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Background: Previous studies suggest a potential link between glycosylation and prostate 
cancer. To better characterize the relationship between the two, we performed a study to 
comprehensively evaluate the associations between genetically predicted blood plasma 
N-glycan levels and prostate cancer risk.
Methods: Using genetic variants associated with N-glycan levels as instruments, we 
evaluated the associations between levels of 138 plasma N-glycans and prostate cancer 
risk. We analyzed data of 79,194 cases and 61,112 controls of European ancestry included 
in the consortia of BPC3, CAPS, CRUK, PEGASUS, and PRACTICAL.
Results: We identified three N-glycans with genetically predicted levels in plasma to be 
associated with prostate cancer risk after Bonferroni correction. The estimated odds ratios 
(95% confidence intervals) were 1.29 (1.20–1.40), 0.80 (0.74–0.88), and 0.79 (0.72–0.87) for 
PGP18, PGP33, and PGP109, respectively, per every one standard deviation increase in 
genetically predicted levels of N-glycan. However, the instruments for these N-glycans only 
involved one to two variants. The proportions of variations that can be explained by the 
instruments range from 1.58% to 2.95% for these three N-glycans.
Conclusion: We observed associations between genetically predicted levels of three 
N-glycans PGP18, PGP33, and PGP109 and prostate cancer risk. Given the correlated nature 
of the N-glycans and that many N-glycans share genetic loci, pleiotropy is a major concern. 
Future work is warranted to better characterize the relationship between N-glycans and 
prostate cancer.
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Introduction
Prostate cancer is the second most commonly diagnosed cancer and the fifth leading 
cause of malignancy-related death among males worldwide.1 It is projected that, in 
the United States, 191,930 new prostate cancer cases and 33,330 prostate cancer- 
related deaths will occur in 2020.2 The survival rate tends to be much worse when 
cancer is diagnosed at a metastatic stage compared with localized stage.3 The 
Prostate-specific antigen (PSA) blood test has been clinically used for prostate 
cancer screening.4 However, using PSA screening is controversial due to the lack 
of a clear cutoff point for high sensitivity and specificity,5–7 and unclear benefit in 
reducing mortality in specific populations.8–10 Therefore, there are critical needs for 
better understanding the etiology and identifying effective biomarkers to improve 
the risk assessment of prostate cancer.
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A large proportion of proteins are modified by covalent 
addition of glycans. Glycosylation is a post-translational 
modification that is very important for normal physiologi-
cal processes.11 Multiple studies support potential impor-
tant roles of glycans in cancer progression.12 Alterations in 
glycosylation are shown to potentially change specific 
properties related to cancer, such as tumor growth, inva-
sion and metastasis.13–18 Different types of glycan altera-
tions have been reported to be related to prostate cancer, 
such as changes to PSA glycosylation, sialylation and core 
fucosylation, O-GlcNacylation, cryptic and branched 
N-glycans, as well as galectins and proteoglycans.19 As 
a major class of protein glycosylation besides O-glycans, 
N-glycans are known to influence many properties of 
glycoproteins, such as conformation, solubility, antigeni-
city, as well as recognition by glycan-binding proteins.20 

Basic research has suggested potential link between 
N-glycans and prostate tumorigenesis. For example, β- 
1,6-GlcNAc tri-branched and tetra-branched N-glycans 
were reported to be linked to prostate cancer metastasis 
in xenograft models.21 In humans, changes in plasma and 
immunoglobulin G (IgG) N-glycosylation have been 
reported to be associated with colorectal cancer in a case- 
control study.22 However, limited research has been per-
formed to study the relationship between N-glycans and 
prostate cancer risk. Direct measurement of glycan levels 
in a large number of subjects is costly. Furthermore, con-
ventional epidemiological studies could be influenced by 
several common limitations, such as selection bias, poten-
tial confounding, and reverse causation. Herein, to better 
characterize the relationship between plasma proteome 
N-glycosylation and prostate cancer, we used an approach 
of genetic instruments that mimic the design of rando-
mized control trials (RCT).23–25

Materials and Methods
Genetic Instruments for N-Glycan Levels 
in Plasma
To determine genetic instruments for plasma levels of 
N-glycans, we conducted a systematic literature search 
up to April 30, 2020. We focused on genome-wide asso-
ciation studies (GWAS) for N-glycans attached to all 
plasma proteins or a single protein that is extensively 
studied, IgG. After careful assessment, we included two 
largest and most comprehensive studies, one for N-glycans 
from all proteins, and the other for IgG glycans.26,27 For 
the assessed N-glycans, their quantification is relative in 

that a glycan peak was defined as a proportion of glycans 
that fall into this specific (chromatographic) peak among 
all glycans. We determined the variant(s) associated with 
each glycan reported in these studies, and only kept single- 
nucleotide polymorphisms (SNPs) that were independent 
from each other for each glycan as genetic instruments. 
The N-glycome (for example, total plasma or IgG) is 
a result of the complex interplay between biochemical 
pathways of N-glycan biosynthesis.28 The abundances of 
glycan species are determined by a partially overlapping 
set of N-glycan biosynthesis enzymes and availability of 
common substrates, leading to strong correlations between 
levels of many N-glycans. Therefore, if a locus harbors 
a particular gene, a product of which regulates the work of 
the N-glycan biosynthesis enzyme, this locus will likely 
show an effect on a wide spectrum of related glycan traits. 
This leads to the fact that one SNP can be a genetic 
instrument for a single or several glycan traits.

We selected genetic instruments for total plasma 
N-glycome traits from the results of a GWAS conducted 
by Sharapov et al, in 2763 TwinsUK samples.26 Briefly, 
genotyping was conducted with combination Illumina SNP 
arrays (HumanHap300, HumanHap610Q, 1 M-Duo and 
1.2MDuo 1 M). Standard quality control was applied 
with SNPs being filtered by sample call rate, minor allele 
frequency, SNP call rate as well as Hardy Weinberg 
Equilibrium. Variants were further imputed using 
IMPUTE2 software with 1000G Phase 1 version 3 as 
reference data. Plasma N-glycome quantification of sam-
ples were measured by ultra-performance liquid 
chromatography.29 Normalization and batch correction 
were further performed on harmonized UPLC glycan 
data. Genome-wide Efficient Mixed Model Association 
algorithm (GEMMA) was further conducted to assess the 
kinship matrix and to run linear mixed model regression 
on variants assuming additive genetic effects. In this study, 
14 loci were reported to be associated with levels of 68 
different traits at the genome-wide significant level of 
P-value < 5 × 10−8/(29 + 1) = 1.66 × 10−9, where 29 is an 
effective number of tests (traits) that was estimated. Three 
other cohorts (QMDiab, SOCCS and PainOR) were further 
used to replicate the identified associations. We extracted 
genome-wide summary statistics for 113 studied total 
plasma N-glycome traits and more than 8 million SNPs 
from the Zenodo repository [https://zenodo.org/record/ 
1298406#.X9-eQthKiUl]. We selected the genetic instru-
ments for each of 113 glycan traits separately. For each of 
the traits, we selected all SNPs that showed genome-wide 

https://doi.org/10.2147/PGPM.S319308                                                                                                                                                                                                                               

DovePress                                                                                                                            

Pharmacogenomics and Personalized Medicine 2021:14 1212

Liu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://zenodo.org/record/1298406#.X9-eQthKiUl
https://zenodo.org/record/1298406#.X9-eQthKiUl
https://www.dovepress.com
https://www.dovepress.com


significant associations at the level of P-value < 1.66 ×  
10−9. (as reported in ref26). Selected SNPs were clumped 
by retaining only one SNP within a 250KB window. When 
there are more than one SNP located at the same chromo-
some for each glycan of interest, the correlations between 
these SNPs were estimated using the Pairwise LD function 
of SNiPA (http://snipa.helmholtz-muenchen.de/snipa/ 
index.php?task=pairwise_ld). Only independent SNPs (R2 

< 0.1 based on 1000 Genomes Project Phase 3 version 5 
data for European descendants) were retained to create an 
instrument for each glycan. In total, we selected genetic 
instruments for 68 total plasma N-glycome traits. For most 
of the plasma N-glycan traits only one instrumental vari-
able was available, therefore limiting the ability to distin-
guish between causal relationship and horizontal 
pleiotropy.

We selected genetic instruments for IgG N-glycome 
traits from the published results of the GWAS of 77 IgG 
N-glycome traits conducted by Klaric et al. In this study, 
four cohorts including CROATIA-Korcula, CROATIA- 
Vis, ORCADES (Orkney Complex Disease Study), and 
TwinsUK were leveraged, with a combined sample size 
of 8090.25 The HapMap2 (release 22) imputed genetic data 
were analyzed for their associations with 77 UPLC IgG 
N-glycan traits. P ≤ 2.4×10−9 was used to determine 
genome-wide significant associations (Bonferroni cor-
rected for 21 independent glycan traits).30 In addition, 
replication analysis was performed by analyzing data of 
EGCUT, FINRISK, COGS, and SDRNT1BIO (N=2388). 
For 19 of 27 significant loci identified, the SNP-glycan 
associations were replicated at P ≤ 1.9×10−3 (0.05/27). 
Based on this study, we selected genetic instruments for 
70 IgG N-glycome traits.

Association Analysis Between Genetically 
Predicted N-Glycan Levels and Prostate 
Cancer Risk
The prostate cancer GWAS summary statistics data were 
generated from 79,194 prostate cancer cases and 61,112 
controls of European ancestry included in the consortia of 
BPC3, CAPS, CRUK, PEGASUS, and PRACTICAL.31–33 

Using the OncoArray platform, 46,939 prostate cancer 
cases and 27,910 controls were genotyped comprising 
570,000 SNPs (http://epi.grants.cancer.gov/oncoarray/). 
The remaining included participants were from several 
GWAS, namely, BPC3, CaPS 1 and CaPS 2, iCOGS, 
NCI PEGASUS, and UK stage 1 and stage 2. More 

detailed information for characteristics of the cases and 
controls, including classifications for aggressiveness in 
cases has been described elsewhere.32 For example, the 
mean age ranged from 56 to 72 across the participating 
studies for cases, and ranged from 51 to 71 for controls. 
These genotype data were imputed using the 1000 
Genomes Project data released in June 2014 as 
a reference. Summary statistics from logistic regression 
analyses were meta-analyzed using an inverse variance 
fixed effect approach further. Principal components and 
study-relevant covariates were controlled for in the 
OncoArray and each GWAS. Furthermore, country was 
stratified in the OncoArry, and study was stratified in the 
iCOGS analyses. It is worth noting that a key requirement 
of such type of analysis is that the dataset for estimating 
the SNP-exposure (in our case, SNP-glycan) associations 
do not have overlapped subjects with the dataset for esti-
mating the SNP-outcome (in our case, SNP-prostate can-
cer) associations.34 This is for considering that to use 
datasets with overlapped samples for deriving the SNP- 
exposure and SNP-outcome relationships may be prone to 
weak instrument bias towards the exposure-outcome 
estimate.34

The inverse variance weighted method (IVW), included 
in the MR-Base platform,35 was used to assess the associa-
tions of genetically predicted N-glycan levels with 
prostate cancer risk.26,36,37 In IVW method, 
∑iβi;GX �βi;GY�σ2i ;GY

�
∑iβ

2i ;GX �σ2i ;GY
� �

and 

1
�

∑iβ
2i ;GX �σ2i ;GY

� �0:5 were used to estimate the beta 
coefficient of the association between genetically predicted 
N-glycan levels and prostate cancer risk, and the correspond-
ing standard error, respectively. βi,GX here represents the beta 
coefficient of the association between i th SNP and the glycan 
of interest reported in the literature; βi,GY represents the beta 
coefficient of the association between i th SNP and prostate 
cancer risk in the prostate cancer GWAS; and σi,GY represents 
the standard error of the association of SNP-prostate cancer. 
The association odds ratio (OR), confidence interval (CI), 
and P value were estimated based on the calculated beta 
coefficient and standard error. A Bonferroni corrected thresh-
old was used to determine significant associations. Given 
80% power at the alpha of 0.05, the minimal detectable 
ORs per standard deviation of genetically predicted 
N-glycan levels ranged from 0.81 to 0.96 (from 1.04 to 
1.23) based on power calculation using https://shiny.cnsge 
nomics.com/mRnd/.38
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Results
We evaluated the associations between 138 N-glycan traits 
(of which 68 reflect total plasma N-glycome features, and 
70 reflect IgG N-glycome) and prostate cancer risk. 
Detailed information of the genetic instruments used was 
shown in Supplementary Table 1. Aggregating indepen-
dently associated variants together, 0.57% to 20.32% of 
the variation of N-glycan traits can be explained by the 
corresponding instrument variants (Supplementary 
Table 1). The largest proportion of variation was explained 
for IGP29 (20.32%). The smallest one was for IGP27 
(0.57%) with rs7621161 as the instrument.

The results for the associations between genetically 
predicted N-glycan levels and prostate cancer risk are 
shown in Table 1. Among all N-glycans tested, we identi-
fied three N-glycans with genetically predicted levels to be 
associated with prostate cancer risk at P ≤ 3.62×10−4, 
a Bonferroni-corrected significance level (0.05/138). 
Higher predicted levels of PGP18 (OR=1.29; 95% CI, 
1.20–1.40; P = 8.32×10−9) while lower predicted levels 
of PGP33 (OR=0.80; 95% CI, 0.74–0.88; P = 1.33×10−6) 
and PGP109 (OR=0.79; 95% CI, 0.72–0.87; P = 
5.49×10−7) were associated with an increased risk of pros-
tate cancer (Table 1). The instruments for these three 
N-glycans are rs3115663 for PGP18, rs1866767 for 
PGP33, and rs11223780 and rs140053014 for PGP109 
(Supplementary Table 1).

Discussion
Leveraging a large GWAS dataset for prostate cancer risk, 
we evaluated the relationship between genetically pre-
dicted plasma N-glycan levels and prostate cancer risk. 
This study, to our knowledge, is the first study to charac-
terize potential roles of N-glycans in risk of prostate can-
cer using genetic instruments. We observed that lower 
predicted levels of PGP18 (The percentage of Man9 
N-glycan in total plasma glycans) as well as higher pre-
dicted levels of PGP33 (the percentage of A4G4S[3,3,3,3] 
4 in total plasma glycans) and PGP109 (the ratio of dis-
ialylated and trisialylated trigalactosylated structures in 
total plasma glycans) were associated with lower risk of 
prostate cancer. Man9-mannosidase is a high mannose 
glycan, which is an alpha 1,2 specific enzyme located in 
the endoplasmic reticulum, and plays a key role in the 
processing of N-linked oligosaccharides.39 The A4G4S 
[3,3,3,3]4 is a highly branched galactosylated sialylated 
glycan (attached to alpha1-acid protein - an acute-phase 

Table 1 Associations Between Genetically Predicted Plasma 
N-Glycan Levels and Prostate Cancer Risk

Trait OR (95% CI)a P valueb

PGP18 1.29 (1.20–1.40) 6.40×10−11

PGP109 0.79 (0.72–0.87) 5.49×10−7

PGP33 0.80 (0.74–0.88) 1.33×10−6

PGP2 0.92 (0.87–0.98) 5.47×10−3

PGP3 0.95 (0.88–1.02) 0.18

PGP6 0.95 (0.88–1.03) 0.23
PGP13 1.03 (0.98–1.08) 0.29

PGP17 1.02 (0.97–1.07) 0.48
PGP20 1.01 (0.95–1.08) 0.68

PGP22 0.90 (0.74–1.1) 0.32

PGP23 0.97 (0.91–1.02) 0.26
PGP24 1.01 (0.97–1.05) 0.55

PGP25 1.00 (0.94–1.06) 0.95

PGP27 0.98 (0.94–1.04) 0.55
PGP28 0.97 (0.89–1.05) 0.43

PGP30 1.01 (0.97–1.04) 0.69

PGP32 1.00 (0.96–1.05) 1.00
PGP34 1.00 (0.95–1.06) 0.96

PGP36 1.03 (0.94–1.13) 0.55

PGP37 0.98 (0.91–1.07) 0.71
PGP38 1.05 (0.97–1.15) 0.23

PGP39 0.97 (0.89–1.05) 0.44

PGP40 1.05 (0.97–1.15) 0.23
PGP41 1.03 (0.98–1.09) 0.28

PGP42 1.01 (0.9–1.14) 0.82

PGP43 0.98 (0.92–1.04) 0.55
PGP45 1.07 (0.96–1.2) 0.23

PGP46 0.89 (0.74–1.07) 0.23

PGP47 1.02 (0.96–1.08) 0.54
PGP50 1.04 (0.95–1.14) 0.43

PGP51 1.03 (0.95–1.12) 0.43

PGP52 1.03 (0.96–1.11) 0.43
PGP56 1.02 (0.98–1.06) 0.37

1.02 (0.98–1.05) 0.43

1.02 (0.97–1.07) 0.52
1.09 (0.82–1.46) 0.67

PGP57 1.01 (0.97–1.06) 0.57

PGP59 0.94 (0.87–1.01) 0.09
PGP60 1.00 (0.93–1.08) 0.97

PGP61 1.06 (0.97–1.16) 0.23

PGP62 1.01 (0.93–1.1) 0.80
PGP63 0.95 (0.88–1.03) 0.23

PGP67 1.05 (0.99–1.11) 0.08

PGP70 0.93 (0.85–1.01) 0.09
PGP72 1.06 (0.99–1.14) 0.09

PGP74 0.99 (0.93–1.05) 0.74

PGP78 1.04 (0.97–1.12) 0.23
PGP79 1.08 (0.99–1.18) 0.09

PGP80 0.95 (0.88–1.03) 0.23

PGP82 0.96 (0.89–1.03) 0.23

(Continued)
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protein,40 known to be associated with chronic low-grade 
inflammation.41,42 The observed inverse association of 
A4G4S[3,3,3,3]4 with prostate cancer risk is not entirely 
consistent with known knowledge of A4G4S[3,3,3,3]4 
with higher level of low-grade inflammation and future 
work is needed to better understand the relationship 
between these two. Our work provides new information 
to understand the relationship between N-glycans and 

Table 1 (Continued). 

Trait OR (95% CI)a P valueb

PGP83 0.95 (0.87–1.03) 0.23

PGP84 0.95 (0.86–1.04) 0.23

PGP85 0.95 (0.87–1.03) 0.23
PGP86 1.05 (0.97–1.15) 0.23

PGP87 1.00 (0.92–1.09) 0.97

PGP88 0.95 (0.87–1.03) 0.23
PGP89 0.95 (0.87–1.03) 0.23

PGP90 1.05 (0.97–1.14) 0.23

PGP92 0.96 (0.88–1.04) 0.34
PGP99 0.94 (0.84–1.05) 0.30

PGP102 0.97 (0.91–1.04) 0.43

PGP103 1.02 (0.96–1.09) 0.55
PGP105 0.98 (0.92–1.04) 0.55

PGP106 1.02 (0.96–1.08) 0.55

PGP107 0.95 (0.88–1.03) 0.23
PGP110 0.93 (0.86–1.02) 0.12

PGP112 1.00 (0.95–1.05) 0.99

IGP2 0.98 (0.93–1.03) 0.43
IGP3 0.98 (0.87–1.11) 0.75

IGP5 1.03 (0.96–1.11) 0.40

IGP6 0.97 (0.87–1.1) 0.66
IGP7 1.04 (0.94–1.16) 0.45

IGP8 1.01 (0.94–1.08) 0.88

IGP9 1.01 (0.96–1.06) 0.66
IGP10 1.01 (0.94–1.09) 0.78

IGP11 0.97 (0.91–1.03) 0.36

IGP12 0.99 (0.92–1.07) 0.84
IGP13 0.97 (0.91–1.03) 0.28

IGP14 0.96 (0.91–1.02) 0.17

IGP15 1.04 (0.96–1.13) 0.33
IGP17 1.04 (0.99–1.1) 0.14

IGP18 0.97 (0.87–1.07) 0.55
IGP19 0.98 (0.85–1.13) 0.78

IGP21 0.96 (0.87–1.07) 0.49

IGP22 1.03 (0.97–1.09) 0.32
IGP23 1.05 (0.98–1.13) 0.18

IGP24 1.01 (0.96–1.06) 0.72

IGP25 1.10 (0.96–1.26) 0.18
IGP26 1.02 (0.97–1.08) 0.41

IGP27 1.11 (0.95–1.28) 0.18

IGP28 1.05 (0.94–1.16) 0.40
IGP29 1.01 (0.97–1.05) 0.70

IGP30 1.02 (0.96–1.09) 0.51

IGP31 1.00 (0.93–1.07) 0.93
IGP32 1.03 (0.99–1.07) 0.19

IGP34 1.00 (0.93–1.08) 0.96

IGP35 0.97 (0.94–1.01) 0.18
IGP36 1.00 (0.8–1.24) 0.98

IGP37 0.98 (0.86–1.12) 0.77

IGP38 0.98 (0.86–1.11) 0.76

(Continued)

Table 1 (Continued). 

Trait OR (95% CI)a P valueb

IGP39 1.01 (0.97–1.05) 0.66

IGP40 1.00 (0.96–1.04) 0.93

IGP42 0.98 (0.93–1.03) 0.41
IGP43 0.98 (0.86–1.11) 0.75

IGP45 1.03 (0.96–1.1) 0.42

IGP46 0.97 (0.87–1.1) 0.66
IGP47 1.01 (0.93–1.11) 0.76

IGP48 1.08 (0.9–1.28) 0.41

IGP49 1.01 (0.96–1.06) 0.66
IGP50 1.01 (0.94–1.09) 0.77

IGP51 0.97 (0.9–1.04) 0.40

IGP52 1.01 (0.94–1.08) 0.84
IGP53 0.97 (0.91–1.04) 0.38

IGP54 0.97 (0.89–1.05) 0.41

1.00 (0.92–1.09) 0.98
IGP55 0.96 (0.84–1.09) 0.50

IGP57 0.97 (0.9–1.04) 0.34

IGP58 1.03 (0.98–1.08) 0.31
IGP59 1.02 (0.98–1.07) 0.32

IGP60 1.03 (0.98–1.08) 0.31

IGP61 1.03 (0.98–1.08) 0.27
IGP62 0.98 (0.93–1.04) 0.60

IGP63 1.00 (0.95–1.06) 0.98

IGP64 0.99 (0.94–1.05) 0.76
IGP65 1.01 (0.95–1.06) 0.79

IGP66 1.01 (0.96–1.07) 0.60

IGP67 1.00 (0.95–1.05) 0.92
IGP68 1.01 (0.96–1.06) 0.76

IGP69 1.00 (0.95–1.05) 0.86

IGP70 1.01 (0.96–1.07) 0.60
IGP71 1.01 (0.96–1.07) 0.60

IGP72 0.98 (0.94–1.03) 0.52
IGP73 1.01 (0.94–1.08) 0.85

IGP74 1.00 (0.95–1.04) 0.88

IGP75 1.00 (0.95–1.04) 0.89
IGP76 1.00 (0.95–1.05) 0.98

IGP77 0.99 (0.92–1.06) 0.72

Notes: aOR represents odds ratio per one standard deviation increase in geneti-
cally predicted levels of N-glycan; CI represents confidence interval of the odds 
ratio; bP value: Derived from association analyses of 79,194 cases and 61,112 
controls.
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prostate cancer. Due to the potential pleiotropy bias, addi-
tional work is needed to better understand whether 
changes in N-glycosylations could influence the risk of 
prostate cancer.

Recently, studies suggested that changes to N-glycans 
such as the branching of complex biantennary glycans to 
triantennary and tetraantennary structures and the emer-
gence of cryptic N-glycans could be related to prostate 
cancer.12,43–46 Kawahara et al found that a panel of 56 
intact N-glycopeptides could discriminate prostate cancer 
from benign prostatic hyperplasia.43 Several other studies 
observed that changes to branched N-glycans could also 
help distinguish prostate cancer from benign prostatic 
hyperplasia.44,45 Moreover, it was identified that tetraan-
tennary and tetrasialylated N-glycans could potentially 
serve as biomarkers to improve the stratification of 
patients with indolent and aggressive prostate cancer.46 

Matsumoto et al identified that castration-resistant prostate 
cancer (CRPC) patients had significantly higher levels of 
terminal α-2.3 sialylated glycan, α-2.6 sialylated glycan, 
and terminal galactose while lower levels of branched- 
LacNAc structure compared with non-CRPC patients.47 

Ishibashi et al found that tri- and tetra-antennary 
N-glycans were significantly higher in CRPC patients 
than other groups including healthy volunteers, subjects 
with benign prostatic hyperplasia, early-stage prostate can-
cer patients, as well as prostate cancer patients with andro-
gen deprivation therapy.48 Also, the expression of 
N-glycan branching enzyme genes (MGAT1, MGAT2, 
MGAT4B, MGAT5A, and MGAT5B) were significantly 
higher in the CRPC-like cell lines DU145 and PC-3 com-
pared with androgen-dependent LNCaP cells and normal 
prostate epithelial RWPE-1 cells. In addition, IgG antibo-
dies targeting the Man9- or Tri-/m-II-autoantigens were 
detectable and these antibody activities were selectively 
increased in prostate cancer patients compared with benign 
prostatic hyperplasia patients.49 Ishikawa et al developed 
an automated system for measuring cancer-associated α- 
2,3-linked sialyl N-Glycan-carrying prostate-specific anti-
gen (S2, 3PSA). The area under the curve (AUC) for the 
S2,3PSA ratio was 0.83 which was much higher than 
conventional PSA testing (AUC=0.51), in their analyses 
differentiating 50 prostate cancer patients from 50 benign 
prostatic hyperplasia patients.50 Llop et al conducted 
a study to assess the core fucosylation and the sialic acid 
linkage of PSA N-glycans in serum samples from 29 
benign prostatic hyperplasia patients and 44 prostate can-
cer patients with different degrees of aggressiveness. They 

found significant increased levels of the α-2,3-sialic acid 
and decreased levels of the core fucose percentage of PSA 
N-glycans in aggressive prostate cancer compared with 
benign prostatic hyperplasia and nonaggressive prostate 
cancer.51 As the precursors, cores, and internal sequences 
of N-glycans, cryptic N-glycans are reported to be closely 
related to development of prostate cancer.21,49,52,53 Wang 
et al reported the detection of cryptic N-glycan Man9 in 
the serum of prostate cancer patients, and its antibodies 
could help differentiate high-grade prostate cancer.54 It 
would be interesting to investigate whether specific 
N-glycans could provide useful information for prognosis 
of advanced prostate cancer patients such as CRPC 
according to therapy.55–57 Beyond the scope of glycans, 
research has supported potential roles of additional mar-
kers in risk prediction of prostate cancer. For example, the 
prostate health index (PHI) was reported as a better pre-
dictor of positive first biopsy in men with total PSA “gray” 
levels of 2–10 ng/mL compared with %fPSA (free to total 
PSA ratio ×100).58 Future work assessing whether 
a combination of N-glycans and PHI can further improve 
the prediction may be warranted.

The proportions of variance of N-glycans that can be 
explained by the summed GWAS-identified genetic var-
iants are relatively high for many of the assessed 
N-glycans, suggesting that many of the instrumental vari-
ables used in this study are relatively strong. The main 
association analysis of our study leveraging a large num-
ber of prostate cancer cases and controls provided high 
statistical power to detect the glycan-prostate cancer asso-
ciations. The design of using genetic instruments could 
reduce selection bias, potential confounding, and reverse 
causation bias that are commonly imbedded in conven-
tional observational studies. On the other hand, there are 
potential limitations of our study. Given the correlated 
nature of the N-glycans themselves and that many 
N-glycans share genetic loci, pleiotropy will be a major 
concern. While observed association of a variant with two 
traits could be because of pleiotropy of a single functional 
variant, it could as well be because of linkage disequili-
brium between two distinct functional variants. Thus, our 
findings should be taken with caution and further studies 
are needed to validate them. Second, our analysis may be 
constrained by the variants identified in previous GWAS of 
plasma levels of N-glycans. In the study of Sharapov et al, 
the discovery analysis was based on TwinsUK dataset, 
which consisted of 89% females and 11% males. On the 
other hand, prior to GWAS, the glycan traits were adjusted 
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or age and sex. Furthermore, as described in the original 
paper, for a majority of the GWAS identified associations, 
they were further replicated in three additional datasets 
(PainOR, QMDiab, and SOCCS), which contain relatively 
higher proportions of males (45%, 50%, and 54%, respec-
tively). It is expected that if we only focus on datasets of 
males in these studies for determining glycan associated 
variants, the statistical power would be relatively low. 
Considering that the replication analysis using data invol-
ving much higher proportions of males largely support the 
variant-glycan associations identified in the discovery ana-
lysis, we think that the current strategy using instruments 
based on analyses of combined sex may be more appro-
priate. In the Klaric et al, the discovery analyses were 
performed in four cohorts, CROATIA-Korcula (38% 
males), CROATIA-Vis (46% males), ORCADES (41% 
males), and TwinsUK (all females). The glycan traits 
were corrected for age, sex, cohort-specific covariates 
and cryptic relatedness before analyses. It is expected 
that additional N-glycan biomarkers could be identified 
using newly identified genetic variants (preferably in stu-
dies of males only with sufficient sample sizes) in the 
future. Furthermore, future work using comprehensive 
genetic prediction models of N-glycans aggregating effects 
of multiple variants could further improve the statistical 
power with increased variance of N-glycan levels that 
could be explained by genetic instruments. Third, the pre-
sent work primarily focuses on studying prostate cancer 
risk comparing cases versus controls. Future work consid-
ering clinical and pathological features of prostate cancer 
(such as stage and Gleason score) would be needed to 
identify glycans that are potentially related to prostate 
cancer aggressiveness. It would also be useful to incorpo-
rate family history information into analyses to differenti-
ate glycans playing a different role in familiar versus 
sporadic prostate cancer. Further studies are also needed 
to verify our findings with directly measured levels of 
these glycans. Functional investigations are also warranted 
to understand the biological roles of the identified 
N-glycans in prostate tumorigenesis.

Conclusions
In this large-scale study, we identified three N-glycans 
with genetically predicted levels in plasma to be associated 
with prostate cancer risk. However, potential biases could 
have influenced these observed associations. Future work 
is needed to better characterize the relationship between 
N-glycans and prostate cancer.

Summary
Prostate cancer is the second most commonly diagnosed 
cancer among males worldwide. Prostate-specific antigen 
screening is controversial due to the lack of a clear cutoff 
point for high sensitivity and specificity, and unclear ben-
efit in reducing mortality in specific populations. 
Therefore, there are critical needs for better understanding 
the etiology and identifying effective biomarkers to 
improve the risk assessment of prostate cancer. The pur-
pose of this study is to better characterize the relationship 
between glycosylation and prostate cancer, using genetic 
instruments. In this work, we identified several N-glycan 
biomarker candidates for prostate cancer risk. It not only 
provides new data regarding novel candidate risk biomar-
kers for prostate cancer but also demonstrates the utility of 
integrating genomics and glycomics data in biomarker 
research.

Data Availability
For the prostate cancer GWAS data in the PRACTICAL 
consortium, the OncoArray genotype data and relevant 
covariate information (ie, ethnicity, country, principal 
components, etc.) are available in dbGAP (Accession #: 
phs001391.v1.p1). In total, 47 of the 52 OncoArray stu-
dies, encompassing nearly 90% of the individual samples, 
are available. The previous meta-analysis summary results 
and genotype data are currently available in dbGAP 
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mary association statistics as described in Schumacher 
et al 2018 are available at http://practical.icr.ac.uk/blog/? 
page_id=8164.
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