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 Background: The pathological mechanism of Barrett’s esophagus (BE) is still unclear. In the present study, pathway cross-
talks were analyzed to identify hub pathways for BE, with the purpose of finding an efficient and cost-effec-
tive detection method to discover BE at its early stage and take steps to prevent its progression.

 Material/Methods: We collected and preprocessed gene expression profile data, original pathway data, and protein-protein inter-
action (PPI) data. Then, we constructed a background pathway cross-talk network (BPCN) based on the orig-
inal pathway data and PPI data, and a disease pathway cross-talk network (DPCN) based on the differential 
pathways between the PPI data and the BE and normal control. Finally, a comprehensive analysis was conduct-
ed on these 2 networks to identify hub pathway cross-talks for BE, so as to better understand the pathologi-
cal mechanism of BE from the pathway level.

 Results: A total of 12 411 genes, 300 pathways (6919 genes), and 787 896 PPI interactions (16 730 genes) were sep-
arately obtained from their own databases. Then, we constructed a BPCN with 300 nodes (42 293 interac-
tions) and a DPCN with 296 nodes (15 073 interactions). We identified 4 hub pathways: AMP signaling path-
way, cGMP-PKG signaling pathway, natural killer cell-mediated cytotoxicity, and osteoclast differentiation. We 
found that these pathways might play important roles during the occurrence and development of BE.

 Conclusions: We predicted that these pathways (such as AMP signaling pathway and cAMP signaling pathway) could be 
used as potential biomarkers for early diagnosis and therapy of BE.
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Background

Barrett’s esophagus (BE, also known as columnar-lined esoph-
agus), is a complication of gastroesophageal reflux disease 
and a precursor lesion in most cases of esophageal adeno-
carcinoma (EA) [1]. Although, less than 5% of patients with 
BE will go on to develop EA, it is generally accepted that most 
persons with BE are undiagnosed and the vast majority of EA 
occurs in patients with undiagnosed BE [2]. EA usually car-
ries a poor prognosis, with a 5-year survival rate of less than 
15% [3]. Endoscopic examination is the now most common-
ly used means for detection of early EA, but is neither feasi-
ble nor cost-effective [4]; therefore, there is great need for an 
efficient and cost-effective method to detect BE in the early 
stage to prevent progression.

Recent efforts have been made to better understand the oc-
currence and development of BE. It has been reported that in-
creasing age, cigarette smoking, obesity, lack of Helicobacter 
pylori (H. pylori) infection, and gastroesophageal reflux disease 
are the leading risk factors for BE [5]. In addition, the intes-
tinal epithelial-associated caudal-type homeobox (CDX) tran-
scription factors CDX1 and CDX2 have been implicated in the 
pathogenesis of BE [6]. By using next-generation sequencing 
in endoscopic biopsies, ARID1A has been identified as a tu-
mor-suppressor gene in BE [7]. Furthermore, the genomic se-
quences have been discovered [8]. However, the exact patho-
logical mechanism still remains unclear.

At present, pathway analysis has become the first choice for 
extracting and explaining the underlying biology for high-
throughput molecular measurements [9]. One effective bio-
logical approach to identifying pathway interaction is through 
genetic screenings, in which synthetic lethality of 2 mutations 
often indicates interaction between 2 pathways where those 
2 mutations reside separately [10]. Given the complex nature 
of biological systems, pathways often need to function in a 
coordinated fashion to produce appropriate physiological re-
sponses to internal and external stimuli [11]. Fortunately, back-
ground pathway cross-talk network (BPCN) provides a quanti-
fiable description of the molecular networks that characterize 
the complex interactions and the intricate interwoven relation-
ships that govern cellular functions, among those tissues and 
disease-related genes to explain the molecular processes dur-
ing disease development and progression [12]. In networks, 
2 pathways are likely to interact with or influence each other 
(cross-talk) if significantly more protein interactions are de-
tected between these 2 pathways than expected by chance. 
Therefore, in the present study, pathway cross-talk analysis was 
conducted based on the networks of BPCN and disease path-
way cross-talk network (DPCN) to identify the key pathways for 
BE, so as to better understand the exact pathogenesis of BE.

Therefore, we collected and preprocessed gene expression pro-
file data, pathway data, and protein-protein interaction (PPI) 
data. Next, we separately constructed a BPCN and a DPCN. 
Finally, a comprehensive analysis was conducted on these 2 
networks to identify key pathway cross-talks for BE. The re-
sults are potential biomarkers for early diagnosis and thera-
py of BE, which could give great insights to reveal the path-
ological mechanism underlying this disease, or contribute to 
future study of related diseases.

Material and Methods

Data recruitment and preprocessing

Gene expression profile data

The gene expression profile of BE, with accessing number of 
GSE39491 (8), was obtained from the Gene Expression Omnibus 
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/). The data 
on GSE39491, on the A-AFFY-37 – Affymetrix GeneChip Human 
Genome U133A 2.0 platform, were composed of 40 BE samples 
and 80 controls from matched normal mucosa. The microarray 
data and annotation files were downloaded. Then, the gene ex-
pression profile on probe level was converted into gene symbol 
level, and the duplicated symbols were deleted. Finally, a to-
tal of 12 411 gene symbols was obtained for further analysis.

Pathway data recruiting

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a knowl-
edge base for systematic analysis of gene functions, linking 
genomic information with higher order functional informa-
tion [13]. The KEGG pathway database (http://www.genome.jp/
kegg) is a collection of graphical diagrams (pathway maps) for 
the biochemical pathways [14]. In this study, all human path-
way data were downloaded from the KEGG pathway database, 
and a total of 300 pathways and 6919 genes were obtained.

Protein interaction data recruitment and preprocessing

There are several PPI databases that researchers commonly 
use, such as the Biomolecular Interaction Network Database 
(BIND) [15] , BioGRID [16], Reactome [17], and the Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING) [18]. In 
the present study, the global human PPIs were obtained from 
the STRING database (http://string-db.org/), which included a 
total of 1 048 576 interactions. The protein IDs were convert-
ed into gene symbol level, and the duplicated symbols were 
deleted. Finally, a PPI network including a total of 787 896 in-
teractions (16 730 genes) were obtained for further analysis.
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BPCN construction

To evaluate interactions among pathways, the PPI relationship 
between the pathways, which was pathway cross-talk, was in-
vestigated. The pathways that had cross-talk between each 
other were selected to construct the network, which was de-
fined as the BPCN. First, for each of the pathway pairs that we 
obtained from the KEGG pathway database, the PPI analysis of 
the genes enriched in these 2 pathways were conducted. After 
statistically analyzing all of the pathway pairs and all of the 
interactions between any 2 pathway pairs, we separately de-
noted these numbers as weight values for the pathway pairs. 
Then, we used the Fisher exact test to evaluate gene overlap 
between any given pair of pathways [19], and P-values (de-
noted as PB) were adjusted by false discovery rate (FDR) [20]. 
Finally, the BPCN was visualized by Cytoscape with pathway 
pairs whose adjusted PB were <0.05.

DPCN construction

To further explore the relationships among the pathways in 
BE, a pathway cross-talk network was constructed based on 
the gene expression profile and the PPIs, and we denoted 
this network as the DPCN. In the present study, there were 2 
steps for constructing the DPCN: pathway analysis for BE and 
DPCN construction.

Pathway analysis for BE

In the present study, to gain further insights into the functional 
enrichment of the genes of the BE, pathway analysis was per-
formed on the gene expression profile. There were 2 steps in 
this analysis. First, pathway enrichment analysis was conducted 
based on the KEGG pathway database [13]. The Database for 
Annotation, Visualization, and Integrated Discovery (DAVID) [21] 
was used to perform the KEGG pathway enrichment analysis 
of the nodes to find the biochemical pathways which might be 
involved in the occurrence and development of BE. The path-
ways with gene counts including more than 5 genes and less 
than 100 genes were selected for further analysis. Then, GSEA-
ANOVA of the attract method was used to test pathway-lev-
el data to identify the values of the F-statistic, and the t test 
with Welch modification was used to adjust the P value [22]. 
In this case, each pathway was assigned a P value, which we 
denoted as PA, and these pathways were ranked in descend-
ing order according to their PA.

DPCN construction

In the present study, the DPCN was constructed based on the 
differential pathways. To further define the relationships of 
these pathways identified above, the PPI relationships between 
every pathway cross-talk were measured. For any pathway 

cross-talk, we went through all genes in a given pathway, 
and if a gene did not have any interaction, we skipped it. If 
a gene had interaction, the Spearman correlation coefficient 
(SCC) (23) was utilized to weight pairwise interactions of BE 
and normal controls in pathways. The SCC of a pair of inter-
actions (x and y) was defined as:
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Where n was the number of interactions of the inter; g(x, i) 
or g(y, i) was the expression level of interaction a or b in the 
pathway i under a specific condition (BE or normal); g

_
(x) or g

_

(y) represented the mean expression level of interaction x or 
y and s(x) or s(y) represented the standard deviation of ex-
pression level of interaction x or y.

For any pathway cross-talk, supposing that there were A and 
B genes in these 2 pathways, respectively, we defined the 
weight of the pathway pairs as the total absolute different 
value of SCC between normal controls and BE divided (X × Y).

In the following, we used the Fisher exact test [19] to evalu-
ate gene overlap between any given pathway cross-talk, and 
P-values, which we denoted as PD, were adjusted by FDR [20]. 
Finally, the pathway pairs of BE and normal controls whose 
adjusted PD <0.05 were considered as differential pathways 
were selected to construct a DPCN via Cytoscape.

Identification of hub pathways

For purposes of identifying hub pathways for BE, a gener-
al analysis was conducted on the BPCN and DPCN. Centrality 
analysis was employed to investigate biological functions and 
significance of hub cross-talks in BPCN and DPCN. Centrality 
measures mainly contain degree [24], closeness [25], between-
ness [26], and transitivity [27], in which degree is the simplest 
topological index. In the present study, the pathways of the 
BPCN and DPCN were ranked in descending order according 
to the degree centralities of the pathways.

Then, the rank product (RP) algorithm [28], a simple but power-
ful meta-analysis tool to detect differentially expressed genes 
between 2 experimental conditions, was used to analyze these 
2 networks. U and V stand for 2 conditions (BE vs. controls), 
and there were nU and nV replicates in the BPCN, and mU and 
mV in DPCN. The RP for each cross-talk was determined ac-
cording to the following formula:

��� � �� ����
)��� 

Where:
T=(nu×nv) + (mu×mv)
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Where rsi stood for the rank of sth gene under ith compari-
son, i=1, …, T. The pathways with RP value <0.05 were consid-
ered to be very important and selected for further analysis.

The impact factor (IF) was considered to determine the hub 
pathways. For an arbitrary pathway x, where PD represented 
the degree value of the DPCN, and PA represented the P value 
according to the attract method. The IF of pathway x was cal-
culated according to the following formula:

��� =
���

� � ���
Finally, based on comprehensive analysis, the pathways with 
PA <0.05 and RP value <0.05, as well as the top 2% pathways 
according to the IF values, were considered as hub pathways. 
The cross-talks among hub pathways were hub cross-talks.

Results

In the present study, for detecting significant biomarkers for 
BE, pathway cross-talk analysis was conducted. Prior to anal-
ysis, gene data, original pathway data, and PPI data were all 
collected from their own databases. In the following, compre-
hensive analysis was performed on the BPCN and DPCN to 
identify hub cross-talks. The results were as follow.

BPCN construction

Having obtained the pathway data and the PPI data from their 
own databases, the PPI relationships between any 2 pathways 
were analyzed. By setting the threshold value of PB <0.05, a 
BPCN with 300 nodes (42 293 interactions) was constructed 
(Figure 1). Degree centrality analysis was conducted on the 
BPCN (Figure 2), showing that the degree of most pathways was 
focused on the value between 250 and 300. In this case, most 
pathways were contacted with each other. Edges between 2 
pathways with significant gene overlap were considered as not 
informative, and thus were removed from the network. Note 

Figure 1.  The background pathway cross-talk network. The nodes represent pathways and the edges represent the interactions 
between the pathways. The nodes in yellow represent the key pathways in Barrett’s esophagus.
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that it was our intent to discover cross-talk among different 
biological activities in BE; therefore, we constructed a DPCN.

DPCN construction

Pathway enrichment analysis

As indicated in the Methods section, to construct the DPCN, 
we first conducted KEGG enrichment analysis of the gene ex-
pression profile of BE. Then, each pathway was assigned a P 
value via the attract method. There were 16 pathways with PA 
<0.05: Chemical carcinogenesis (PA=6.49E-06), Metabolism of 
xenobiotics by cytochrome (PA=2.09E-05), Neuroactive ligand-
receptor interaction (PA=7.97E-05), Ribosome (PA=7.97E-05), 
Retinol metabolism (PA=7.97E-05), Drug metabolism – cyto-
chrome (PA=1.30E-03), Natural killer cell-mediated cytotoxicity 
(PA=1.71E-03), RNA transport (PA=1.71E-03), ABC transporters 
(PA=4.79E-03), Osteoclast differentiation (PA=1.20E-02), Nicotine 
addiction (PA=1.20E-02), Antigen processing and presentation 
(PA=1.90E-02), cAMP signaling pathway (PA=2.40E-02), cGMP 
– PKG signaling pathway (PA=2.40E-02), Valine (PA=2.40E-02), 
and Spliceosome (PA=2.40E-02).

DPCN construction

To further define the biological activities of the pathways of 
the BE, a DPCN was constructed based on the differential 
pathways. As SCC was used to weight the pairwise interac-
tions of BE and normal controls in pathways, the Fisher exact 
test was utilized to evaluate gene overlap between any given 
pathway cross-talk, and FDR was used to adjust the P value. 
By setting the cutoff value of PD <0.05, 296 differential path-
ways were identified. In this case, a DPCN with 296 nodes (15 
073 interactions), where each node represented a pathway, 
was built (Figure 3). Then, degree centrality analysis was con-
ducted on the DPCN (Figure 4), showing that the degree val-
ues were scattered and distributed dispersedly from 0 to 200, 
which was smaller than that in BPCN. This might be useful in 
exploring different cross-talks between BE and normal controls.

Identification of hub pathways

To detect differentially expressed genes between BE and the 
normal control condition, an RP algorithm was implemented 
to perform analysis on these 2 networks. Under the threshold 
value of RP <0.05, we obtained a total of 55 pathways. The IF 
values of the pathways were calculated and ranked in descend-
ing order, and we obtained 6 pathways: Amyotrophic lateral 
sclerosis (ALS) (IF=186), Osteoclast differentiation (IF=157), 
cAMP signaling pathway (IF=156), Natural killer cell-mediated 
cytotoxicity (IF=147), cGMP - PKG signaling pathway (IF=137), 
and Epstein-Barr virus infection (IF=135). Finally, 4 hub path-
ways – cAMP signaling pathway, cGMP-PKG signaling pathway, 

Natural killer cell-mediated cytotoxicity, and Osteoclast differ-
entiation – were identified under the threshold values of PA 
<0.05 and RP value <0.05, as well as the top 2% pathways ac-
cording to the IF values. The details are listed in Table 1, and 
these 4 hub pathways were regarded to play key roles in BE. 
The hub cross-talks are shown in Figure 5.

Discussion

BE is an acquired condition in which the normal stratified 
squamous epithelium in the distal esophagus is replaced by 
metaplastic columnar epithelium in response to chronic gas-
troesophageal reflux [29], with a predisposition to EA. Better 
understanding of the molecular alterations during its develop-
ment might improve prevention and tumor control and ultimate-
ly lead to better disease management. High-throughput biolog-
ical experiments that interrogate many genes simultaneously 
have generated unprecedented amounts of data. Bioinformatics 

Figure 2.  The degree distribution of the pathways in the 
background pathway cross-talk network.
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methods have been accepted as quick and efficient methods 
for analyzing these huge amounts of data, providing a prelim-
inary understanding of the disease. Pathway analysis has be-
come the first choice for gaining insight into the underlying 
biology of genes and proteins, as it reduces complexity and 

has increased explanatory power [30]. Traditional methods of-
ten pay close attention to diagnostic or prognostic markers, 
usually obtained by identification of the most significant dif-
ferentially expressed genes (DEGs) between the case-control 
and the disease [31], then pathway analysis is conducted on 
the DEGs to disclose the significant differential pathways be-
tween the disease and the normal control conditions. However, 
studies showed that the most significant DEGs obtained from 
different studies for a particular disease are typically inconsis-
tent [32]. The cross-validation of datasets, such as network-
based methods, significantly reduce those false findings and 
increase sensitivity [33]. Moreover, by utilizing pathway-re-
lated networks, one can gain insights into the mechanism by 
which biological systems operate [34].

Therefore, in this research, we conducted analysis on BE via 
integrating biological pathways and protein interaction data. 
We found that pathways of cAMP signaling pathway, cGMP – 
PKG signaling pathway, Natural killer cell-mediated cytotoxicity, 
and Osteoclast differentiation showed significant differences 
between BE condition and normal control condition. Therefore, 

Figure 3.  The disease pathway cross-talk network for Barrett’s esophagus. The nodes represent pathways and the edges represent the 
interactions between the pathways. The nodes in yellow represent the key pathways in Barrett’s esophagus.
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to further define the relationship between the altered path-
ways and BE, we conducted an in-depth analysis of the altered 
pathways, and cAMP signaling pathway used as an example.

Pathway analysis has been conducted to disclose the molec-
ular mechanisms underlying BE [35–37]. It has been report-
ed that a brief exposure to acid induces MAPK activation in 
vitro in human Barrett’s-associated esophageal adenocarci-
noma cells and in vivo in the metaplastic esophageal muco-
sa of patients with BE [35]. Cyclic adenosine monophosphate 
(cAMP) has tissue- specific effects on growth, differentiation, 
and gene expression [38]. cAMP has been found to activate 

MAPK and Elk-1 through a B-Raf- and Rap1-dependent path-
way [39]. Furthermore, it has been reported that there is sig-
nificant cross-talk between cAMP and MAPK signaling in the 
regulation of cell proliferation. In the present study, the cAMP 
signaling pathway was considered to be significant for EB. 
Therefore, we predict that there might be a relationship be-
tween cAMP signaling pathway and BE. In the future, further 
experimental verification should be conducted to verify the 
relationship between the cAMP signaling pathway and BE.

Conclusions

We identified several hub pathways (cAMP signaling pathway, 
cGMP – PKG signaling pathway, Natural killer cell-mediated cy-
totoxicity, and Osteoclast differentiation) for BE via integrating 
biological pathways and protein interaction data. We predict 
that these pathways might play key roles during the occur-
rence and development of BE, and are potentially novel pre-
dictive and prognostic markers for BE.
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ID Term DB DD PA RP IF

Hsa04024 cAMP signaling pathway 296 160 0.0247 0.00967 156

Hsa04022 cGMP – PKG signaling pathway 293 140 0.0247 0.02047 137

Hsa04650 Natural killer cell mediated cytotoxicity 293 147 0.00170 0.009247 147

Hsa04380 Osteoclast differentiation 293 159 0.0120 0.007117 157

Table 1. The details of the hub crosstalk pathways.

DB – represented the degree value in the background pathway crosstalk network; DD – represented the degree value in the disease 
pathway crosstalk network; PA – represented the degree value of the attract method; RP – was determined by Rank Product algorithm; 
IF – was the abbreviation of impact factor.

Figure 5.  The cross-talks between the hub pathways. Thicker 
edges show stronger interactions.

4650 Natural killer cell mediated
cytotoxicity [PATH: hsa04650]

4022 cGMP – PKG signaling pathway
[PATH: hsa04022]

4380 Osteoclast differentiation
[PATH: hsa04380]

4024 cAMP siganling pathway
[PATH: hsa04024]
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