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A topic review on probing primordial
black hole dark matter
with scalar induced gravitational waves

Chen Yuan1,2,* and Qing-Guo Huang1,2,3,4,*
SUMMARY

Primordial black holes (PBHs) might form from the collapse of over-densed re-
gions generated by large scalar curvature perturbations in the radiation domi-
nated era. Despite decades of various independent observations, the nature of
dark matter (DM) remains highly puzzling. Recently, PBH DM have aroused inter-
est since they provide an attracting explanation to the merger events of binary
black holes discovered by LIGO/VIRGO and may play an important role on DM.
During the formation of PBH, gravitational waves will be sourced by linear scalar
perturbations at second-order, known as the scalar induced gravitational waves
(SIGWs), which provides a new way to hunt for PBH DM. This topic review mainly
focuses on the physics about SIGWs accompanying the formation of PBH DM.
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INTRODUCTION

Primordial black holes (PBHs) have aroused interest recently, not only because they can represent the dark

matter (DM) in our Universe but also can explain the binary black hole mergers events Sasaki et al. (2016);

Chen and Huang (2018); Raidal et al. (2019); De Luca et al. (2020a); Hall et al. (2020); Bhagwat et al. (2021);

Hütsi et al. (2020) discovered by LIGO Abbott et al., (2016) if �10�3 DM is in the form of PBHs. So far, there

is no evidence for PBHs. Although various observations have constrained the fraction of DM in the form of

PBHs Tisserand et al., (2007); Carr et al. (2010); Barnacka et al. (2012); Griest et al. (2013); Grahamet al. (2015);

Brandt (2016); Chen et al. (2016); Wang et al. (2018); Gaggero et al. (2017); Ali-Haimoud and Kamionkowski

(2017); Aloni et al. (2017); Horowitz (2016); Niikura et al. (2019a); Zumalacarregui and Seljak (2018); Nakama

et al. (2018); Abbott et al., (2018); Magee et al. (2018); Chen et al. (2019a); Niikura et al. (2019b); Chen and

Huang (2019); Abbott et al. (2019);Wanget al. (2019a), fpbh, there still exist an openwindow in themass range

of ½10�16;10�14�W½10�13;10�12�M1, where PBHs are possible to present all the DM in our Universe.

PBH is an old conception and it can date back to 1974 when Hawking and Carr proposed that black holes

can be generated due to the collapse of over-densed regions in the early universe Carr and Hawking (1974);

Carr (1975). The formation of PBHs is a threshold process. Once scalar perturbations exceed a critical value,

they would generate an over-densed region which would immediately undergo gravitational collapse to

form a single PBH when the comoving size of such region is of the order of the horizon size. The exact calcu-

lation of the PBHmass function, b, which describes the mass fraction of the Universe contained within PBHs

at the formation time is still a debating and complicated question by today.

Among all the constraints on PBH DM, the scalar induced gravitational waves (SIGWs) provide a quite strin-

gent constraint which can be several orders of magnitude better than the other constraints Chen et al.

(2019b) in a certain mass range of PBHs. During radiation dominant (RD) epoch, scalar perturbations will

alter the quadrupolarmoment of the radiation and thus emit GWs at second-order Tomita (1967);Matarrese

et al. (1993, 1994, 1998); Noh andHwang (2004); Carbone andMatarrese (2005); Nakamura (2007). Therefore,

SIGWs were inevitably generated during the formation of PBHs, providing a powerful tool to hunt for PBH

DM. Moreover, PBHs are generated by large perturbations at small scales much larger than those on CMB

scales; the second-order GWs induced by the enhanced perturbations sourced by the linear perturbations

may exceed the first-order tensor inflationary modes Saito and Yokoyama (2009). See more relevant studies

for SIGWs in Ananda et al. (2007); Baumann et al. (2007); Saito and Yokoyama (2009); Arroja et al. (2009); As-

sadullahi and Wands (2010); Bugaev and Klimai (2010a, b); Saito and Yokoyama (2010); Bugaev and Klimai

(2011); Alabidi et al. (2013); Nakama and Suyama (2016); Nakama et al. (2017); Inomata et al. (2017a); Orlofsky
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et al. (2017); Garcia-Bellido et al. (2017); Sasaki et al. (2018); Espinosa et al. (2018); Kohri and Terada (2018a);

Cai et al. (2019a); Bartolo et al. (2019a, b); Unal (2019); Byrnes et al. (2019); Inomata and Nakama (2019);

Clesse et al. (2018); Cai et al. (2019b); Inomata et al. (2019a, b); Cai et al. (2019c); Yuan et al. (2019a); Cai

et al. (2019d); Lu et al. (2019); Yuan et al. (2019b); Tomikawa and Kobayashi (2019); De Luca et al. (2019a);

Yuan et al. (2019c); Inomata et al. (2020a, b, c); Yuan and Huang (2020); Papanikolaou et al. (2020); Zhang

et al. (2020a); Kapadia et al. (2020a); Zhang et al. (2020b); Domènech et al. (2020a); Dalianis and Kouvaris

(2020); Atal and Domènech (2021). The SIGWs from PBHs are first calculated by Saito and Yokoyama in Saito

and Yokoyama (2009), where they evaluate the energy density of SIGWs from monochromatic PBHs. They

found that SIGWs from the current PBH DM in our Universe could be detected by pulsar timing arrays

(PTAs) and space-based GW detectors. After the detection of GWs, intriguing studies emerged in this field

in the recent years and there are hundreds of studies concerning SIGWs from PBHs so far.

Since there are a lot of reviews on PBHs in literature, e.g. some recent reviews given in Carr et al. (2020);

Green and Kavanagh (2020); Carr and Kuhnel (2020), wemainly focus on SIGWs inevitably generated during

the formation of PBHs in this paper. This paper will be organized as follows. In the section of Formation of

PBHs, we give a brief introduction to the formation of PBHs. The physics about the SIGWs will be reviewed

in the section of Scalar induced gravitational waves and then we discuss how to use the SIGWs to probe

PBHs in the section of Searching for PBH DM using SIGWs. Finally, summary and outlook are given in

the section of Summary and outlook.
FORMATION OF PBHS

In this section, we will introduce the formation of PBHs and take a brief review on calculating the mass func-

tion of PBHs, b. PBHs are generated from the collapse of all the matter inside the Hubble volume. There-

fore, there exists a one-to-one correspondence between the mass of PBHs and the comoving frequency f*,

namely Carr and Hawking (1974); Carr (1975).

m�
pbh z2:33 1018M1

�
3:91

gform
�

�1=6�H0

f�

�2

; (Equation 1)

where gform
� is the corresponding degrees of freedom and H0 is the Hubble constant by today. Moreover,

the one-to-one correspondence can be transferred to another useful form, namely

m�
pbh z23 105M1

�
t

1s

�
: (Equation 2)

The fraction of PBHs in all the DM, fpbhhUPBH/UDM can be estimated by Nakama et al. (2017).

fpbh x 2:53 108b

�
gform
�

10:75

��1
4
�
mpbh

M1

��1
2

: (Equation 3)

On comoving slices, the relation between the primordial comoving curvature perturbation, zðkÞ, and the

density contrast, D(k), at linear-order is given by

DðkÞ = 2ð1+wÞ
5+ 3w

�
k

aH

�2

zðkÞ; (Equation 4)

where w is the equation of state and H is the Hubble parameter. The comoving curvature perturbation z is

related to the metric perturbations by

zhj�Hðv + BÞ; (Equation 5)

where our notations for the scalar perturbations c, v, and B are introduced in Equation (3) and Equation (3)

below. Moreover, the comoving curvature perturbation is related to the Bardeen potential (see Equa-

tion (23) below) by

z = J� 2

3ð1+wÞ
�
H�1J0 + F

�
(Equation 6)

For adiabatic perturbations, z stays constant on superhorizon scales. Then we have F= � 3ð1 +wÞ=
ð5 + 3wÞz by assuming the absence of anisotropies and F= � 2=3z during RD. The density contrast

smoothed over a scale, R, is calculated as
2 iScience 24, 102860, August 20, 2021
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Dðx;RÞ =
Z

d3x0Wðjx� x0j;RÞDðx0Þ; Dðk;RÞ=Wðk;RÞDðkÞ; (Equation 7)

withW to be the window function chosen to smooth the density contrast. The variance of D(k,R) is given by

CD2D =
Z N

0

dk

k
W2ðk;RÞ4ð1+wÞ2

ð5+ 3wÞ2
ðkRÞ4PzðkÞ; (Equation 8)

where we define the dimensionless curvature power spectrum as CzðkÞzðk0ÞDh2p2

k3
dðk + k0ÞPzðkÞ. Usually, the

amplitude of perturbations is assumed to obey Gaussian distribution. Once the perturbation satisfies the

formation criterion, then PBHs are generated. Therefore, the formation of PBHs can be regarded as the

statistics of peaks of a three-dimensional Gaussian random field, also known as peak theory Bardeen

et al. (1986). PBHs might be generated by very large perturbations with amplitudes Oð0:01�0:1Þ if PBHs
constitute most of the DM in our Universe. As a result, the primordial power spectrum that generate

PBHs will have a ‘‘bump’’ on scales much smaller than the CMB scales Ivanov et al. (1994); Garcia-Bellido

et al. (1996); Ivanov (1998); Yokoyama (1997); Kawasaki et al. (2006); Hertzberg and Yamada (2018); Inomata

et al. (2018, 2017b); Kohri and Terada (2018b). As a benchmark example, we will assume that the power

spectrum is ‘‘spicky’’ at a particular scale, k*, to calculate b. In this case, the production of PBHs is almost

monochromatic. Otherwise, for a broad power spectrum, one has taken into account the so-called ‘‘cloud-

in-cloud’’ problem where a single PBH is swallowed by the formation of a bigger PBH. Moreover, there are

perturbations with different frequency and different amplitudes which may blur the calculation.

For spicky spectrum, using peak theory, the number density of peaks can be approximated by (see e.g.,

Equation (4.14) in Bardeen et al. (1986))

npkðncÞx

�
Ck2D

.
3
�3=2

ð2pÞ2
�
n2c � 1

�
e�n2c=2; (Equation 9)

where the dimensionless threshold is defined as nchDc=
ffiffiffiffiffiffiffiffiffi
CD2D

p
. Ck2D is defined as

Ck2D =
1

D2

Z N

0

dk

k
k2W2ðk;RÞPzðkÞ (Equation 10)

Moreover, b is related to npk by b=npk(nc)(2p)
3/2R3. Another commonly used method to calculate b is the

Press-Schechter formalism, where b is evaluated by simply integrating the probability density function

(PDF) beyond the threshold value

b =

Z +N

nc

dnffiffiffiffiffiffi
2p

p e�n2=2 =
1

2
erfc

�
ncffiffiffi
2

p
�
: (Equation 11)

The Press-Schechter formalism only considers the amplitude of the perturbation but neglecting the higher

derivatives. The comparison between Press-Schechter formalism and peak theory can be found in Young

et al. (2014), and the result showed close agreement differing by a factor of 10 for large nc.

The formation of PBHs depends onmany aspects, and there are some potential problems in calculating the

mass function of PBHs. We will discuss the relevant aspects next.
Primordial non-gaussianities

Formation of PBHs takes place at the tail of the PDF of the perturbations. Hence any non-Gaussianities that

alter the PDF could significantly change the formation probability of PBHs. The impacts of non-Gaussian-

ities on the formation of PBHs have been discussed long ago Bullock and Primack (1997); Ivanov (1998); Pina

Avelino (2005); Hidalgo (2007); Klimai and Bugaev (2012). Besides considering a certain inflation model, a

commonly used non-Gaussian model is the local-type non-Gaussianities, where the perturbation is

expanded by the Gaussian part such that (up to cubic order)

z = f
�
zg
�
= zg + FNL

�
z2g � Cz2gD

�
+GNLz

3
g: (Equation 12)

Here zg is the Gaussian part whose PDF is Gaussian. The non-Gaussian parameter FNL would skew the PDF

and GNL will change the kurtosis of the PDF. Since the Press-Schechter formalism simply integrating the

PDF above the threshold value, it is convenient in estimating the mass function b in the presence of
iScience 24, 102860, August 20, 2021 3
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non-Gaussianities. Let PNG to be the PDF of z and PG to be the PDF of the Gaussian part, zg. Then PNG can

be obtained by changing the variables, zg = f�1ðzÞ, such that

b =

Z N

zc

PNGðzÞdz=
Z

f�1
i

ðzÞ>zc

Xn
i = 1

df�1
i ðzÞ
dz

PG

h
f �1
i ðzÞ

i
dz: (Equation 13)

This is equivalent to integrate the Gaussian PDF in the region, f�1
i ðzÞ>zc . Here, the lower index i indicates

the i-th solution of the total n real solutions. In Byrnes et al. (2012), Byrnes et al. used the above method to

calculated b within local-type non-Gaussianities up to cubic order. After that, the formation of PBHs within

non-Gaussianities was studied up to fifth-order Young and Byrnes (2013) and their results showed a highly

sensitive relation between b and non-Gaussian parameters (FNL, GNL, etc.).

Except for changing the variables in Equation (13), Franciolini et al. (2018) adopted another method, the

path-integral formulation, to calculate b in non-Gaussian regions. The authors expressed b by the sum

of the N-point correlation function. Readers interested in the path-integral formulation can refer to their

work and the references therein.

However, the path-integral formulation might be impractical to calculate b. Riccardi et al. argued that the non-

Gaussianities would affect cumulants at any order Riccardi et al. (2021). Therefore, to get the exact result for b,

one has to sum over all the N-point correlation function, which is impractical. They also proposed a semi-analyt-

ical expression to estimate the mass function of PBHs, see Equation (8) in Riccardi et al. (2021).

The non-linear effects between density contrast and curvature perturbation

The standard procedure to calculate the density contrast is based on Equation (4). However, this equation is

just the linear relation between the density contrast and the comoving curvature perturbation. In the co-

moving slicing, the non-linear relation in the long-wavelength approximation is given by Harada et al.

(2015); Yoo et al. (2018); Musco (2019).

Dðr ; tÞ = � 4ð1+wÞ
5+ 3w

�
1

aH

�2

e�5zðrÞ=2V2ezðrÞ=2: (Equation 14)

Owing to the linear relation, the PDF of density contrast will no longer obey Gaussian distribution even if

the PDF of curvature perturbations is Gaussian. This is an unavoidably generated non-Gaussianities that

make the PBHs inevitably form in non-Gaussian regions. Recently, these ‘‘intrinsic non-Gaussianities’’

generated by the non-linear effects were studied in Yoo et al. (2018); Kawasaki and Nakatsuka (2019); De

Luca et al. (2019b); Young et al. (2019) using either peak theory or Press-Schechter formalism. They found

that the ‘‘intrinsic non-Gaussianities’’ would slightly suppress the PBH formation. More precisely, to pro-

duce the same abundance of PBH in our Universe, the power spectrum of z needs to be amplified by a fac-

tor of � Oð2Þ if using the linear relation, Equation (4), to calculate the abundance.

Window function and power spectrum

From Equation (8), it is clear that the formation of PBHs depends on the choice of window functions and the

power spectrum of the primordial scalar perturbations. The power spectrum can be given by the inflation

model, while the choice of the window function is a coarse-graining procedure. Despite several commonly

used window functions in literature, there is no physical interpretation on which window function should be

used. The choice of window function will lead to uncertainties in calculating the mass function of PBHs, see

Ando et al. (2018a); Young (2019); Tokeshi et al. (2020).

The abundance of PBHs introduced in Equation (9) and Equation (11) can be applied to a narrow power

spectrum, where the PBHs are about monochromatic, and one can assume that the PBHs are formed at

the same time. However, for a broad power spectrum, PBHs of different masses are expected to be formed

at a different time, and the formation process will be rather complicated.

For the broad case, the Press-Schechter formalism failed, and one has to adopt the peak theory to evaluate

the results. In Moradinezhad Dizgah et al. (2019); De Luca et al. (2020b), the authors studied the formation

of PBHs for a tilted broad power spectrum, namely

Pz = Aðk=ksÞnpQðks � kÞQðk� klÞ; (Equation 15)
4 iScience 24, 102860, August 20, 2021
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where Q denotes the Heaviside theta function. For a broad and flat spectrum, np=0, the corresponding

mass distribution of PBHs is dominated by a singlempbh. They also found that the mass function has a po-

wer-law tail, scaling as m
�3=2
pbh .

Recently, Yoo et al. Yoo et al. (2021) proposed a modified procedure to calculate PBH abundance in which

they consider the intrinsic non-Gaussian effects within an arbitrary power spectrum in the absence of pri-

mordial non-Gaussianities. The results for a narrow spectrum showed no window function dependence,

while the results for a broad power spectrum depends largely on the choice of window functions. They

concluded that the top-hat window function in Fourier space would be the best choice since it minimizes

the required property in theoretical PBH estimation.

The formation criterion

Studies on the critical value of PBH formation can be traced back since 1975 when Carr first estimated the

value of Dc by considering simplified Jeans length in Newtonian gravity, Dc = c2s Carr (1975), where cs = 1=ffiffiffi
3

p
is the sound speed during RD. However, the exact value of Dc is still a debating question since it de-

pends on the initial density profile Polnarev and Musco (2007), the equation of state and the sound speed

Jedamzik (1997); Byrnes et al. (2018), primordial non-Gaussianities Kehagias et al. (2019), the primordial

scalar power spectrum Germani and Musco (2019) and even the window function Young (2019).

Despite some spherically numeric simulations Jedamzik and Niemeyer (1999); Shibata and Sasaki (1999); Musco

et al. (2005); Hawke and Stewart (2002); Polnarev andMusco (2007); Musco et al. (2009); Musco andMiller (2013);

Nakama et al. (2014); Harada and Jhingan (2016); Harada et al. (2015); Musco (2019); Escrivà et al. (2020a) on

the formation of PBHs, Harada et al. proposed an analytical expression, Dc = ½3ð1 +wÞ =ð5 + 3wÞ�sin2
½p

ffiffiffiffi
w

p
=ð1 + 3wÞ�x0:41 during RD Harada et al. (2013). Escriva et al. also proposed an approximate expression

for Dc for w ˛[1/3,1] Escrivà et al. (2020b). The analytical Dc in a general cosmological background is studied by

Escrivà et al. (2020b) where they consider the equation of state to be w ˛(0,1].

Recently, Kehagias et al. (2019) estimated the effects of ‘‘intrinsic non-Gaussianities’’ generated by the non-linear

relation, Equation (14), onDc. They found that the relative change ofDc is at the percent level, whichmight not be

significant due to other uncertainties in estimating the formation of PBHs. More recently, a detailed study based

on numeric simulation was made by Musco et al. Musco et al. (2020) where they consider the intrinsic non-

Gaussian effects and some commonly usedpower spectrum that generate thePBHs. Theyalso gave an analytical

approach to estimate Dc for all possible shapes of the power spectrum, see Equation (19) in Musco et al. (2020).

Apart from using Dc, Shibata and Sasaki proposed that the compaction function, which equals to half of the

volume average of the density per turbations in the long-wavelength limit, can be used to described the

formation of PBHs Shibata and Sasaki (1999). A general definition for the compaction function was intro-

duced in Harada et al. (2015) such that C = 2dM=R. Here R represents the areal radius and dM stands for

the mass difference between the Misner-Sharp mass insides a sphere of radius r and the mass inside a

sphere with the same radius in the FLRW universe.

Using the maximum value of the compaction function, Cmax, as a formation criterion, there would be less

dependence on the shape of the density perturbation Shibata and Sasaki (1999), and this is later confirmed

numerically by Harada and Jhingan (2016). Harada and Jhingan (2016) also found that there would be less

dependence on the lapse function if using Cmax instead of Dc. Recently, it was shown in Escrivà et al. (2020a)

that the threshold value of compaction function, Cmax;c , is only sensitive to the curvature at the maximum

and Cmax;c is, to some approximations, a universal quantity to describe the PBH formation.

SCALAR INDUCED GRAVITATIONAL WAVES

In this section, we will introduce the calculations of SIGWs during RD. Let’s begin from the most generic

perturbed metric, which contains scalar modes and tensors modes, namely

g00 = � 1� 24;

g0i = aviB;

gij = a2dij + a2
�
1

2
hij � 2dijj+ 2vivjE

�
;

(Equation 16)
iScience 24, 102860, August 20, 2021 5
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where 4, B, c and E are linear scalar perturbations while the vector perturbations are not considered here.

For vector-induced GWs and tensor-induced GWs, we refer the readers to Gong (2019). Here, hij denotes

the second-order tensor mode. We do not consider the first-order tensor mode, since the second-order

effects will far exceed the linear-order effects during the formation of PBHs Saito and Yokoyama (2009).

During RD, the cosmological background is described by perturbed perfect fluid, which reads

T00 = r+ 2r4+ dr;
T0i = � rviB� Pviv � rviv;
Tij = ðP + dPÞdij � 2Pjdij + 2PvivjE;

(Equation 17)

where v is the velocity potential, P and r are the pressure and the energy density of the background while dP

and dr are the corresponding first-order perturbations. Here we neglect the anisotropies caused by

neutrinos and photon Saga et al. (2015).

As we shall see, besides the GWs, there is only one physical degree of freedom in our calculation. Consider

a first-order change in the coordinate such that

~h = h+T ; ~xi = xi + viL; (Equation 18)

and the scalar modes will transform as Malik and Wands (1998).

~4 = 4+HT +T 0; (Equation 19)
~
j = j�HT ; (Equation 20)
~ 0
B = B� T + L ; (Equation 21)

~
E = E + L; (Equation 22)

where a prime denotes a derivative with respect to the conformal timeh. Themost generic perturbedmetric has

four scalar modes. However, one can fix T to determine the time slicing and choose L to decide the spatial co-

ordinates on the hyper-surfaces. This would reduce 2� of freedom. Furthermore, the Einstein equation will

reduce one more degree of freedom and give the equation of motion for the last degree of freedom.

The simplest gauge to calculate the SIGWs is the Newton gauge, also known widely as orthogonal zero-

shear gauge, longitudinal gauge. Newton gauge demands that ~B = ~E = 0. This can be done by choosing

L=�E and T = B� E0. Then, the remaining two modes are just the Bardeen potential

Fh4+Hs+ s0; Jhj�Hs; (Equation 23)

where shE0 � B is the shear potential. The advantage of the Newton gauge is that the degrees of freedom

are completely fixed, and there are no more gauge modes. The only modes left are just the Bardeen po-

tential 4=F and j = J. Write down the first-order Einstein equation in terms of the Bardeen potential, one

finds that F=J and the equation of motion for the only scalar mode left is

F0 0 + 4HF� 1

3
V2F= 0: (Equation 24)

Keeping the decay modes of Equation (24), the solution of F in Fourier space is given by

Fðk; hÞhFkTFðkhÞ=Fk
9

x2

 
sin
�
x
. ffiffiffi

3
p �

x
. ffiffiffi

3
p � cos

�
x
. ffiffiffi

3
p �!

; (Equation 25)

where we label the primordial value as Fk and TF is the normalized transfer function such that TFð0Þ = 1.

We also introduce the dimensionless variable xhkh. The value ofFk is given by certain inflationmodels and

we will treat it as free parameters in our discussion. Moreover, the first-order GWs is given by

h00ð1Þij + 2Hh0ð1Þij � V2hð1Þ
ij = 0; (Equation 26)

which is a source-free equation. The linear GWs will decay from the primordial value as h�1 during RD. Dur-

ing the formation of PBHs, the scalar power spectrum are enhanced to Oð0:01Þ if PBH represents the main

part of the DM. In this case, the second-order SIGWs would be stronger than the linear GWs, and hence we

will not consider h
ð1Þ
ij . Readers interested in second-order GWs induced by h

ð1Þ
ij can refer to Gong (2019).
6 iScience 24, 102860, August 20, 2021
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Up to second-order, the evolution of the GWs can be written as

h00
ij + 2Hhij

0 � V2hij = � 4T [m
ij S[m; (Equation 27)

where T [m
ij =e

ð+ Þ
ij ðkÞeð+ ÞlmðkÞ+ e

ð3Þ
ij ðkÞeð3ÞlmðkÞ is the transverse and traceless projection operator. The po-

larization tensors are defined as ðeiej �eiejÞ=
ffiffiffi
2

p
and ðeiej +eiejÞ=

ffiffiffi
2

p
for + and 3 modes. Here, we choose

e=(1,0,0), e= ð0; 1; 0Þ and k=(0,0,k).

The source term in Equation (27) reads

Sij = 3FvivjF� 2

HviF
0vjF� 1

H2
viF

0vjF
0; (Equation 28)

where we have expressed the density perturbation dr, the velocity potential v and the pressure perturba-

tion dP in terms of the scalar modesF. Overall, the perfect fluid acts like an intermediary, and theGWs seem

to be generated by the scalar modes. This is why SIGWs gain its name. Equation (27) can be solved by

Green’s function in Fourier space, namely

hðh; kÞ = 1

aðhÞ

Z h

0

gkðh;h0Þaðh0ÞSðh0; kÞdh0: (Equation 29)

We define Sðh; kÞh� 4eijðkÞSðh; kÞ and Sðh; kÞ is the source term transferred to Fourier space. Here, we

define the Fourier transform of hij to be

hijðh; xÞ =
Z

d3k

ð2pÞ3
h
hð+ Þðh; kÞeð+ Þ

ij ðkÞ + hð3 Þðh; kÞeð3 Þ
ij ðkÞ

i
eik,x: (Equation 30)

In the following part, we write h(h,k) to denote either the plus mode or the cross mode. In our convention,

S(h,k) takes the form

Sðh; kÞ = � 4

Z
d3p

ð2pÞ3=2
�
eijpipj

�
FpFjp�kjF

�		p		; 		k�p
		; h�: (Equation 31)

The transfer function is defined as

Fðu; v; xÞ = 3T4ðuxÞT4ðvxÞ+ uxT4
0ðuxÞT4ðvxÞ+ vxT4

0ðvxÞT4ðvxÞ+ uvx2T4
0ðuxÞT4

0ðvxÞ: (Equation 32)

For convenience, we introduce the dimensionless variable uhp/k, vhjp�kj=k and xhkh. Unless otherwise

being stated, the prime with T’(y) denotes the derivative with respect to y, other than the conformal time.

The Green’s function in Equation (29) takes the form gkðh; h0Þ= 1
k sinðkh�kh0Þ during RD. A more important

quantity in observation is the density parameter of the stochastic GW background defined as the energy of

GWs per logarithm frequency normalized by the critical energy rc(h)

UGWðk;hÞh
1

rc

drGW

dlnk
=

k3

48p2

�
k

H

�2

C
			hðh; kÞj2D; (Equation 33)

where theoverlinedenotes the oscillating average. Tocalculate the stochasticGWbackgroundof the SIGWs,we

have to know the primordial scalar power spectrum, which is given by specific inflationmodels. In this paper, we

do not consider certain inflation model, instead, we will parameterize the power spectrum by some commonly

used function in literature. The density parameter is evaluated as (see e.g. Kohri and Terada (2018a))

UGWðk; hÞ=
�
k

H

�2 k3

48p2aðhÞ2
Z

d ~h1d ~h2gkðh; ~h1Þgk0 ðh; ~h2Það ~h1Það ~h2ÞCSð ~h1; kÞSð ~h2; k
0ÞD:

=

�
k

H

�2 4p2k3

3aðhÞ2
Z

d3p

ð2pÞ3
Z

d ~h1d ~h2að ~h1Það ~h2Þgkðh; ~h1Þgkðh; ~h2Þ
�
eijpipj

�2 1

p3
			k � pj3

3PF

�
k
�
PF

�		k�p
		�
F�		p		; 		k�p

		; ~h1

�
F
�		p		; 		k�p

		; ~h2

�
+ F
�		p		; 		k�p

		; ~h1

�
F
�		k�p

		; 		p		; ~h2

��
=

�
k

H

�28p2k

3

Z
d3p

ð2pÞ3
�Z h

0

d ~h1

að ~h1Þ
aðhÞ kgkðh; ~h1Þ~F

�		p		; 		k � p
		; ~h1

��2�
eijpipj

�2 1

p3
			k � pj3

3PFðkÞPF

�		k�p
		�

x
1

6

Z N

0

du

Z 1+ u

j1�uj
dv

v2

u2

"
1�

�
1+ v2 � u2

2v

�2
#2
PFðukÞPFðvkÞI2ðu; v; xÞ;

(Equation 34)
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where in the last step of Equation (34), we define the power spectrum as

CFðkÞFðk0ÞDh2p2

k3
PFðkÞdðk + k0Þ; (Equation 35)

and the kernel function to be

Iðu; v; xÞh
Z x

0

d~x~xsinðx� ~xÞ~Fðu; v; xÞ; (Equation 36)

where ~Fðu; v; xÞhðFðu; v; xÞ +Fðv; u; xÞÞ=2 is the symmetric part of the transfer function. We also used that

H=h�1 and að~hÞ=aðhÞ= ~h=h during RD. We sum over the two polarization modes in Equation (34) and the eij

in the expression refers to either the ‘‘+’’ mode or the ‘‘3’’ mode. In the last step of Equation (34), the over-

line denotes the oscillating average, namely sin2x/1
2, cos

2x/1
2 and sinxcosx/0. The UGW has a time

dependence through I(u,v,x) and, as we will demonstrate below, the function I(u,v,x) will converge to a finite

value at late time.

The density parameter given by Equation (34) is independent of the position, rendering the SIGWs are

isotropic GWs. This is due to the statistical homogeneity of the FLRW metric. However, the GW detectors

would detect GWs from different directions, resulting in angular anisotropies of the SIGW signal. This was

studied in Bartolo et al. (2020). In the absence of primordial non-Gaussianities, the authors found that the

anisotropies are negligible by today due to the propagation effects.

After the horizon entry, the energy of GWs redshift as radiation, rGWfa�4. Therefore, the current GW den-

sity parameter, UGW;0 would be

UGW;0ðh0; f Þ = UrUGWðhc ; f Þ; (Equation 37)

where Ur is the energy density fraction of radiation by today, and we neglect the effects of relativistic de-

grees of freedom. Here, UGW(hc,f) is the late time value when UGW(h,f) becomes a constant and can be

computed by taking I(u,v,x/N) (Here, a constant means that UGW(h,f) is independent of time). This result

would bemore clear if one considers the evolution of tensor modes during bothMD and RD. See e.g., Kohri

and Terada (2018a) where the author studied analytically the SIGWs during MD, RD and RD-to-MD transi-

tion. The analytical expression for I2ðu; v; xÞ was derived in Espinosa et al. (2018); Kohri and Terada (2018a).

The indefinite integral of Equation (36) is given by

Iðu; v; xÞ = � 27ðu2 + v2 � 3Þ2

16u3v3

("
Si

  
1�ðu+ vÞffiffiffi

3
p

!
x

!
+ Si

  
1 +

ðu+ vÞffiffiffi
3

p
!
x

!

� Si

  
1 +

ðu� vÞffiffiffi
3

p
!
x

!
� Si

��
1�ðu� vÞffiffiffi

3
p

�
x

��
cosx +



Ci

��
1 +

ðu� vÞffiffiffi
3

p
�
x

�

+ Ci

��
1�ðu� vÞffiffiffi

3
p

�
x

�
�Ci

�				1�ðu+ vÞffiffiffi
3

p
				x
�
�Ci

��
1 +

ðu+ vÞffiffiffi
3

p
�
x

��
sinx +

1

u2 + v2 � 3

3

�
4uv +

�
u2 + v2 � 3

�
ln

				1� 4uv

ðu+ vÞ2 � 3

				
�
sinx +

12

x2ðu2 + v2 � 3Þ2

3



2ucos

uxffiffiffi
3

p
�
vxcos

vxffiffiffi
3

p �
ffiffiffi
3

p
sin

vxffiffiffi
3

p
�

+ 2u

�
� vx +

ffiffiffi
3

p
sin

vxffiffiffi
3

p
�

+ sin
uxffiffiffi
3

p
�
2
ffiffiffi
3

p
v� 2

ffiffiffi
3

p
vcos

vxffiffiffi
3

p +

�
u2 + v2 � 3

�
xsin

vxffiffiffi
3

p
���

(Equation 38)

Then the late time expression, I2ðu; v; x/NÞ, takes the form

I2 =
729ðu2 + v2 � 3Þ2

512u6v6

(�
� 4uv +

�
u2 + v2 � 3

�
ln

				3� ðu+ vÞ2

3� ðu� vÞ2

				
�2

+ p2
�
u2 + v2 � 3

�2
Q
�
u + v�

ffiffiffi
3

p �)
:

(Equation 39)

Below we use the comoving curvature perturbation z, which has the relation z= ð3 =2ÞF to calculate the

SIGWs. A widely used model for the power spectrum is the infinite narrow spectrum

PzðkÞ = Ak�dðk� k�Þ; (Equation 40)
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Figure 1. SIGWs generated by different power spectrum

The parameters for the log-normal spectrum is s*=0.5. For the box spectrum, we set kmin = 0.1 and kmax = 3.
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with a dimensionless amplitudeA peaked at k*. This power spectrum corresponds to amonochromatic PBH

formation and is convenient to study the properties of SIGWs from PBHs. For this spectrum, the density

parameter has an analytical form, namely

UGWðkÞ =
3A2Ur

64
~k
2

 
1�

~k
2

4

!2�
2� 3~k

2
�2

Q
�
2� ~k

� �
2� 3~k

2
�2

p2Q
�
2�

ffiffiffi
3

p
~k
�

+

�
� 4+

�
2� 3~k

2
�
ln

				1� 4

3~k
2

				
�2
!
;

(Equation 41)

where we define ~khk=k�. Another example is a log-normal power spectrum parameterized by

PzðkÞ =
Affiffiffiffiffiffiffiffiffiffiffi
2ps2

�
p exp

 
� ln~k

2

2s2
�

!
; (Equation 42)

where s� is a dimensionless parameter which denotes the width of the power spectrum. The SIGWs gener-

ated by this power spectrum has been carefully studied in Pi and Sasaki (2020).

Finally, we consider a box spectrum described by

PzðkÞ =
A

ln

�
kmax
kmin

�Q
�
~k� kmin

�
Q
�
kmax � ~k

�
: (Equation 43)

In the above case, we have normalized the power spectrum so that
R
PzðkÞ dlnk =A= Cz2D is the variance of

the perturbations. The UGWðkÞ for these three power spectrum is given in Figure 1.

As shown in the figure, on small scales, the SIGWs will have a cutoff wavelength. The cutoff is due to the

momentum conservation such that two modes k1 and k2 generate a mode with k=k1+k2. Therefore, for a

power spectrum defined on [kmin,kmax], the cutoff wavelength of the corresponding SIGWs will be 2kmax.

Since a constant gravitational potential will not change the distribution of matter, it will not induce GWs.

After the perturbation re-enters the horizon at kxk*, they will induce GWs, and the shape of UGW is domi-

nated by the power spectrum. For instance, a power spectrum with a peak located at k* will induce GWs

with a peak at 2k�=
ffiffiffi
3

p
where 1=

ffiffiffi
3

p
comes from the sound of speed during RD while a box spectrum will
iScience 24, 102860, August 20, 2021 9



Figure 2. The two models described by Equation (44)

Both lines correspond to the SIGWs induced by a log-normal power spectrumwith s*=0.5. The solid line is the full numeric

result, while the dashed line has a k3 scaling in the infrared region, k<0.1k*.
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induce a smooth signal. Finally, on large scales, the scaling of SIGWs shows a log-dependent behavior,

UGWff 2ln

 
4f 2�
3f 2

!
or UGWff 3ln

 
4f 2�
3f 2

!
where f* is a pivot scale of the power spectrum. On large scales, the po-

wer spectrum has decreased to negligible value, and the signal is dominated by the evolution of scalar per-

turbations. A strict proof of the log-dependent scaling is given in Yuan et al. (2019b) for a general spectrum.

This special scaling is very important in distinguishing the signal of SIGWs from other stochastic GW back-

ground, and it could be smoking guns in detecting SIGWs. In Yuan et al. (2019b), Yuan et al. estimated the

distinguishability of LISA. They consider a fiducial case, Ufid
GWðkÞ, generated by a log-normal power spec-

trum with s*=0.5 and the other one is described by

Um
GWðkÞ =

8><
>:

Ufid
GWð0:1k�Þ

�
k

0:1k�

�3

; for k<0:1k�;

Ufid
GWðkÞ ; for kR0:1k�:

(Equation 44)

These two cases have different scalings in the infrared region, as shown in Figure 2. A statistic quantity, dc2,

which characterize the discrepancy of two models, takes the form Kuroyanagi et al. (2018).

dc2xT

Z N

0

df

�
Ufid

GW � Um
GW

Um
GW +Un

�2

; (Equation 45)

where T is the observation time andUn is the noise density parameter of the detector. Scanning the mass of

PBHs, the result of dc2 is Figure 3. It is shown that LISA can well distinguish the scaling of two models

beyond 5s in a wide mass range, especially for those PBHs of mpbh˛½10�16; 10�14�W½10�13; 10�12�M1 which

could still represent all the DM in our Universe. To summarize, the log-dependent scaling, UGWf f 2ln

 
4f 2�
3f 2

!

or UGWff 3ln

 
4f 2�
3f 2

!
can be smoking guns in detecting SIGWs.

Since there are no observational results concerning the primordial scalar power spectrum on small scales,

the power spectrum is usually parameterized by some given function in literature. A more realistic way is to
10 iScience 24, 102860, August 20, 2021



Figure 3. The relation between dc2 and the peak mass of PBHs (m�
pbh corresponds to k*) generated by the log-

normal power spectrum given in Equation (42) with s*=0.5

The amplitude of A is fixed by assuming PBHs represent 10�3 of DM. The 5s dashed line corresponds to dc2 = 28:74.

Taken from Figure 3 in Yuan et al. (2019b).
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consider the primordial power spectrum from a given inflationmodel and then calculate the corresponding

SIGWs. See relevant works Kawasaki et al. (2013); Choudhury and Mazumdar (2014); Inomata et al. (2017a);

Di and Gong (2018); Ando et al. (2018b, 2018c); Xu et al. (2020); Özsoy and Tasinato (2020); Gao and Yang

(2019); Lin et al. (2020); Ballesteros et al. (2020); Liu et al. (2020); Braglia et al. (2020a); Fu et al. (2020); Dalianis

and Kritos (2021); Yi et al. (2020a); Dalianis (2020); Aldabergenov et al. (2021); Ragavendra et al. (2020a);

Bhaumik and Jain (2020); Zhou et al. (2020); Ragavendra et al. (2020b); Yi et al. (2020b); Braglia et al.

(2020b); Gao et al. (2020); Gao (2021).

SIGWs in a general cosmological background

For a constant equation of state and let c2s = w, the semi-analytical solutions of SIGWs were obtained by

Domènech in Domènech (2019) for 0<w%1. Then, the results for constant w were extended to w<0 in Do-

mènech et al. (2020b). For the most general situation where w and c2s may varied, there are no semi-analyt-

ical solutions to SIGWs, and a numeric method should be adopted. For instance, during the QCD phase

transition, w and c2s may become slightly smaller than 1=3 and the equation c2s =w no longer holds. The

SIGWs generated during the QCD epoch were numerically calculated in Abe et al. (2020). The derivation

within a general wðhÞ and csðhÞ differs from that in RD in the following aspects.

Firstly, the equation of motion for linear scalar perturbations become

F0 0 + 3HðhÞ
�
1 + c2s

�
F0 + 3H2

�
c2s �w

�
F� c2sV

2F= 0; (Equation 46)

where the conformal Hubble parameter now become HðhÞ = 2
ð1+ 3wÞh. This equation should be numerically

solved with the initial condition to be Fkðh/0Þ = FkTFðkh/0Þ = Fk .

Secondly, the equation of motion for the second-order tensor modes takes the same form as (Equation 27)

but the source term changes to

Sij = 2FvivjF� 4

3ð1+wÞ

�
viF +

viF
0

HðhÞ

��
vjF +

vjF
0

HðhÞ

�
: (Equation 47)
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Figure 4. The energy density parameter of SIGWs generated by a d-spectrum up to third-order

The sensitivity curves for LISA, IPTA, FAST, and SKA are shown. The dashed lines denote the second-order SIGWs, and the

solid black lines include the third-order correction. Taken from Figure 1 in Yuan et al. (2019a).

ll
OPEN ACCESS

iScience
Review
TheGreen’s function and the transfer functionmethods can still be applied to solve hij. Since the form of the

equation of motion for hij is unchanged, the solution to hij takes the same form as Equation (29) except for

the Green’s function, which now satisfies the equation�
v2h + k2 � 1� 3wðhÞ

2
H2

�
gkðh; ~hÞ = dðh� ~hÞ; (Equation 48)

The solution of gkðh; ~hÞ can be obtained by

gkðh; ~hÞ =
uðhÞvð~hÞ � uð~hÞvðhÞ
u0ð~hÞvð~hÞ � uð~hÞv 0ð~hÞ; (Equation 49)

with uðhÞ and vðhÞ to be the two independent homogeneous solutions. Move on to the density parameter,

the final expression for UGW takes the same form as the last line of Equation (34) but the kernel function

should now be evaluated as

Iðu; v; xÞ = k2

Z h

0

d~h
að~hÞ
aðhÞgkðh; ~hÞ~F

�		p		; 		k�p
		; ~h�: (Equation 50)

After calculating the oscillating average of I(u,v,x), the density parameter, UGW, can be obtained. Readers

interested in numerically solutions may refer to Abe et al. (2020) for details where the authors introduce

some technique to reduce the computational complexity. The UGW of SIGWs generated during the

QCD phase transition is shown in Figure 4 in Abe et al. (2020) for a delta-power spectrum.
Higher-order corrections to SIGWs

SIGWs are generated at second-order soured by linear scalar perturbations, which lead to hij � F2. Given

that the scalar perturbations are enhanced to � Oð0:01�0:1Þ during the formation of PBHs, the higher-or-

der corrections to SIGWs are expected to be significant. The higher-order corrections to SIGWs were first

calculated by Yuan et al. where they proposed a semi-analytical method to evaluate the SIGWs generated

by a d-spectrum during RD Yuan et al. (2019a). Yuan et al. computed the tensor modes sourced by the
12 iScience 24, 102860, August 20, 2021
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quadratic, cubic, and biquadratic terms of the linear perturbations during RD. Here we give the source term

in Newton gauge up to fourth-order in general cosmological background. Our convention for the higher-

order tensor modes are (up to fourth-order)
dgij = a2
�
ð1� 2FÞdij +

1

2

�
hð2Þ
ij + hð3Þ

ij + hð4Þ
ij

��
; (Equation 51)

and the perturbed perfect fluid up to third-order in Newton gauge is given by

T ð2Þ
00 =

1

2
drð2Þ + 2drð1ÞFð1Þ + rFð2Þ + ðP + rÞvð1Þ

k vkð1Þ

T ð2Þ
0i =

1

2

�
� rBð2Þ

i � 2drð1ÞBð1Þ
i � 2

�
dPð1Þ + drð1Þ

�
vð1Þ
i � ðP + rÞ

�
4hð1Þ

ik vkð1Þ + 2
�
Fð1Þ � 2Jð1Þ�vð1Þ

i + vð2Þ
i

��

T ð2Þ
ij =Phð2Þ

ij + 2hð1Þ
ij dPð1Þ + ðP + rÞ

�
Bð1Þ
i + vð1Þ

i

��
Bð1Þ
j + vð1Þ

j

�
+
1

2
dij
�
dPð2Þ � 4dPð1ÞJð1Þ � 2PJð2Þ�

T ð3Þ
00 =

�
dPð1Þ + drð1Þ

�
vð1Þ
k vkð1Þ + ðP + rÞvkð1Þvð2Þ

k + 2ðP + rÞhð1Þ
lm vlð1Þvmð1Þ +

1

6
drð3Þ +

1

3
rFð3Þ

+ 2ðP + rÞFð1Þvð1Þ
k vkð1Þ + drð2ÞFð1Þ + drð1ÞFð2Þ � 2ðP + rÞJð1Þvð1Þ

k vkð1Þ

T ð3Þ
0i =

1

6



ðP + rÞ



� 6Bð1Þ

i Bkð1Þvð1Þ
k � 6

�
hð2Þ
ik vkð1Þ + hð1Þ

ik vkð2Þ
�
+ vð3Þ

i

�3
��

2Bð1Þ
i + vð1Þ

i

�
vð1Þ
k vkð1Þ + 4hð1Þ

ik vkð1ÞFð1Þ + vð2Þ
i

�
Fð1Þ � 2Jð1Þ�� vð1Þ

i

��
Fð1Þ�2 �Fð2Þ + 4Fð1ÞJð1Þ + 2Jð2Þ

��

�3
�
dPð1Þ + drð1Þ

�
3
�
4hð1Þ

ik vkð1Þ + vð2Þ
i + 2vð1Þ

i

�
Fð1Þ � 2Jð1Þ��� 3

�
dPð2Þ + drð2Þ

�
vð1Þ
i

�3
�
Bð2Þ
i drð1Þ +Bð1Þ

i drð2Þ
�
� rBð3Þ

i

�

T ð3Þ
ij =

1

6

�
2hð3Þ

ij P + 6

�
hð2Þ
ij dPð1Þ + hð1Þ

ij dPð2Þ
�
+ 6

�
dPð1Þ + drð1Þ

�
vð1Þ
i vð1Þ

j

+ 3

�
P + r

�

vð1Þ
i Bð2Þ

j + 4hð1Þ
jk vkð1Þvð1Þ

i + vð1Þ
i vð2Þ

j + vð1Þ
j

�
Bð2Þ
i + 4hð1Þ

ik vkð1Þ + vð2Þ
i � 8vð1Þ

i Jð1Þ
�i

+ 3Bð1Þ
j

h
2
�
Bð1Þ
i + vð1Þ

i

��
dPð1Þ + drð1Þ

�

+ ðP + rÞ3
�
Bð2Þ
i + 4hð1Þ

ik vkð1Þ + vð2Þ
i � 4Bð1Þ

i Fð1Þ � 2vð1Þ
i

�
Fð1Þ + 2Jð1Þ��i

+ 3Bð1Þ
i

h
2vð1Þ

j

�
dPð1Þ + drð1Þ

�
+ ðP + rÞ

�
Bð2Þ
j + 4hð1Þ

jk vkð1Þ + vð2Þ
j � 2vð1Þ

j

�
Fð1Þ + 2Jð1Þ��i

+ dij


dPð3Þ � 2PJð3Þ � 6

�
dPð1ÞJð2Þ + dPð2ÞJð1Þ��� (Equation 52)

where vihvti + viv and Bi are the velocity perturbation and vector perturbation in Newton Gauge,

respectively.

The equation of motion for each h
ðnÞ
ij takes the same form as Equation (27) and the third-order source term

reads
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Sð3Þ
ij = � 4

9H4ð1+wÞ2
�
ðHviF + viF

0Þ
�
HvjF + vjF

0�
� 2
�
1 + c2s

�
v2F + 6H2

�
c2
s �w

�
F

+ 3H
�
3 + 2c2s + w

�
F0� + 3Hð1 + wÞð4HF�F0ÞviF0vjF

0 � 3H3ð1 + wÞð2Hð5 + 3wÞF�F0ÞviFvj
(Equation 53)

and the fourth-order source term is given by
Sð4Þ
ij = 16F3vivjF� 4

27H6ð1+wÞ3
�
ðHviF+ viF

0Þ
�
HvjF+ vjF

0�
4�1+ c2s
�2�

v2F
�2

�H2
�
9+ 5c2s + 9w + 9wc2s

�
vk4v

kF+ 4c2s

�
2HvkF+ vkF0

�
vkF

0

�6H
�
1+ c2s

��
2H
�
3+ 2c2s +w

�
F+

�
5+ 4c2s +w

�
F0�v2F

+ 18H3
�
7+ 4c4s + 7c2

s � wc2s + 7w + 4w2
�
FF0

+ 36H4
�
1+ c4s � 2wc2s + 2w + 2w2

�
F2 + 9H2

�
1+ c2s
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(Equation 54)

Settingw = c2s = 1=3 during RD, they return to the source terms used in Yuan et al. (2019a). In our convention,

the density parameter for high-order corrections takes the same form as Equation (33). After defining the

Fourier transform of Sij to be
Sðk;hÞ = � 4eijSijðkÞ=Sð2Þðk; hÞ+Sð3Þðk;hÞ+Sð4Þðk;hÞ; (Equation 55)

then we can write the source terms as
Sð2Þðk;hÞ = 4

Z
d3p

ð2pÞ3=2
ek

�
p;p

�
Fð2Þ�p; 		k�p

		;h�FpFjk�pj; (Equation 56)

Z 3 3
Sð3Þðk; hÞ = 4
d pd q

ð2pÞ3
ek

�
p;q

�
Fð3Þ�p;q; 		k�p�q

		; h�FpFqFjk�p�qj; (Equation 57)

Z 3 3 3
"

Sð4Þðk;hÞ= 4
d pd qd l

ð2pÞ9=2
ekðl; lÞFð4Þ

1

�
p;q; l;

		k � p� q� l
		; h�

+ ek

�
p;q

�
Fð4Þ
2

�
p;q; l;

		k � p� q� l
		; h��FpFqFlFjk�p�q�lj;

(Equation 59)

where we have defined ekðp; qÞheijðkÞpiqj . The contribution for the cross mode is omitted here since

the plus mode, and cross mode have the same energy density and we can sum over the

polarization mode at the final step. In Equation (56), the time evolution ofF is absorbed in the transfer func-

tion, namely
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(Equation 60)

where we set w = c2s = 1=3. The notation Tk is short for the time evolution function, TFðkhÞ. Applying the

Green’s function method, the solution to h
ðnÞ
ij takes the same form as Equation (29). The next-order correc-

tions to UGW comes from two parts. The first part is the coupling of S
ð3Þ
ij itself,
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(Equation 61)

while the second part is the coupling of S
ð2Þ
ij and S

ð4Þ
ij
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(Equation 62)

The next-order corrections of UGW is the sum of Equation (61) and Equation (62). For a d-spectrum, these

two expressions can be further simplified after integrate over the d function (see Yuan et al. (2019a) for re-

sults). After considering the higher-order corrections, the deep valley at k=2/3k* generated at second-or-

der will be smoothed to a finite value. Moreover, the cutoff frequency will be extended from 2k* to 3k*. See

Figure 4.
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The above calculation only focus on the GWs induced by the linear-order scalar perturbations. However,

the higher-order scalar, vector and tensor perturbations will contribute to the higher-order SIGWs.

Recently, the SIGWs induced by the second-order perturbations were analytically studied in Zhou et al.

(2021). But the complete calculation of the next-order correction to SIGWs has not been explored yet.
SIGWs within non-gaussianities

GWs generated by non-Gaussian scalar perturbations were first estimated by Nakama et al. (2017) where

they found that the amplitude of SIGWs could be suppressed by non-Gaussianities to several orders of

magnitude. After Espinosa et al. (2018); Kohri and Terada (2018a) proposed the semi-analytical method

to calculate SIGWs, Cai et al. (2019a); Unal (2019) calculate the non-Gaussian effects on SIGWs by consid-

ering a local-type non-Gaussianities up to second-order (or FNL-order). They both argued that SIGWs

within non-Gaussianities have observable signatures which can be used to probe primordial non-Gaussian-

ities. However, in a more recent study Yuan and Huang (2020), Yuan et al. revisited the non-Gaussian effects

and extended the calculation to third-order (or GNL-order non-Gaussianities). They argue that all the non-

Gaussian effects are degenerate with the power spectrum. Hence it is impossible to read any information

about non-Gaussianities only through the signal of SIGWs.

To see this more clear, let us go back to the first line of Equation (34), where one needs to compute the two-

point correlator of the source terms. This will lead to the four-point correlator of F, namely

CFpFk�pFqFk0�qD. IfF obeys Gaussian distribution, then the four-point correlator can be simplified to three

two-point correlators throughWick’s theorem. However, the general formula for the four-point correlator is

CFpFk�pFqFk0�qD = CFpFk�pFqFk0�qDc + CFpFk�pDCFqFk�qD + CFpFqDCFk�pFk0�qD + CFpFk0�qDCFk�pFqD

(Equation 63)

where we assume that CFD= 0 and CFpFk�pFqFk0�qDc is the connected four-point correlation function (4PCF)

(or called the fourth cumulant in statistics) which is related to the trispectrum, T F, by

CFpFk�pFqFk0�qDc = ð2pÞ3dðk + k0ÞT F

�
p;q; k; k0�

: (Equation 64)

The connected 4PCF will vanish if F is a Gaussian variable. Otherwise it will contribute to be SIGWs Unal

(2019). In Unal (2019); Cai et al. (2019a), the authors consider a local-type non-Gaussianities up to FNL-order

and calculate the SIGWs in the absence of the connected 4PCF. After that, theGNL-order is studied by Yuan

and Huang (2020) still in the absence of the connected 4PCF. Recently, Atal and Domènech (2021) consid-

ered the leading order of the connected 4PCF and Adshead et al. (2021) included the complete contribu-

tion of the connected 4PCF. Although non-Gausiannities can alter the waveform of the SIGW signal, one

cannot read any information about non-Gaussianities only through the signal of UGWðf Þ. This is because

the non-Gaussian effects are absorbed into the total 4PCF and there will be a degeneracy between the

non-Gaussian effects and the total 4PCF. Therefore, one cannot tell from the total 4PCF whether there is

an evidence for non-Gaussianities (or for the connected 4PCF).
Gauge issue of SIGWs

Although the tensor mode are gauge invariant at first-order, they fail to remain gauge invariant at second-

order (see, e.g., Noh and Hwang (2003)). Therefore, a natural question arises: Is the energy density of

SIGWs gauge dependent or not?

For a long time, Newton gauge has been a commonly used gauge to compute SIGWs since the degrees of

freedom are fixed completely in this gauge, and there is no residual gauge freedom. In Newton gauge, the

scalar mode 4 is the just Bardeen potentialF and all the degrees of freedom are fixed, which make Newton

gauge the most mathematically convenient gauge for evaluating SIGWs. SIGWs in other gauges were first

calculated numerically by Hwang et al. Hwang et al. (2017) where they investigated UGW in uniform expan-

sion gauge, comoving gauge and uniform curvature gauge and they found that UGW is gauge dependent.

After that, the semi-analytical method was developed, and Gong calculated the SIGWs in comoving gauge

duringMDGong (2019). Gong’s result showed that hij increases as h
2 in comoving gauge. Another study by

Tomikawa and Kobayashi appeared at the same time Tomikawa and Kobayashi (2019), where they investi-

gate the SIGWs in comoving gauge and uniform curvature gauge. They found that the results in comoving

gauge increase with time for wR0 while the result in uniform curvature gauge is identical with that in
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Newton gauge forw > 0. Moreover, they found that the results are all different in Newton gauge, comoving

gauge, and uniform curvature gauge if w = 0.

Owing to the gauge dependence of UGW, it is natural to ask which gauge is relevant in interpreting the ob-

servations. This question is discussed by De Luca et al. De Luca et al. (2019a). They calculated the SIGWs in

synchronous gauge since they argued that the sensitivity curves of LISA are given in that gauge. By neglect-

ing the E mode but keeping its derivatives in the source term, De Luca et al. found that the SIGWs in syn-

chronous gauge are identical to that of Newton gauge. Their results are later confirmed by Yuan et al.

(2019c); Inomata and Terada (2019). However, the calculation of SIGWs in synchronous gauge is an a tough

nut since there is residual gauge freedom in E mode. The complete calculation in synchronous gauge and

which gauge is relevant for observations are still open questions.

In synchronous gauge, dg00 = dg0i = 0, corresponding to ~4= ~B= 0 in Equation (19). This leads to Lu et al.

(2020).

TSðhÞ = � 1

a

�Z h

0

að~hÞ4ð~hÞd~h�C1ðxÞ
�

(Equation 65)Z h
 �

LSðhÞ =

0

TSð~hÞ�Bð~hÞ d~h+ C2ðxÞ; (Equation 66)

where C1 and C2 are two arbitrary spatial functions. The presence of C1 and C2 come from the residual gauge

freedom in synchronous gauge. To determine the time slicing and the spatial coordinate on the hypersur-

face, one has to fix C1 and C2. To see the impacts of residual gauge freedom more clearly, we derive the

equation of motion for the scalar modes during RD, namely

2HE0 + E 00 +j= 0; (Equation 67)
00 � 0 2

�
2 00 2
6j + 2H 9j � 4v E � 3v E � 5v j= 0: (Equation 68)

After some algebra, one can get the equation of motion for E, (see also Lu et al. (2020))

x3TE
0000ðxÞ + 5x2TE

%ðxÞ+
�
2 +

x2

3

�
xTE

00ðxÞ �
�
2� x2

3

�
TE

0ðxÞ= 0; (Equation 69)

where the transfer function for E and c are defined as

k2EðkÞhFkTEðkhÞ (Equation 70)
jðkÞhFkTjðkhÞ: (Equation 71)

In our convention, the boundary condition for the transfer function should be Tjðx/0Þ= 3=2 in order to

match the relation between curvature perturbation and the Bardeen potential. The general solution for

Equation (69) is

TEðxÞ = C3 + C4

�
CiðzÞ� sinðzÞ

z

�
+ C5lnðzÞ+ C6

�
SiðzÞ + cosðzÞ

z

�
; (Equation 72)

where zhx=
ffiffiffi
3

p
and Ci ; ði = 3; 4; 5; 6Þ are integrate constants. One can check that under the residual gauge

transformation,

T = � C7

x
(Equation 73)

L = � C lnx + C ; (Equation 74)
7 8

the gauge condition ~4= ~B= 0 still satisfy. Combining Equation (72) and Equation (74), we see that C8 can be

absorbed by C3 while C7 corresponds to C5. In other words, the constant C3 and the logarithm term are two

independent pure gauge modes. One can arbitrarily choose C3 and C5 to work in a specific hypersurface.

After selecting the hypersurface, the solution can be well determined after performing the only physical

condition, Tjðx/0Þ = 3=2. Here comes a big problem in synchronous gauge. The solution to E mode

will definitely diverge either at the initial time or at a late time. For instance, let’s assume that TE(x) have

a finite value at x = 0. Notice that the Taylor expansion of cosine integral function at x = 0 is CiðxÞ = g +

lnðxÞ + Oðx2Þ, where g is the Euler gamma constant. Therefore, one must choose C5 = � C4 so that the log-

arithm term can be canceled by the Ci(x) term. By applying the boundary condition Tjð0Þ = 3= 2, one gets

C6 = 0 and C4 = � C5 = 9 and the finite value at x = 0 is given by TEð0Þ = C3 + 9g. However, under this situa-

tion, we see that the TE(x) at a late time will diverge according to the logarithm term in Equation (72). The
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consequence of the divergence is that the Emode will induce the GWs continuously during RD, resulting in

the divergence of UGW for SIGWs. On the other hand, if we let the gauge mode C5 vanish, the presence of

the Ci(x) term will result in the divergence at the initial time. A physical interpretation is that if the observer

requires a converged initial condition, the geodesics of the observer using as a reference may collapse or

cross each other. So one has to change the residual gauge freedom to adjust the reference system. This

makes the calculation of SIGWs in synchronous gauge very complicated.

In De Luca et al. (2019a); Yuan et al. (2019c); Inomata and Terada (2019), the authors calculated the SIGWs in

the absence of E mode but considering its derivatives where the gauge freedom are completely fixed. In

this situation, the energy density of SIGWs agrees with that in Newton gauge. Moreover, it was shown in Lu

et al. (2020) that if throwing away the pure gauge modes, the result returns to that in Newton gauge. These

studies indicate that the large divergence of SIGWs in synchronous gauge comes from the residual gauge

freedom and the synchronous gauge seems to be ill-defined for calculating the SIGWs. Readers interested

in the calculation of different gauge can refer to Lu et al. (2020); Ali et al. (2020); Inomata (2020).

Since the standard procedure to calculate the energy density of hij brings divergence, one way to tackle the

problem is to find a new gauge invariant quantity for the GWs. One can construct infinite gauge invariant

variables for scalar and tensor perturbations. However, the point is to find a quantity that can interpret the

physical world and the measurements. This idea has been tried by Zhang, Wang and Zhu in Chang et al.

(2020a, 2020b). By applying the technique of Lie derivative, they constructed gauge invariant second-order

GWs in synchronous gauge, which is related to the measurement, and their results coincide with that

computed in Newton gauge. They also used this idea to evaluate the energy density of SIGWs in uniform

density gauge, which is supposed to diverge as h6. They found the new gauge invariant second-order GWs

converged and were identical with the one in Newton gauge Chang et al. (2020c). In a more recent study

Domènech and Sasaki (2020), it is shown that the current UGW is well defined in most of gauges if one takes

the sub-horizon limit, namely h/N. The authors found that UGW will be the same as that in Newton gauge

if the trace part of the metric perturbation at sub-horizon limit is the order of or smaller than the scalar

perturbation F in Newton gauge (see Equation (3.2) or Equation (3.5) in Domènech and Sasaki (2020)).

They also pointed out that, for particular choices of the residual gauge freedom, synchronous gauge

can give the same result in Newton gauge.

Although the synchronous gauge is relevant for observations, Newton gauge is still the most popular

gauge since it not only gives the same result as synchronous gauge but also is the simplest gauge to

perform the calculation.
SEARCHING FOR PBH DM USING SIGWS

SIGWs provide the most efficient way so far to search for PBH DM. This is due to the fact that PBHs might

from the peak of scalar perturbations, which is extremely sensitive to the amplitude of the power spectrum,

A. Let’s consider a monochromatic power spectrum for example, described by Equation (40). The variance

of the perturbations generated by this spectrum is s =
R
PzðkÞdlnk = A. Using the Press-Schechter

formalism, Equation (11), the mass function can be approximated as

b =
1

2
erfc

�
ncffiffiffi
2

p
�
=

ffiffiffiffiffiffiffi
1

2p

r
e�n2c=2

nc
f

ffiffiffiffi
A

p
e�D2c

2A ; (Equation 75)

which is exponentially dependent on A. On the other hand, the inevitably generated SIGWs satisfy hijf A.

Therefore, a small change in A would change fpbh by several orders of magnitude.

To further quantify the power of SIGWs, we shall estimate the expected signal-to-noise ratio (SNR) by the

GW detector, which is evaluated as Allen and Romano (1999); Thrane and Romano (2013),

r2 = T

Z
df

Gðf Þ2Shðf Þ2

1
25+Gðf Þ2

�
Shðf Þ2 +Pnðf Þ2 + 2

5Shðf ÞPnðf Þ
; (Equation 76)

The strain power spectral density is given by Shðf Þ = 3H2
0UGW;0=ð2p2f 3Þ.Gðf Þ is the overlap function and Pn(f)

is the noise power spectral density. For LISA, Gðf Þ=Rðf Þwhere R(f) is the signal transfer function of LISA and
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Figure 5. The expected SNR by LISA/IPTA/FAST/IPTA in detecting SIGWs generated by monochromatic PBHs

The dotted line corresponds to SNR=5. We assume the observation time to be T = 4yr for LISA and T = 30yr for PTAs. The

value of Dt, N and s for current PTAs can be found in Kuroda et al. (2015) (see Table 5).
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its expression should be computed numerically Larson et al. (2000) but it can be well fit by Robson et al.

(2019).

Rðf Þ = 3

10
�
1+ 0:6ðf=f+Þ2

�; (Equation 77)

where f+=c/(2pL)=19.09 mHz is the transfer frequency and L=2.5 Gm for the current LISA design. On the

other hand, Pn(f) can be approximated by Robson et al. (2019).

Pnðf Þ =
Poms

L2
+ 2
�
1 + cos2ðf = f+Þ

� Pacc

ð2pf Þ4L2
: (Equation 78)

The optical metrology noise spectrum and the acceleration noise is parameterized by Robson et al. (2019).

Pomsðf Þ =
�
1:53 10�11m

�2 
1 +

�
2mHz

f

�4
!
Hz�1 (Equation 79)

 � �2
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!

Paccðf Þ =

�
33 10�15 m s�2

�2
1 +

0:4mHz

f
1 +

f

8mHz
Hz�1: (Equation 80)

For PTA, the expressions are Gðf Þ=Rðf Þ= 1=ð12p2f 2Þ and Pnðf Þ= 2Dts2 where Dt is the observation time and

s is the root-mean-square timing noise. For PTAs, each of the millisecond pulsars can be regarded as a sin-

gle GW detector, and one has to average the spatial contribution such that Allen and Romano (1999);

Siemens et al. (2013).

r2 = 2T
XM
I;J

z2IJ

2
64Z df

Rðf Þ2Shðf Þ2

1
25+Rðf Þ2

�
Shðf Þ2 +Pnðf Þ2 + 2

5Shðf ÞPnðf Þ

3
75; (Equation 81)

where zIJ is the normalized Hellings and Downs coefficient for pulsars I and J. Assuming the pulsars are

distributed homogeneously on the sky, then zIJ takes the form
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Figure 6. The constraints on fpbh through the null detection of SIGWs by NANOGrav 11-yr observations

The dotted line corresponds to 10�6. The colored region are the results excluded by OGLE microlensing Niikura et al.

(2019b), EROS microlensing Tisserand et al., (2007) and the SGWB from PBH binaries Chen and Huang (2019). Taken from

Figure 2 in Chen et al. (2019b).
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zIJ = NðN� 1Þ 4:74

203 19
; (Equation 82)

where N is the number of pulsars. Combing the above equations, we can estimate the expected SNR from

monochromatic PBHs and scan the mass of PBHs. The result is shown in Figure 5. PBHs lighter than

(10�18M1 have already evaporated through Hawking radiation by today and is not shown in the figure.

If the PTAs and LISA fail to detect the SIGWs from PBHs, an upper limit can be placed for fpbh. InWang et al.

(2019b), Wang et al. found the constraints on fpbh can reach 10�13 formpbh ˛ ½10�8;1�M1. Chen et al. Chen

et al. (2019b) searched the SIGW signals in the NANOGrav 11-yr data set for monochromatic PBHs. They

scan the mass of PBHs and did not find the SIGW signal. Therefore they placed an upper limit on fpbh, see

Figure 6. As shown in the figure, the constraints from SIGW are several orders of magnitude better than the

other constraints. Recently, NANOGrav has reported strong evidence for a common-spectrum process

modeled as power-law in the 12.5-year data set. Various models have been put forward to explain the

signal assumed to be gravitational waves. SIGWs generated by a broad and flat power spectrum seems

to give one possible explanation De Luca et al. (2021); Sugiyama et al. (2021) among the various cosmolog-

ical and astrophysical models. See also Vaskonen and Veermäe (2021); Kohri and Terada (2021); Domènech

and Pi (2020); Inomata et al. (2020d). However, further analysis indicates that the signal is preferred to be

scalar transverse modes in the general metric theory rather than the gravitational waves predicted in gen-

eral relativity Chen et al. (2021).

Another study was carried out by Kapadia et al. Kapadia et al. (2020b) where they explored the SIGW signal

in the LIGO data. Kapadia et al. reported a null detection of SIGW signal and thus placing a severe

constraint on fpbh to be less than a few parts in million. Their work provides another independent test in

addition to the g-ray burst Carr et al. (2010) in this mass window.

Up to now there are various independent cosmological observations constraining the fraction of PBHs in

Figure 7. For mpbh(10�18M1, PBHs are severely constrained through the null detections of extra-galactic

Gamma-ray background (EGB) from PBH evaporation Carr et al. (2010). On the other hand, PBHs heavier

than �103M1 are tightly constrained by the CMB observations through the accreting PBHs Ali-Haimoud

and Kamionkowski (2017); Aloni et al. (2017); Horowitz (2016); Chen et al. (2016). In the mass range
20 iScience 24, 102860, August 20, 2021



Figure 7. An overview on the current observational constraints on fpbh
Constraints are taken from EGB Carr et al. (2010), WDs Graham et al. (2015), HSC Niikura et al. (2019a), EROS Tisserand et

al., (2007), OGLE Niikura et al. (2019b), SGWB from binary PBHs Wang et al. (2018); Chen and Huang (2019), UFD Brandt

(2016), and SIGWs using NANOGrav 11-yr data set Chen et al. (2019b).
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mpbh˛½10�18;103�M1, fpbh are constrained to no more than a few in thousand by numerous astrophysical

observations. For example, microlensing events such as Subaru/HSC Niikura et al. (2019a), Kepler Griest

et al. (2013), OGLE Niikura et al. (2019b), and EROS/MACHO Tisserand et al., (2007) and the dynamical

heating of ultra-faint dwarf galaxies Brandt (2016). On the other hand, GWs physics also placed broad con-

straints on fpbh, such as themerger events from binary PBHs in the subsolar mass range Abbott et al., (2018);

Magee et al. (2018); Chen and Huang (2019); Abbott et al. (2019) and the null detections of stochastic GW

background (SGWB) from binary PBHs with LIGOWang et al. (2018); Chen and Huang (2019). Although the

existence of white dwarfs (WDs) in our local galaxy have also placed constraints on fpbh Graham et al. (2015).

However, this constraint has been challenged by a recent paper Montero-Camacho et al. (2019), and we

label the constraint from WDs with the dashed line in Figure 7. Despite the above constraints, PBHs in a

substantial window � ½10�16; 10�14�W½10�13; 10�12�M1 are still allowed to account for all of the DM.

Although SIGWs place the currently severest constraint on fpbh, it is based on the standard PBH formation

model in which PBHs are formed from the critical collapse of overdensity. However, other mechanism of the

PBH formation has been proposed (see e.g., Cotner et al. (2019)), and the constraints from SIGWs are not

valid for those PBHs.
SUMMARY AND OUTLOOK

PBHs can represent the DM in our Universe and explain the merger events detected by LIGO/VIRGO if

fpbh�10�3 in that mass range. We focus on the standard PBH formation model, where the PBHs are formed

through the collapse of the overdensity in the very early Universe. We have review several aspects of PBH

formation, and the SIGWs produced from PBHs studied over the past decades.

First of all, we review the calculation of the PBH formation. The formation of PBHs depends on the power

spectrum of the scalar perturbations, the window function, the primordial non-Gaussianities, intrinsic non-

Gaussianities, and the critical value beyond which PBH can form.

Secondly, we consider the SIGWs inevitably generatedduring the formationof PBHs.We review the relevant

works concerning SIGWs over the past decades. SIGW is a solid prediction of general relativity. But due to

the unknown of primordial scalar power spectrum on small scales, the waveform of the SIGWbackground is
iScience 24, 102860, August 20, 2021 21
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model-dependent which make the detection of SIGWs very difficult. Fortunately, the logarithm scaling in

the infrared region is a model-independent feature for SIGWs, making SIGWs unique from other SGWB.

We also review the impacts from the cosmological background, higher-order corrections to SIGWs, primor-

dial non-Gaussianities. Finally, we discuss the gauge issues of SIGWs. On the other hand, the presence of

primordial non-Gaussianities is an essential aspect since it could dramatic change the waveform and the

amplitude of the SIGWs. For local-type non-Gaussianities, as long as monochromatic PBH in the allowing

mass window represents all the DM, then LISA and PTAs should detect the signals irrespective of FNL. How-

ever, up toGNL-order, this conclusion no longer holds. TheGNL-order could further suppress the SIGWs than

FNL-order and thus avoiding the detection of LISA. Another important impact of non-Gaussianities is that

the power spectrum and the non-Gaussianities are degenerate. As a result, one cannot tell the presence

of non-Gaussianities only through the SIGW signal unless considering another independent observation.

So far, SIGW has placed the most severe constraint on fpbh Chen et al. (2019b). However, this results from

monochromatic PBHs in the absence of primordial non-Gaussianities and neglecting the QCD phase tran-

sition. During the QCD epoch, the equation of state and the sound speed decrease slightly from 1= 3, thus

changing the waveform of SIGWs. This will affect the PBHs within the PTA frequency band. Searching the

SIGW signal for realistic models such as considering the QCD phase transition, a specific inflation model,

and its loop correction to the power spectrum is necessary in this field.

Over the past decade, SIGWs from PBH DM have been widely studied. SIGW provides a promising tool to

verify or falsify the PBH DM hypothesis. We are expected to witness intriguing progress in the coming

decades.
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