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Smooth muscles are a specific muscle subtype that is widely identified in the tissues of
internal passageways. This muscle subtype has the capacity for controlled or regulated
contraction and relaxation. Airway smooth muscles are a unique type of smooth
muscles that constitute the effective, adjustable, and reactive wall that covers most
areas of the entire airway from the trachea to lung tissues. Infection with SARS-CoV-2,
which caused the world-wide COVID-19 pandemic, involves airway smooth muscles
and their surrounding inflammatory environment. Therefore, airway smooth muscles
and related inflammatory factors may play an irreplaceable role in the initiation and
progression of several severe diseases. Many previous studies have attempted to reveal
the potential relationships between interleukins and airway smooth muscle cells only
on the omics level, and the continued existence of numerous false-positive optimal
genes/transcripts cannot reflect the actual effective biological mechanisms underlying
interleukin-based activation effects on airway smooth muscles. Here, on the basis
of newly presented machine learning-based computational approaches, we identified
specific regulatory factors and a series of rules that contribute to the activation and
stimulation of airway smooth muscles by IL-13, IL-17, or the combination of both
interleukins on the epigenetic and/or transcriptional levels. The detected discriminative
factors (genes) and rules can contribute to the identification of potential regulatory
mechanisms linking airway smooth muscle tissues and inflammatory factors and help
reveal specific pathological factors for diseases associated with airway smooth muscle
inflammation on multiomics levels.

Keywords: smooth muscles, multiomics signatures, Monte Carlo feature selection, machine learning, rule
learning

INTRODUCTION

Smooth muscles are a specific muscle subtype that is widely identified in the tissues of
internal passageways, such as vessels, and internal organs, including the lungs and intestines.
This type of muscle has the capacity for controlled or regulated contraction and relaxation.
Various types of smooth muscles are distributed all over the human body. Airway smooth
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muscle is a unique smooth muscle type that constitutes the
effective, adjustable, and reactive wall covering most of the entire
airway from the trachea to lung tissues (Chung, 2000; Lam et al.,
2019). Similar to that of other smooth muscles, the coupling
of excitation and contraction is the basic approach of airway
smooth muscles to realize their unique basic biological function:
maintaining the normal and effective ventilation of the lungs
(Cieri, 2019).

Airway smooth muscle is regulated by various internal and
external factors to maintain the balance required for pulmonary
oxygen exchange (Dahl et al., 2018; Reyes-García et al., 2018).
Cytokines, such as IL-13 and IL-17, have been confirmed to
participate in the regulation of airway smooth muscles (Pascoe
et al., 2017; Ba et al., 2018; Zhang et al., 2019; Koziol-White et al.,
2020). A systematic analysis of human airway smooth muscle
cells (ASMCs) has confirmed that interleukins, including IL-13
and IL-4, participate in the regulation of the hypo-responsiveness
of smooth muscle subtypes (Koziol-White et al., 2020). IL-17
has been confirmed to participate in the typical inflammatory
reactions of ASMCs (Bexiga et al., 2018; Thompson et al., 2018).
The identification of IL-17 together with multiple interleukins
as candidate regulators validates the specific contributions of
interleukins to the actions of ASMCs.

As discussed above, interleukins, such as IL-13 and IL-
17, are functionally correlated with the biological processes of
ASMCs, and interactions between interleukins and ASMCs may
also be correlated with various diseases. Asthma is a typical
respiratory inflammatory disease that has been widely reported
to be functionally correlated with airway smooth muscles in an
inflammatory environment (Bousquet et al., 2000; Salter et al.,
2017; Ramakrishnan et al., 2019; Tliba and Panettieri, 2019).
For example, the migration of human airway smooth muscles
has been confirmed to be regulated by cytokines, including IL-
13 and IL-17, and further contribute to the pathogenesis of
asthma (Salter et al., 2017). Moreover, infection with SARS-CoV-
2, which caused the worldwide COVID-19 pandemic, involves
airway smooth muscles and their surrounding inflammatory
environment (Frohman et al., 2020; Sungnak et al., 2020).
Therefore, airway smooth muscles and related inflammatory
factors (like interleukins) may play an irreplaceable role in the
initiation and progression of several severe diseases. Studies on
the interactions between airway smooth muscles and related
interleukins and the detailed contributions of interleukins
to the biological or pathological activation of ASMCs may
contribute to the explanation of the detailed pathogenesis of
inflammatory pulmonary diseases and help the identification
of potential effective biomarkers for drug discovery and
treatment improvement.

Many previous studies have attempted to reveal the potential
relationships between interleukins and ASMCs at different omics
levels. Recently, a specific study on the relationships between
asthma-promoting cytokines (IL-13 and IL-17) and ASMCs
tried to identify key regulatory factors on the transcriptomics
and epigenetics levels. Researchers identified 225 genes around
differentially methylated regions by using independent IL-13
and IL-17 and combined interleukins and 2014 differentially
expressed transcripts by comparing different cytokine-stimulated

groups (Thompson et al., 2019). However, the continued
existence of numerous false-positive optimal genes/transcripts
cannot reflect the actual effective biological mechanisms
underlying interleukin-based activation effects on airway smooth
muscles. In this study, on the basis of newly presented
computational approaches based on machine learning, we first
identified specific regulatory factors (genes) that contribute
to the activation and stimulation of airway smooth muscles
by IL-13, IL-17, or the combination of both interleukins on
the epigenetic and/or transcriptional levels. Next, we also
established a series of rules based on essential genes that
contribute to distinguishing quiescent and interleukin (either
independent or combined)-activated ASMCs in a quantitative
manner. Our results, including detected discriminative genes
and quantitative rules, corresponding to different patterns,
can contribute to the identification of potential regulatory
mechanisms underlying interactions between airway smooth
muscle tissues and inflammatory factors (IL-13 and IL-17) and
help reveal specific pathological factors for diseases associated
with airway smooth muscle inflammation on multiomics levels.

MATERIALS AND METHODS

Data
In March 2020, researchers from the University of Chicago
released the gene methylation and expression data of ASMCs
under the stimulation of multiple inflammatory factors to the
Gene Expression Omnibus database (GSE146377) with more
than 500 samples (either transcriptomics or methylation data).
All the transcriptomics and gene methylation data were generated
from the primary cultured ASMCs. In this study, we aimed at
interpreting the biological significance of lung smooth muscle
and related inflammatory factors during the initiation and
progression of multiple diseases like COVID-19 which has
ravaged all over the world recently. Following the goal, we
downloaded the methylation and gene expression profiles of
primary cultured ASMCs exposed to IL-13, IL-17, IL-13 + IL-
17, and vehicle from the Gene Expression Omnibus database
under the accession number of GSE146377. Only samples with
methylation and gene expression data were analyzed. Each
of the IL-13, IL-17, IL-13 + IL-17, and vehicle groups had
64 samples. Methylation data were generated with Infinium
MethylationEPIC and included 786,326 probes. The expression
levels of 18,279 genes were profiled with Illumina HumanHT-12
V4.0 expression beadchip. We aimed to investigate the responsive
genes of ASMCs to IL-13, IL-17, and IL-13 + IL-17.

Monte Carlo Feature Selection
The methylation and gene expression profiles of ASMCs have
much more features than samples. The Monte Carlo feature
selection (MCFS) (Dramiñski et al., 2007) was deemed to be
excellent in tackling such type of dataset. It is a powerful and
widely used feature selection technology.

To evaluate the importance of features, MCFS generally
includes the following steps: (i) the selection of random feature
subsets with m features from the original whole M features
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(m « M); (ii) the learning of a classification model on the
bootstrap dataset for each feature subset, which generates p
decision trees from classification model; (iii) the production of
p × t decision trees by repeating the above steps t times; and
(iv) the calculation of the relative importance score (RI) for each
feature. Among the constructed p × t decision trees, a given
feature may occur in some of them. The split on a node using such
feature in each of these decision trees can reflect its importance,
which can be measured by the information gain achieved by such
split. Furthermore, the classification ability of the decision tree
should also be included. Thus, the contribution of a feature in
a decision tree can be the determined by the information gain
achieved by the split, the number of samples in the split node and
the classification ability of the tree. The RI value of a feature f
can be the sum of contributions on all constructed decision trees,
which is defined as

RIf =

pt∑
τ=1

(wAcc)u
∑
nf (τ)

IG(nf (τ))(
no. in nf (τ)

no. in τ
)v (1)

where wAcc is the weighted accuracy, and nf (τ) is a node of
feature f in the decision tree τ. The information gain of nf (τ)
is expressed as IG(nf (τ)), and (no. in nf (τ)) is the number of
training samples in nf (τ). u and v are two weighting factors,
which is suggested to one.

After all investigated features are assigned the RI values, a
feature list is produced by the decreasing order of RI values
of features. In this study, we adopted the MCFS program
downloaded from http://www.ipipan.eu/staff/m.draminski/mcfs.
html. For convenience, default parameters were used.

Incremental Feature Selection
Incremental feature selection (IFS) (Liu and Setiono, 1998) is
an iterative feature selection approach, which can find the best
number of features for a given classification algorithm. For a
feature list (e.g., a list produced by the MCFS method), IFS always
generates lots of feature subsets, each of which contains some top
features in the list. For example, the first feature subset contains
the top one feature in the list, the second feature subset consists of
the top two features, and so forth. Then, for each feature subset,
a classifier can be built based on a given classification algorithm
and samples represented by features in the subset. Finally, all
constructed classifiers are evaluated by a cross-validation method
(e.g., 10-fold cross-validation) (Kohavi, 1995). The classifier with
the best performance is extracted, which were called the optimum
classifier in the study. Furthermore, the corresponding feature
subset was termed as the optimum feature subset.

Classification Algorithm
As mentioned in section “Incremental Feature Selection,”
a powerful classification algorithm is necessary for the
IFS method. This study tried four classification algorithms:
random forest (RF) (Breiman, 2001), support vector machine
(SVM) (Cortes and Vapnik, 1995), k-nearest neighbor (kNN)
(Cover and Hart, 1967), and repeated incremental pruning to
produce error reduction (RIPPER) (Cohen, 1995). Their brief
descriptions are as follows.

Random Forest
Random forest (Breiman, 2001) is an assemble classification
model that is based on multiple decision tree classifiers. Each
decision tree is constructed using randomly selected samples and
features. Although decision tree is a relative weak classification
algorithm, RF is much power and always an important choice
for building different classification models (Tang et al., 2018;
Baranwal et al., 2019; Zhao et al., 2019; Jia et al., 2020; Liang
et al., 2020). The predicted sample label of RF is obtained on
the basis of the aggregated votes of decision tree classifiers. The
subtle difference among decision trees in RF causes the potential
overfitting of learned models. Thus, RF usually adopts the final
consensus results in accordance with the average of all decision
trees’ predictions. This study adopted the tool “RandomForest”
in Weka (Frank et al., 2004; Witten and Frank, 2005), which
implements the RF algorithm. The major parameter, number of
decision trees, was set to 10.

Support Vector Machine
Support vector machine (Cortes and Vapnik, 1995) is a statistical
learning-based classification algorithm. Similar to RF, SVM is
another essential candidate for constructing classification models
(Sang et al., 2020; Zhou et al., 2020a,b). It first transforms original
data from a low-dimensional space to a high-dimensional space
by using a kernel function and then divides the data samples
of each label in accordance with the principle of data interval
maximization in high-dimensional space. It further predicts the
new samples’ label in accordance with the interval to which
this new sample belongs to. In this work, the tool “SMO” in
Weka software (Frank et al., 2004; Witten and Frank, 2005)
was employed to construct the SVM classifier. The training
procedures are optimized by the sequential minimal optimization
algorithm (Platt, 1998). The kernel was a polynomial function
and the parameter C was set to 1.0.

k-Nearest Neighbor Classification
k-nearest neighbor is another classification model with a voting
scheme (Theilhaber et al., 2002; Zhang and Srihari, 2004; Yu et al.,
2016; Chen et al., 2017a). Given a query sample and one training
dataset, kNN includes several computation steps to determine
its class: (1) the calculation of the sample distance between the
query sample and training samples; (2) the ranking of training
samples on the basis of their distances to the query sample; (3)
the selection of k training samples with the least distance to the
query sample (i.e., kNNs, and k usually ranges from 1 to 10); (4)
the estimation of the label distribution of such k nearest training
samples; and (5) the prediction of labels for the query sample by
using the class label with the highest distribution frequency. In
this work, the tool “IBk” in Weka (Frank et al., 2004; Witten and
Frank, 2005) was used to build the kNN classifier. The distance
between samples was defined as the Euclidean distance.

Rule Learning
In addition to the above black-box classification algorithms, we
also applied a rule learning algorithm, RIPPER (Cohen, 1995), to
generate classification rules for enhancing model interpretation.
This algorithm starts to generate rules for the class containing

Frontiers in Genetics | www.frontiersin.org 3 January 2021 | Volume 11 | Article 599970

http://www.ipipan.eu/staff/m.draminski/mcfs.html
http://www.ipipan.eu/staff/m.draminski/mcfs.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-599970 January 4, 2021 Time: 15:52 # 4

Zhang et al. Multiomics Signatures for ASMCs

least samples. When a rule is produced, covered samples are
removed. Other rules are yielded on the rest samples. Each rule
generated by RIPPER is represented by an IF–ELSE statement.
For instance, If (GPR44 ≥ 7.200) and (ZC3H12A ≤ 8.211),
THEN class = IL-13. Rules in such form can provide human-
readable predictions for new samples. In this study, tool “JRip”
in Weka (Frank et al., 2004; Witten and Frank, 2005) was utilized
to learn RIPPER rules.

Performance Evaluation
The Matthew correlation coefficient (MCC) (Matthews, 1975;
Chen et al., 2017a,b; Zhao et al., 2018), a widely used evaluation
measurement, was applied to evaluate the performance of the
classification model through 10-fold cross-validation (Kohavi,
1995). MCC ranges from−1 to +1. The classification model with
an MCC of +1 has the best performance. Our analyzed data were
organized into four categories. Thus, the multiclass version of the
MCC (Gorodkin, 2004) was calculated as follows:

MCC =
cov(X, Y)

√
cov(X, X)cov(Y, Y)

(2)

where X is a 0–1 matrix indicating the predicted class of each
sample, Y is a 0–1 matrix representing the actual classes of all
samples, and cov(·, ·) represents the covariance of two matrixes.

In addition, the accuracy on each category and overall
accuracy (ACC) were also calculated to fully indicate the
performance of each model.

RESULTS

In this study, we employed several computational methods
to investigate the methylation and gene expression profiles of
ASMCs. Samples were divided into four groups: the control
group, IL-13 stimulation group, IL-17 stimulation group, and
combined (IL-13 and IL-17) stimulation group. We organized the
data into three types: the methylation data of the four groups, the
expression data of the four groups, and the combined data of the
four groups. For each type of data, we utilized a similar analytical
pipeline. The entire procedures are illustrated in Figure 1.

Results for Methylation Data
For methylation data, we first used MCFS to evaluate
each feature, obtaining a feature list, which is available in
Supplementary Table 1. Due to the huge number of methylation
features, IFS only constructed the top 5000 feature subsets.
A RF, SVM, or kNN classifier was built on each feature subset,
which was further evaluated by 10-fold cross-validation. The
performance of each classifier, including accuracies on four
categories, ACC and MCC, is provided in Supplementary
Table 2. For an easy observation, a curve with MCC as Y-axis
and number of used features as X-axis was plotted for each
classification algorithm, as shown in Figure 2. The SVM
exhibited the best performance and had the MCC of 0.831 when
top 4940 features were used. For RF and kNN, the best MCC was
0.710 and 0.182, respectively, which was based on top 629 and 4
methylation features. Accordingly, the optimum SVM, RF, and

kNN classifiers were built using corresponding optimum feature
subsets. The ACCs of these classifiers are listed in Table 1 and the
accuracies on four categories are illustrated in Figure 3A. Besides
the black-box classifiers, we also tried the rule learning algorithm,
RIPPER, in IFS method. Similarly, we still considered the top
5000 feature subsets. The performance of RIPPER classifiers
is provided in Supplementary Table 2 and the corresponding
curve is shown in Figure 2. The optimum RIPPER classifier
yielded the MCC of 0.319 when top 1264 features were used,
the corresponding ACC was 0.488 (Table 1). Figure 3A shows
the four accuracies on four categories yielded by such classifier.
This performance was insufficiently satisfactory for such a
rule-based approach.

Results for Gene Expression Data
The similar analytical pipeline was applied on the gene expression
data. A feature list was first obtained according to the results of
MCFS, which are provided in Supplementary Table 3. Then, we
applied IFS with 1 as an interval to build classifiers with one of the
four classification algorithms. To save time, we still considered
top 5000 features. Each classifier was evaluated by 10-fold cross-
validation. Obtained measurements are listed in Supplementary
Table 4. The corresponding curves were plotted in Figure 4,
from which we can see that the four optimum classifiers with
different classification algorithms yielded the MCC of 0.870,
0.928, 0.990, and 0.897, respectively, and adopted the top 24, 40,
3440, and 794 features, respectively. The corresponding ACCs are
listed in Table 1 and accuracies on four categories are shown in
Figure 3B. Similar to the results on the methylation data, the
optimum SVM classifier was still best (MCC = 0.990). As for
the optimum RIPPER classifier, its performance was much better
than that for the methylation data. It produced the MCC of 0.897
and ACC of 0.922 (Table 1). This performance was sufficiently
satisfactory. Accordingly, we used top 794 features, which was
adopted to build such classifier, to construct rules with RIPPER,
obtaining seven rules, where three rules were for IL-13, two rules
for control, one rule for both of other two categories. These
rules are listed in Table 2. A further analysis would be given in
section “Optimal Rules for Distinguishing the Different Statuses
of ASMCs.”

Results for Combined Data
Finally, for combined data, we did the same test. The feature
list yielded by the MCFS method is provided in Supplementary
Table 5. The IFS method was applied on such list using one of the
four classification algorithms. Also, only top 5000 features were
considered. The accuracies on four categories, ACCs and MCCs
for each classification algorithm are listed in Supplementary
Table 6 and a curve for each algorithm was plotted in Figure 5
to show the trends of the performance. It can be observed
that SVM consistently achieved the best performance among
all algorithms. Its MCC was 0.969 when 3103 top features
were used. The ACC was 0.977 (Table 1) and accuracies on all
categories are shown in Figure 3C. The performance of other
optimum classifiers are listed in Table 1 and Figure 3C. The
optimum RIPPER classifier also provided good performance of
MCC = 0.891, which used top 42 features. In view of this,
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FIGURE 1 | Entire procedures for analyzing methylation and gene expression profiles of airway smooth muscle cells (ASMCs). The methylation and gene expression
profiles of ASMCs are retrieved from Gene Expression Omnibus database. The cells are classified into four categories (control, IL-13, IL-17, and IL-13 + IL-17). Three
datasets with different combination of profiles are constructed. Each dataset is first analyzed by Monte Carlo feature selection method, producing a feature list. The
list is fed into the incremental feature selection method, incorporating one of the four classification algorithms. The results includes: (1) essential signatures from
different levels; (2) quantitative rules; (3) efficient classifiers.

FIGURE 2 | Performance curves of IFS with RF, SVM, kNN, and RIPPER under different numbers of features for methylation data. SVM yields the highest MCC of
0.831.

we obtained seven rules, listed in Table 3, based on these
42 features and RIPPER. Among these seven rules, two rules
were for IL-17, three rules were for IL-13, and one rule was

for both of other two categories. We would analyze them in
section “Optimal Rules for Distinguishing the Different Statuses
of ASMCs.”

Frontiers in Genetics | www.frontiersin.org 5 January 2021 | Volume 11 | Article 599970

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-599970 January 4, 2021 Time: 15:52 # 6

Zhang et al. Multiomics Signatures for ASMCs

TABLE 1 | Performance of the best classification model on three datasets with different classification algorithms.

Dataset Classification algorithm Number of features ACC MCC

Methylation kNN 4 0.387 0.182

RF 629 0.781 0.710

SVM 4940 0.871 0.831

RIPPER 1264 0.488 0.319

Gene expression kNN 24 0.902 0.870

RF 40 0.945 0.928

SVM 3440 0.992 0.990

RIPPER 794 0.922 0.897

Methylation+ gene expression kNN 4 0.883 0.844

RF 96 0.938 0.917

SVM 3103 0.977 0.969

RIPPER 42 0.918 0.891

The results for RIPPER indicated that datasets containing only
epigenetic data with RIPPER and the MCC of 0.319 might be
unacceptable for further analyses and that the use of methylation
data might be ineffective for constructing reliable quantitative
rule-based models for distinguishing the different statuses of
ASMCs. Expression data and combined data could provide an
optimal RIPPER MCC of approximately 0.900, validating the
reliability and efficacy of the features and rules learned from
the two datasets.

Enrichment Results
For all three datasets, the best optimum classifiers all used SVM
as the classification algorithm. In detail, for methylation data,
the optimum SVM classifier adopted top 4940 features, while
the optimum SVM classifiers used top 3440 and 3103 features,
respectively, for other two datasets. Their corresponding genes
were called optimum signatures (genes) for the corresponding
dataset. To reveal the potential biological functions that optimum
genes are correlated with, we performed GO enrichment analyses
using R package (topGO v2.38.1) on them. The results are
provided in Supplementary Table 7. Of the optimum genes on
epigenetic and transcriptomics levels, they enriched five and 39
GO terms, respectively, while 68 GO terms were enriched by the
optimum genes on both epigenetic and transcriptomics levels. An
analysis would be performed in section “Go Enrichment Analyses
for Optimal Signatures for Distinguishing the Different Statuses
of ASMCs.”

DISCUSSION

We applied multiple machine learning models to identify
potential multi-omics signatures on the epigenetic and
transcriptomic levels. By using our newly presented
computational methods, we not only identified a group of
effective signatures (genes) that were remarkably correlated
with the interactions between interleukins (IL-13, IL-17, or
their combination) and ASMCs, but also established specific
rules to distinguish four ASMC statuses: quiescent, IL-13
activated, IL-17 activated, and IL-13–IL-17 combined activated.

Similar signature analyses have been validated under three
conditions, i.e., single transcriptomics level, single epigenetic
level, and combined transcriptomics and epigenetic levels. All
the identified signatures and rules were validated on the basis of
recent publications, indicating the efficacy and accuracy of our
prediction. Given the limitation of this manuscript’s length, we
only chose several typical genes for introduction. The detailed
discussion on the signatures and rules is given below.

Optimal Signatures for Distinguishing the
Different Statuses of ASMCs
Signatures on the Epigenetics Level
The top-ranked gene in our prediction list obtained from
the epigenetic dataset is BEND6 with specific methylation
alterations on the first exon (cg08811259). BEND6 has
been widely reported to be functionally correlated with the
Notch signaling pathway (Dai et al., 2013). Early in 2008,
the Notch signaling pathway was confirmed to regulate the
hyper-responsiveness and inflammation of ASMCs (Okamoto
et al., 2008) via multiple interleukins, including IL-13 (Lee
et al., 2001) and IL-17 (Plé et al., 2015). Therefore, given
that the methylation alteration of BEND6 has been validated
to affect the Notch signaling pathway, this methylation
probe together with its target gene BEND6 are potential
biomarkers for distinguishing ASMCs with or without
interleukin stimulation.

The next probe (cg26074603) targets the 5′ UTR of
KCNC2. This gene is a core regulator of the voltage-gated
potassium channel and has been confirmed to participate in the
pathogenesis of multiple diseases, including extratemporal
epilepsy (Vetri et al., 2020) and spinocerebellar ataxia
(Rajakulendran et al., 2013). Moreover, KCNC2 has been
reported to participate in pulmonary neutrophilic inflammation
in the lungs and airway; this condition can involve local smooth
muscles (Nadadur et al., 2005). Although direct evidence
confirming that interleukins may affect the contribution of
KCNC2 to the inflammation of airway smooth muscles does
not exist, previous studies have confirmed that KCNC2 indeed
interacts with multiple interleukins, including, IL-13 and IL-1
(Haas et al., 1993), partially validating our prediction.
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FIGURE 3 | Accuracies on all categories yielded by the optimum classifiers on three datasets. (A) Methylation data; (B) gene expression data; (C) combined data.

The next optimal gene on the methylation level is MAST4,
which is targeted by the probe cg06040990. This gene is
a microtubule-associated protein kinase (Sun et al., 2006)
that has been widely reported to participate in multiple
inflammatory-associated biological processes (Gongol et al.,
2017; Cortes et al., 2020). MAST4 is a part of the PTEN
signaling pathway (Valiente et al., 2005; Sotelo et al., 2012), which

has been confirmed to mediate the IL-13-induced stimulation,
hyper-responsiveness, and inflammation, of airway smooth
muscles, thus validating this predicted target gene (Jiang et al.,
2012). Similar conclusions have also been further validated in
later studies (Hu et al., 2014; Khalifeh-Soltani et al., 2018).
Therefore, MAST4 is definitely correlated with the interleukin-
mediated stimulation of airway smooth muscles.
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FIGURE 4 | Performance curves of IFS with RF, SVM, kNN, and RIPPER under different numbers of features for expression data. SVM generates the highest MCC
of 0.990.

TABLE 2 | Rules by RIPPER on expression data.

Index Condition Result

1 (GPR44 ≥ 7.200) and (ZC3H12A ≤ 8.211) IL-13

2 (SEMA3A ≤ 9.623) and (NFKBIZ ≤ 10.612) IL-13

3 (MYOM1 ≥ 7.527) and (MAP3K8 ≤ 9.269) IL-13

4 (NFKBIZ ≤ 10.483) and (MAP3K8 ≤ 8.234) Control

5 LSS ≤ 10.932 Control

6 CCL26 ≤ 9.291 IL-17

7 Others IL-13 and IL-17

Signatures on the Transcriptomics Level
Similar to the analyses based on the methylation-level dataset, our
other analyses also identified a group of genes (transcripts) that
contributes to distinguishing the different statuses of ASMCs.
All such genes/transcripts have also been further validated to be
effective in accordance with recent publications.

The first gene in our prediction list is MAP3K8, a member
of the serine/threonine protein kinase family. MAP3K8 has
been confirmed to be associated with typical differential
expression levels in systematic neutrophilic inflammation
involving airway tissues (Fu et al., 2013). Although no direct
reports have confirmed the regulatory roles of IL-13 and IL-17
in MAP3K8-medicated airway inflammation responses, MAP3K8
has been widely reported to perform an interleukin-dependent
inflammatory regulatory role during multiple biological or
pathological processes (Glossop and Cartmell, 2009; Kim et al.,
2014; Sánchez et al., 2017), implying the specific role of such a
gene in the different statuses of ASMCs.

The next gene that contributes to cell classification on the
transcriptomics level is CCL26, a functional secretory factor that
contributes to immune regulatory and inflammatory processes in
human bodies (Sangaphunchai et al., 2020). This gene has also
been reported to be differentially expressed in airway tissues and
participates in the inflammatory response in lung and airway
tissues during the pathogenesis of asthma (Sangaphunchai et al.,
2020). It has been directly reported to be functionally correlated
with IL-13 (Higham et al., 2020; Min et al., 2020) and IL-
17 (Kamijo et al., 2020; Mamber et al., 2020) in focal regions
surrounding airway smooth muscles at the transcriptomics level
and is further pathologically correlated with several chronic
lung diseases, including chronic obstructive pulmonary diseases
(Min et al., 2020). Therefore, given its functional correlation
with the potential regulatory effects of IL-13 and IL-17 on
airway smooth muscle inflammation, the predicted gene CCL26
is definitely an effective signature for cell classification on the
transcriptomics level.

CISH, also known as SOCS, is predicted to be important
for the classification of ASMCs with different interleukin
stimulation statuses. CISH is present at specific expression
levels in Treg cells in allergic-associated airway inflammation
(Zheng et al., 2020), implying the specific regulatory role of
CISH in airway regional inflammation on the transcriptional
level. SOCS can also participate in the regulation of human
monocyte inflammatory responses involving IL-13 and IL-
4 (Wolde et al., 2020), confirming its potential classification
capacity at the gene expression level. Summarizing the specific
biological regulatory role of CISH in airway tissues reveals
that CISH is a potential regulatory factor of interactions
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FIGURE 5 | Performance curves of IFS with RF, SVM, kNN, and RIPPER under different numbers of features for combined data. SVM produces the highest MCC of
0.969.

TABLE 3 | Rules by RIPPER on combined data.

Index Condition Result

1 (COL17A1 ≤ 7.226) and (NFKBIZ ≥ 10.687) IL-17

2 (CCDC86 ≤ 9.636) and (NFKBIZ ≥ 10.454) IL-17

3 (DTNA ≤ 7.176) and (NFKBIZ ≤ 10.496) IL-13

4 (CCL11 ≥ 12.814) and (MAP3K8 ≤ 9.294) and
(SLIT2 ≤ 11.423)

IL-13

5 PPFIBP2 ≥ 9.582 IL-13

6 MAP3K8 ≥ 8.957 IL-13 and IL-17

7 Others Control

between interleukins and airway smooth muscles on the
transcriptomics level.

Combinatory Signatures on the Epigenetic and
Transcriptomics Level
Epigenetic- and transcriptomics-level data may be applicable
for distinguishing different ASMC statuses on the basis of
combinatory signatures. Here, we integrated epigenetic- and
transcriptomics-level data to identify specific signatures at the
dual-omics levels by using our presented computational method.
In accordance with the prediction list, most of the top-ranked
features are the same as the features identified through the above
transcriptomics-only analyses. Therefore, we further discussed
the epigenetic contribution of the top three genes that have
already been discussed on the transcriptomics level to provide
wide and solid literature support.

As discussed above, MAP3K8 has been validated to be
a transcriptomic regulator that can be used to distinguish

different stimulation statuses. The abnormal methylation status
of this gene is correlated with multiple chronic pathological
conditions, such as lung adenocarcinoma (Tsay et al., 2015)
and autoimmune lung injuries (Diaconu et al., 2010; Xie
et al., 2018). Although no direct evidence has shown that the
methylation alteration of MAP3K8 is functionally correlated with
interleukins, such as IL-17, in the inflammation of airway smooth
muscles, a recent publication on colorectal cancer has indicated
that the methylation of MAP3K8 controls focal inflammatory
responses via the regulation of related interleukins (Hartley,
2020). Therefore, in addition to its unique contribution on the
transcriptomics level, MAP3K8 is an effective epigenetic regulator
of interleukin-mediated airway smooth muscle activation.

CCL26, the next predicted gene, is ranked second on the
transcriptomic level but fourth on the epigenetic level. It is
also associated with specific methylation status in lung- and
respiratory-related tissues under various pathological conditions,
including lung adenocarcinoma (Dong et al., 2020) and asthma
(Kim et al., 2020). CCL26 has been validated to be regulated
by specific interleukins, such as IL-13 (Lyles and Rothenberg,
2019), and further studies have validated that the methylation
status of CCL26 is greatly altered during the inflammatory
responses of ASMCs under either pathological or physical
conditions (Grozdanovic et al., 2019). Therefore, CCL26 can also
be regarded as a methylation signature of interleukin-mediated
inflammation involving ASMCs in addition to its role as an
effective transcriptomics signature.

Recently, in correspondence with our prediction, a review of
the inflammation profiling of asthma involving airway smooth
muscles identified CISH as a potential methylation biomarker
for airway regional inflammation. Furthermore, CISH has been
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reported to exhibit different methylation patterns in different
asthma statuses with different interleukin profiles (Vermeulen
et al., 2020), validating the specific role of CISH in inflammatory
lung diseases on the methylation level.

Collectively, all the optimal signatures have been validated
even at the dual-omics level by recent publications. Summarizing
the classification model of datasets on different levels revealed
that the optimal features on transcriptomics level are similar
to those based on combinations but different from those
on the methylation level, indicating that transcriptomics-level
datasets may perform better than other datasets in indicating
the different activation statuses of airway smooth muscles under
interleukin stimulation.

Optimal Rules for Distinguishing the
Different Statuses of ASMCs
In addition to the above specific signatures for distinguishing
the different statuses of ASMCs, we established a group of
effective quantitative rules for cell classification by using the
RIPPER computational method. In accordance with the above
discussion, we focused on the quantitative rules obtained by
using transcriptomics-level data and the dataset combining
transcriptomics- and epigenetic-level data.

Rules on the Transcriptomics Level
We identified seven rules to distinguish the four groups of
cells on the transcriptomics level. The first three rules are
defined to identify groups under only IL-13 stimulation and
involved genes GPR44, ZC3H12A, SEMA3A, NFKBIZ, MYOM1,
and MAP3K8. We have already analyzed the specific role of
MAP3K8 in IL-13- or IL-17-stimulated inflammation involving
ASMCs (Hartley, 2020). For other quantitative parameters, we
took GPR44 and MYOM1 as two typical examples. GPR44
encodes a receptor for prostaglandin D2. IL13 participates in
the activation of Th2 cells, on which our target gene GPR44 is
expressed. Therefore, GPR44 can be reasonably predicted to have
a greater expression level in the group under IL-13 stimulation
(Huang et al., 2016) or at least greater expression than that
in the controls and IL-17 stimulation. Another parameter of
MYOM1 is increased expression level in the IL-13 stimulated
group, and we found some evidence confirming that MYOM1
is up-regulated during IL-13-mediated interleukin stimulation
under inflammatory conditions, (Campbell and Hardman, 2020)
although few publications have shown potential correlations
between MYOM1- and IL-13-mediated stimulation.

Similar to the rules identified for IL-13 stimulation group,
the specific gene MAP3K8 remains important for low expression
levels in control group. A unique parameter, LSS, is down-
regulated in controls but up-regulated in all activated ASMCs.
LSS has been widely associated with nonspecific inflammation
in human beings (Vykhovanets et al., 2006; Qin et al., 2013;
Li et al., 2016). Therefore, interleukin-mediated airway smooth
muscle activation can definitely trigger the up-regulation of
LSS, indicating that the down-regulated expression of LSS may
be an effective signature for controls without inflammatory
reactions on any levels. CCL26 in the unique rule identifying
IL-17 stimulation group is the only quantitative parameter for

identifying the IL-17 stimulated group. As analyzed above, on
the transcriptomics level, CCL26 has been already confirmed
to be up-regulated under stimulation by IL-13 (Wolde et al.,
2020). Therefore, the low expression level of CCL26 may
be used to further distinguish samples under only IL-17
stimulation from samples under combined stimulation. Finally,
the remaining samples are reasonably stimulated by IL-13 and IL-
17, thus validating the efficacy and accuracy of our quantitative
predictive rules.

Rules on Epigenetic and Transcriptomics Levels
By combining epigenetic and transcriptomics data, we also
obtained a group of combined signatures with specific
quantitative thresholds that reflect expression or methylation
tendency. In accordance with the combined rules and in
correspondence with our above discussion on the comparison
of the contributions of methylation and transcription
features to cell classification, all the optimal parameters are
simply transcriptomics features. The detailed discussion
is provided below.

The first two rules identify IL-17 stimulation group. Both
rules include the up-regulation of NFKBIZ, a specific regulator
of interleukin-mediated immune responses (Garg et al., 2015).
Previous studies have already connected the up-regulation of
NFKBIZ with the stimulation of IL-17 (Göransson et al., 2009;
Chapman et al., 2010). This connection corresponds with our
prediction. Another effective parameter, CCDC86, is positively
correlated with IFNG and IL-13. Therefore, the low expression
level of CCDC86 may indicate that a group may not be stimulated
by IL-13 and further confirms that a group is stimulated by
only IL-17 but not the combination of interleukins. NFKBIZ
remains one of the most significant parameters for IL-17
stimulation group. The up-regulation of NFKBIZ indicates the
stimulation of IL-17. Therefore, the down-regulation of NFKBIZ
may distinguish this group from the combined stimulation
and IL-17 stimulation groups. In addition, the high expression
of PPFIBP2 is correlated with IL-13-associated inflammatory
immune responses, and samples not fitting all the above rules can
definitely be classified as control group.

Go Enrichment Analyses for Optimal
Signatures for Distinguishing the
Different Statuses of ASMCs
As several GO terms were extracted for different datasets, we
selected some of them for analysis.

GO Enrichment Analyses for Signatures on the
Epigenetics Level
As shown in Supplementary Table 7, we only identified five
enriched GO terms of different clusters. We chose GO:0046872
(metal ion binding) for detailed discussion. For metal ion
binding, correlated with ciliary base, calcium ion binding
has been shown to regulate the ASMCs related inflammatory
reactions via regulating the function of ciliary base (Aisenberg
et al., 2016), validating accuracy of the optimum signatures on
the epigenetics level.
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GO Enrichment Analyses for Signatures on the
Transcriptomics Level
For specific GO enrichment generated from signatures on
transcriptomics level, only 39 enriched GO terms were identified.
The detailed results can be seen in Supplementary Table 7.
Here, we chose two terms as for detailed discussion: (1)
GO:0005925 (focal adhesion) and (2) GO:0001666 (response
to hypoxia). Early in 2014, a systematic network analyses
on the transcriptomics profiling of airway smooth muscle
tissue confirmed that focal adhesion associated pathways play
irreplaceable role for physical or pathological inflammatory
effects like asthma related inflammation (Yick et al., 2014). As
for another enriched GO term named as hypoxia, similar with
focal adhesion, hypoxia has also been shown to be correlated
with the inflammatory activation of ASMCs. Based on related
transcriptomics studies (Ricciardi et al., 2008; Yang et al., 2014),
hypoxia has been confirmed to be directly correlated with
dendritic cell mediated inflammatory responses. Therefore, it
is also reasonable for us to enrich our optimum genes at
transcriptomics level in such GO term.

GO Enrichment Analyses for Signatures on the
Epigenetic and Transcriptomics Levels
As shown in Supplementary Table 7, we identified 68 enriched
GO terms of different clusters. We chose GO:0051301 (cell
division) and GO:0017147 (Wnt-protein binding) for detailed
analyses. For multi-omics data, the GO term seems to be more
general. Cell division has been widely shown to be correlated with
inflammatory responses in the airway related tissues (McWilliam
et al., 1996; Lambrecht et al., 2000; Grausenburger et al., 2010).
Therefore, it is reasonable for potential biomarkers distinguishing
different ASMCs inflammatory status to enrich in such GO
term. As for Wnt-protein binding, WNT and beta-catenin
signaling pathway, which involves multiple WNT proteins, has
been widely reported to be correlated with the inflammatory
responses of ASMC (DiRenzo et al., 2016; Kumawat et al., 2016;
Koopmans, 2017).

All in all, as we have discussed above, for the first
time, we recognized the functional enrichment pattern of
multi-omics biomarkers. Biologically, we identified multi-
omics level regulation associated biological entity (functions,
processes, or cellular components), laying a foundation for fully
demonstration on the inflammatory factor medicated regulations
on ASMCs. Methodologically, we confirmed that the application
of multi-omics biomarkers for GO enrichment analyses may
improve the efficacy and accuracy for disease associated
function exploration, providing an alternative approach for
pathological studies.

CONCLUSION

Via multiple machine learning models, we identified a group
of signatures for the different statuses of ASMCs on the
transcriptomics, epigenetic, or dual-omics level and established
several quantitative rules on the multiomics level for the
classification of cells with different biological/pathological

statuses. All the qualitative signatures and quantitative rules have
been validated by recent publications, confirming the efficacy
and accuracy of our analyses. By summarizing the results, we
conclude that the use of transcriptomics data may be more
appropriate than that of epigenetic data to classify ASMCs under
different activation conditions. Moreover, we conclude that the
combined use of transcriptomics and epigenetic data is highly
effective and accurate for cell classification.
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