstraZeneca

Pharmaceuticals, L.P.

https://doi.org/10.1371/journal.ppat.1007548


PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007548 February 28, 2019 3 / 8

https://doi.org/10.1371/journal.ppat.1007548


occupy the NTP2 site. The polymerase then selects either the 1U or 3C initiation site depend-

ing on which NTPs it has bound. Inspection of the RSV promoter shows that nucleotides 3, 6,

7, 8, and 9, and 5, 8, 9, 10, and 11, each contain a 3´-CXXUUUU motif. This repeating motif

gives the potential for the polymerase to bind the template in two possible registers, such that

its active site is opposite either positions 1 and 2 to initiate replication, or positions 3 and 4 to

initiate transcription [25].

How are the relative levels of mRNA, antigenome, and genome synthesis

controlled?

Transcription and replication products are present at different levels in RSV-infected cells, with

the mRNAs being dominant, and genome RNA levels exceeding those of antigenome. Given

that there is only one promoter in the le region, and the le and tr promoters are almost identical,

this raises the question of how different amounts of RNAs are produced. Evidence indicates this

is controlled by relative NTP concentrations and promoter sequence [25]. Like other polymer-

ases, the RSV polymerase requires a high concentration of initiating NTPs (ATP and GTP), but

only initiation at 1U requires a very high concentration of NTP2 (CTP). Because CTP is only

present at low concentrations in cells [29], this would present a barrier to replication initiation.

Additionally, the RSV polymerase had a propensity to initiate internally opposite 3 rather than

opposite position 1, independently of its affinity for NTPs. These factors lead to transcription

initiation being dominant compared to replication initiation at the le promoter. The relative lev-

els of RNAs are also explained by small differences between the le and tr promoters. There are

only two nucleotide differences within the first 12 nucleotides of the le and tr, at positions 4 and

12, and the tr promoter also directs RNA synthesis from 1U and 3C. However, studies compar-

ing promoter activities showed that the le has a much greater bias towards initiation from posi-

tion 3 versus position 1 than the tr, and mutation analysis linked this to the nucleotides at

positions 4 and 12 [6, 25]. Therefore, these small differences between the two promoters con-

tribute to a hierarchy of RNA production of mRNA, genome, and antigenome (Fig 2). A ques-

tion that remains unanswered is how are transcription and replication regulated during the

course of RSV infection? Transcriptases and replicases probably proceed along the genome with

different kinetics due to the pausing that occurs at gene junctions during mRNA polyadenyla-

tion and capping. Therefore, it seems likely that mRNA and antigenome synthesis are regulated

so that genome templates are dedicated to one process or the other. Although N protein is

required to encapsidate the antigenome, because the transcriptase initiates at 3C, increasing N

protein does not repress mRNA synthesis [30]. Instead, it is intriguing to speculate that tempo-

ral or spatial variations in NTP concentrations in infected cells govern the polymerase between

transcription and replication, but this possibility has not yet been explored.

Fig 1. Schematic diagrams illustrating the mechanisms of RSV transcription and replication initiation. (A) Overview of the processes of transcription and

replication, showing the capped and polyadenylated mRNAs and encapsidated antigenome and genome RNAs. The genes are shown as blue rectangles, with the

gene start and gene end signals represented by white and black boxes. The le and tr promoter regions are indicated with green arrows. The le promoter yields

mRNAs containing a methylguanosine cap (mG) and polyadenylate tail (An) and encapsidated antigenome; the tr promoter yields encapsidated genome RNA.

The N protein that encapsidates the genome and antigenome RNA is shown as gray circles. Note that there is a gradient of transcription, which is not depicted

here. (B) Initiation sites and RNAs produced from the 3´ end of the genome. The schematic shows the le region and the beginning of the first gene. The

nucleotides in red are required for both transcription and replication, and are identical to the RSV L gs signal (CCCUGUUUUA). The NS1 gene is shown in a

blue partial rectangle, with its gs signal shown in a white box. The initiation sites are shown with green arrows: those at 3C and the first gs signal are necessary for

transcription; the initiation site at 1U is required for replication. The N protein is represented as a gray oval. It seems likely that if there were insufficient N

protein available for encapsidation, RNA initiated at 1U would also be released after approximately 25 nt, allowing the polymerase to engage in transcription. (C)

Model for initiation at two sites on the promoter. The L-P complex is represented with an orange oval. The polymerization active site, containing the NTP1 and

NTP2 binding sites, is shown as a white box. The L-P complex could bind in two different registers on the promoter, with stability for one position or the other

being conferred by the bound GTP, or ATP/CTP. The black dots indicate nucleotides that are repeated in the promoter sequence that could allow binding in two

registers. le, leader; RSV, respiratory syncytial virus; tr, trailer.

https://doi.org/10.1371/journal.ppat.1007548.g001
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Do other viruses use the same mechanism of transcription and replication

initiation?

The nsNSVs, to which RSV belongs, are a large order of viruses. Most nsNSVs have a similar

genome structure and use a similar strategy to transcribe and replicate it [31]. This raises the

question of whether other nsNSVs use a similar mechanism as RSV to initiate transcription

and replication. The answer to this is unclear, but data suggest that there are differences

between families in the order. Human metapneumovirus (HMPV), which is in the same family

as RSV (Pneumoviridae), shares a very similar promoter sequence, suggesting that it follows

the same mechanism of transcription and replication initiation [3]. In contrast, in the case of

the Paramyxoviridae, although transcription and replication both occur from a promoter at

the 3´ end of the le region, similarly to RSV, there is no evidence for an internal initiation site,

suggesting that both processes initiate from position 1. Consistent with this, in the paramyxo-

viruses, it appears that increasing N protein elicits a switch from transcription to replication

[3, 32, 33]. In the case of the Rhabdoviridae, experiments using nucleocapsids isolated from

virions indicate that both replication and transcription initiate at position 1 [34–36]. However,

experiments analyzing transcription in cells, or using polymerase purified from cells, show

that transcription initiates directly at the start of the first gene, suggesting that the 3´ end of the

rhabdovirus nucleocapsid becomes reordered following cell entry, to expose the first gs signal

[3, 34, 35]. Therefore, there seems to be considerable diversity between viruses in the order.

However, despite this variability, many nsNSVs begin replication with ATP and CTP, suggest-

ing that the ability of the polymerase to bind initiating NTPs independently of the template

sequence might be a common hallmark of these viruses.

Fig 2. Schematic diagram illustrating the relative levels of initiation from positions 1 and 3 of the le and tr promoters. The

genome and antigenome are shown as described in Fig 1A. The sequences of the le and tr promoters are shown in gray, with

nucleotide differences shown in red. The green arrows show the initiation sites, with the weight of the arrows representing,

approximately, the relative levels of initiation from each site. Note that the tr promoter also generates an approximately 25 nt

RNA from position 3. The function of this RNA is not known, but it may be involved in subverting the cellular stress granule

response [37]. le, leader; tr, trailer.

https://doi.org/10.1371/journal.ppat.1007548.g002
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Concluding remarks

In conclusion, RSV has evolved an elegant mechanism for initiating transcription and replica-

tion, which achieves several ends: First, it allows the viral polymerase to initiate both processes

from a single promoter. Second, an innate affinity for ATP and CTP would lend the polymer-

ase additional stability during initiation opposite the 3´ terminal nucleotide, a challenging

event for viruses with linear genomes. And finally, the RSV promoter sequences have evolved

so that different viral RNAs are produced in the appropriate amounts. Therefore, RSV pro-

vides an exquisite example of how a virus is able to accomplish multiple objectives with mini-

mal genetic information.
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